
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 1

Parallel Computation of
Piecewise Linear Morse-Smale Segmentations

Robin G. C. Maack, Jonas Lukasczyk, Julien Tierny, Hans Hagen, Ross Maciejewski, and Christoph Garth

Abstract—This paper presents a well-scaling parallel algorithm for the computation of Morse-Smale (MS) segmentations, including the
region separators and region boundaries. The segmentation of the domain into ascending and descending manifolds, solely defined on
the vertices, improves the computational time using path compression and fully segments the border region. Region boundaries and
region separators are generated using a multi-label marching tetrahedra algorithm. This enables a fast and simple solution to find
optimal parameter settings in preliminary exploration steps by generating an MS complex preview. It also poses a rapid option to
generate a fast visual representation of the region geometries for immediate utilization. Two experiments demonstrate the performance
of our approach with speedups of over an order of magnitude in comparison to two publicly available implementations. The example
section shows the similarity to the MS complex, the useability of the approach, and the benefits of this method with respect to the
presented datasets. We provide our implementation with the paper.

Index Terms—Topology, Visualization, Segmentation, Morse-Smale Complex, Watershed transformation.

✦

1 INTRODUCTION

TOPOLOGICAL DATA ANALYSIS (TDA) provides a family
of effective feature characterizations, including the well-

studied Morse-Smale (MS) complex. The MS complex is a
central tool in TDA for feature-driven data analysis and
visualization, as it segments the domain of a scalar field into
regions with equivalent gradient flow behavior (see Fig. 1
and Sec. 3). This rather abstract feature characterization
based on gradient flow has been applied successfully in sev-
eral domains, including chemistry [1, 2], material science [3,
4], physics [5, 6], and cosmology [7].

However, due to the high computational complexity of
MS complex generation, it often becomes a time-consuming
bottleneck. Especially in the case of interactive analysis
and visualization, users expect to quickly retrieve a visual
output, where long wait times can interrupt their workflow.
Furthermore, many applications do not require the compu-
tation of the full MS complex, but only two of its central
features: 1) the MS segmentation of the domain that assigns
extrema to each vertex by following the gradient along the
steepest descend and ascend; and 2) the interfaces between
different regions in the segmentation.

In this paper we describe a scalable implementation
of these two tasks with high parallel efficiency, further
referred to as the piecewise linear Morse-Smale segmenta-
tion (PLMSS) algorithm (Sec. 4). As the name suggests, the
input of PLMSS is a scalar field defined on the vertices of a
piecewise linear domain, i.e., a simplicial complex. PLMSS
utilizes path compression to derive the MS segmentation

• R. G. C. Maack, J. Lukasczyk, H. Hagen, and C. Garth
are with RPTU Kaiserslautern-Landau.
E-mails: {maack, lukasczyk, hagen, garth}@rptu.de

• J. Tierny is with the CNRS and Sorbonne Université.
Email: julien.tierny@sorbonne-universite.fr

• R. Maciejewski is with Arizona State University.
Email: rmacieje@asu.edu

Manuscript received XXX, 2022; revised August XX, 2022.

of the domain and a multi-label marching tetrahedra pro-
cedure to derive the interfaces between different regions
of the MS segmentation. We chose these two underlying
algorithms since they are known to be embarrassingly par-
allelizable, and therefore expected to scale well. In Sec. 5 we
demonstrate the benefit of using PLMSS for effective data
analysis and visualization on four datasets.

We compare PLMSS against the corresponding subpro-
cedures of two state-of-the-art Morse-Smale complex soft-
ware libraries, i.e., the implementations available in the
Topology ToolKit (TTK) [8] and MSCEER [9]. Specifically,
we performed two strong scaling studies (Sec. 6) that show
that MSCEER outperforms TTK, but PLMSS is still up to
an order of magnitude faster than MSCEER, while also
providing superior parallel efficiency. However, the qual-
itative and quantitative comparison between the region
separators computed by PLMSS and their counterpart of
MS complex 2-cells is more challenging. Although they both
separate regions with different gradient flow behavior, they
are defined and computed differently (Sec. 3). Yet, for many
applications—including the scenarios presented in Sec. 5—
the computation of region separators is sufficient without
the need for expensive discrete gradient field and dual mesh
computations.

In short, the contributions of our work are:

• A scalable algorithm with high parallel efficiency for
the computation of piecewise linear Morse-Smale seg-
mentations (PLMSS);

• A detailed performance benchmark that compares
PLMSS with the corresponding subprocedures of two
state-of-the-art Morse-Smale complex software libraries
(TTK and MSCEER); and

• The integration of PLMSS in TTK to facilitate future
benchmarks and reproducibility.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 2

14 12 2 0

13 11 3 4

5 6 7 8

1 9 10 15

a) Input Scalar Field

14 12 2 0

13 11 3 4

5 6 7 8

1 9 10 15

b)
Descending Seg.

+ Region Separators

14 12 2 0

13 11 3 4

5 6 7 8

1 9 10 15

c)
Ascending Seg.

+ Region Boundaries

14 12 2 0

13 11 3 4

5 6 7 8

1 9 10 15

d)
Morse-Smale Seg.

+ Region Separators

14 12 2 0

13 11 3 4

5 6 7 8

1 9 10 15

e)
Morse-Smale Seg.

+ Region Boundaries

Fig. 1. A 4 × 4 example triangulation showing the input field (a) and
available segmentations and region-separating geometries (b-e). Each
color represents the influence area of a specific extremum (the areas of
minima 0 and 1 are shown in red and yellow, while the area of maxima
14 and 15 are shown in blue and green). The descending segmenta-
tion (b) represents the influence area of maxima and the ascending
segmentation (c) the ones of all minima. In the case of Morse-Smale
segmentations (d-e) the nodes show the influence of minima-maxima
combinations, leading to nodes being colored by the minima color at
the bottom and the maximum color at the top. Subfigures (b) and (d)
show region separators (thin black lines), while (c) and (e) show region
boundaries (thick black lines).

2 RELATED WORK

The MS complex subdivides a given scalar field into regions
of uniform gradient flow behavior, segmenting the domain
such that each point in the same MS manifold will flow
towards the same critical point pair considering forward
and backward integration. Two approaches to computing
the MS complex arose from Morse theory [10], where either
a discrete gradient vector field is defined on the whole
domain [11], or piecewise linear Morse theory is used to
define a segmentation [12, 13]. For an in-depth comparison
of both approaches, we refer to Lewiner’s work [14].

Algorithms based on piecewise linear Morse theory
are divided into boundary-based and region-growing algo-

rithms. Boundary-based algorithms trace lines of steepest
descent/ascent seeded at the saddles, such that every vertex
on a line of steepest ascent/descent belongs to the same
region. Region-growing algorithms grow sets of top-level
cells, e.g. cubes or tetrahedra in 3D, located at the minima
and maxima of a scalar function, iteratively enlarging re-
gions. One representative of boundary-based algorithms is
Edelsbrunner et al. [15] that first introduced the MS complex
for piecewise linear 2-manifolds, recording paths of steepest
ascent and descent. They also introduced the notion of the
quasi MS complex that was extended to 3-manifolds [16]
and later improved in geometric accuracy by Bremer et
al. [17]. Concerning region-growing algorithms, Danovaro
et al. [18] started growing regions by using triangles inci-
dent on maxima at vertices, adding edge incident triangles
iteratively. They extended this approach by appending ad-
ditional seeding points at initialization, while also enabling
to process higher-dimensional scalar fields [19]. Gyulassy et
al. [20] implemented a region-growing algorithm that labels
the vertices to extract 3-, 2-, and 1-cells, also extendable from
3D to higher dimensional scalar fields.

Discrete Morse theory was developed by Forman [21],
applying Morse theory to any type of simplicial cell com-
plex. Many algorithms build upon the discrete gradient vec-
tor field to effectively compute the MS complex [22, 23, 24].
To efficiently compute the MS complex for large datasets,
several parallel and distributed memory implementations
were introduced. Gyulassy et al. [25] first proposed splitting
a dataset into subsets called parcels, extracting the MS com-
plex from each parcel to later merge them in a cancellation-
based step. This allowed for the computation of datasets
that do not fit into memory and gave rise to distributed
memory approaches [26, 27]. Further parallel optimizations
were achieved by merging gradient paths, enabling the com-
putation of the gradient assignment and extrema traversals
on the GPU [28, 29]. Subhash et al. [30] then accomplished
computing all steps of the MS complex computation on the
GPU. Even though some algorithms improved the steepest
descent line tracing [17, 20] by allowing the traversal to
use edges and triangles, still all presented algorithms often
produce incorrect connectivity and inaccurate geometry due
to the refinement of the underlying discrete domain [31].
Here, Gyulassy et al. [32] implemented a probabilistic al-
gorithm to extract the correct geometry and connectivity.
Morse-Smale complexes were already used in many appli-
cations such as material science [33], chemistry [34], and
medicine [35], allowing for fast and consistent analysis of
the data. Cancellation-based simplification [36, 37, 38] is
often used in applications, where pairs of critical points are
removed to simplify the MS complex and eliminate noise in
the dataset. It counteracts over-segmentation of the domain
and enables the extraction of persistent features.

The Watershed transform, originally defined by Beucher
and Lantuéjoul [39], is another approach to Morse theory,
segmenting the domain, usually gray-scale images, into
catchment basins that represent the zone of influence of
minima and watershed lines, separating catchment basins
from each other. Beucher [40] described catchment basins
as areas where each drop of water ends up at the same
minimum when flowing down the surface. In contrast to
Morse theory, minima don’t have to be distinct but can

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 3

rather consist of multiple vertices of the same function
value. Those definitions were further improved to be rig-
orous [41, 42] and extended to the discrete case [43, 44].
De Floriani [45] distinguishes three types of watershed
algorithms that are either based on topographic distance,
simulated immersion, or rainfalling simulation. Algorithms
based on topographic distance compute shortest paths to
find corresponding catchment basins [43, 46]. Gabrielyan
et al. [47] and Yeghiazaryan and Voiculescu [48] provide
GPU implementations using an approach similar to path
compression, speeding up the shortest path computation.
Simulated immersion approaches seed catchment basins at
minima, extending them by processing vertices in increasing
function value order [44, 49]. Rainfalling simulation algo-
rithms use an inverted logic, finding and labeling minima
first, then decreasing in function value for each vertex by
steepest descent until a labeled vertex is found [50, 51].

Marching tetrahedra [52] is an algorithm to extract
boundary surfaces from a tetrahedralization separating dif-
ferently labeled vertices from each other. It is a generaliza-
tion of the marching cubes algorithm [53, 54] that initially
allowed the creation of iso-surfaces at a selected isovalue
by subdividing voxels such that areas with values above
and below the isovalue were separated. Yet, in contrast to
the original marching cubes algorithm, it allows multiple
labels to be present at each tetrahedron and always extracts
a distinct triangulation at each tetrahedron, eliminating am-
biguous cases. The effect of various simplicial subdivisions
on the quality of the resulting surfaces has been studied by
Carr et al. [55]. Also, various applications use this approach
for its simplicity and performance [56, 57, 58, 59].

3 PRELIMINARIES

This section describes the formal setting of our work. It
contains definitions adapted from the Topology ToolKit
(TTK) [8, 60]. We refer the reader to textbooks [61, 62] for
comprehensive introductions to computational topology.

3.1 Input Data
The input is a piecewise linear (PL) scalar field f : M → R
defined on a d-dimensional simplicial complex, with d ⩽ 3
in our applications. The star St(σ) of a simplex σ is the set
of simplices of M which contain σ as a face. The link Lk(σ)
is the set of faces of the simplices of St(σ) which do not
intersect σ. The input field f is provided on the vertices of
M and interpolated on the simplices of higher dimensions.
f is assumed to be injective, which is achieved in practice by
substituting the f value of a vertex by its position in the non-
ambiguous, global vertex order (by increasing f values).

3.2 Critical Points
The sub-level set f−1

−∞(w) of an isovalue w ∈ R is defined
as f−1

−∞(w) = {p ∈ M | f(p) < w}. As w continuously
increases, the topology of f−1

−∞(w) changes at specific ver-
tices of M, called the critical points of f . Let Lk−(v) be the
lower link of the vertex v: Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ σ :
f(u) < f(v)}. The upper link of v is defined symmetrically:
Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f(u) > f(v)}. A vertex v
is regular if and only if both Lk−(v) and Lk+(v) are simply

connected. Otherwise, v is a critical vertex of f [13]. A critical
vertex v can be classified by its index I(v), which is 0 for
minima, 1 for 1-saddles, (d − 1) for (d − 1)-saddles and d
for maxima. Vertices for which the number of connected
components of Lk−(v) or Lk+(v) are greater than 2 are
called degenerate saddles.

3.3 Integral Lines
Integral lines are piecewise linear curves on M which locally
describe the gradient of f . They can be used to capture
and visualize adjacency relations between critical points.
Given a vertex v, its forward integral line, noted L+(v), is
a path along the edges of M, initiated in v, such that each
edge of L+(v) connects a vertex v′ to its highest neighbor
v′′. Then forward integrals are guaranteed to terminate in
local maxima of f . A backward integral line, noted L−(v), is
defined symmetrically (i.e. integrating downwards towards
minima).

Moreover, we define a forward extremal integral line as
a forward integral line started at a connected component
of upper link Lk+(s) of a saddle s. Backward extremal
integral lines are defined symmetrically. We say that a
saddle s is a forward separating saddle if there exist at least two
forward extremal integral lines starting at s which terminate
in distinct local maxima. Backward-separating saddles are
defined symmetrically. In practice, extremal integral lines
help capture adjacency relations between critical points.

3.4 Morse-Smale Segmentation
In this section, we formalize the notion of Morse-Smale
segmentation computed by our approach.

For a given vertex v, let m and M be its integration
extremities: m is the local minimum reached by the backward
integral line started in v, while M is the local maximum
reached by the forward integral line started in v. We now
introduce an equivalence relation v1 ∼ v2 between two ver-
tices v1 and v2, which holds if their integration extremities
are identical. The Morse-Smale (MS) segmentation is then a
decomposition of the set of vertices of M into maximal
subsets Mi, called MS regions, such that for all pairs of
vertices (v1, v2) ∈ Mi, we have v1 ∼ v2.

Let τ be a d′-simplex of M (with 0 ≤ d′ < d), which
only contains vertices belonging to a single MS region Mi.
If the link Lk(τ) includes vertices which do not belong to
Mi, we say that τ is a boundary simplex for Mi. Then
the region boundary of Mi is the simplicial complex formed
by the union of all the boundary simplices of Mi (and
their faces). Each region boundary separates Mi from the
remaining dataset. The region separators separate all regions
Mi ∈ M from each other. To create them, every d-simplex
of M that contains vertices belonging to at least two distinct
MS regions spawns (d− 1)-simplices inside its convex hull,
as depicted in Fig. 4 and Fig. 5.

3.5 Discrete Morse Theory
We now conclude this section of preliminaries with notions
(adapted from [63]) of discrete Morse theory [11], or DMT
for short, as it has become a central component in modern
implementations of the notion of Morse-Smale complex.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 4

We discuss the key differences between the Morse-Smale
complex and the structures extracted by our approach (for-
malized in Secs. 3.3 and 3.4).

A discrete vector is a pair formed by a simplex σi ∈ M
(of dimension i) and one of its co-facets σi+1 (i.e. one of
its co-faces of dimension i + 1), noted {σi < σi+1}. σi+1 is
usually referred to as the head of the vector, while σi is its
tail. Examples of discrete vectors include a pair between a
vertex and one of its incident edges or a pair between an
edge and a triangle containing it. A discrete vector field on
M is then defined as a collection V of pairs {σi < σi+1},
such that each simplex of M is involved in at most one pair.
A simplex σi which is involved in no discrete vector V is
called a critical simplex.

A v-path is a sequence of discrete vectors
{
{σ0

i <

σ0
i+1}, . . . , {σk

i < σk
i+1}

}
, such that (i) σj

i ̸= σj+1
i (i.e.

the tails of two consecutive vectors are distinct) and (ii)
σj+1
i < σj

i+1 (i.e. the tail of a vector in the sequence is a face
of the head of the previous vector), for any 0 < j < k. A v-
path can be interpreted as the discrete analog to the notion of
PL integral line introduced in Sec. 3.3. We say that a v-path
terminates at a critical simplex σi if σi is a face of the head
of its last vector {σk

i < σk
i+1}. Symmetrically, we say that a

v-path starts at a critical simplex σi+1 if σi+1 is a co-facet of
the tail of its first vector {σ0

i < σ0
i+1}. Then, the collection

of all the v-paths terminating in a given critical simplex
σi is called the discrete stable set of σi and is noted M(σi).
Symmetrically, the collection of all the v-path starting at a
given critical simplex σi is called the discrete unstable set of
σi and is noted M′(σi).

A discrete gradient field is then a discrete vector field such
that all its possible v-paths are loop-free. Several algorithms
have been proposed to compute such a discrete gradient
field from an input PL scalar field (see [23] for instance). The
discrete Morse complex is then defined as the complex formed
by the discrete unstable sets of all the critical simplices.
It is a cell complex made of d′-dimensional cells (with
d′ ∈ {0, 1, . . . , d}), such that each d′-dimensional cell is
the discrete unstable set of a critical d′-simplex. The opposite
discrete Morse complex is defined symmetrically, i.e. it is the
cell complex formed by the discrete stable sets of all the
critical simplices. Finally, the discrete Morse-Smale complex is
defined as the complex formed by the intersections of the
cells of the discrete Morse complex and the opposite discrete
Morse complex.

Several conceptual differences exist between the Morse-
Smale complex and the Morse-Smale (MS) segmentations
considered in our work. First, as their name suggests, MS
segmentations only provide vertex-based decompositions of
the input domain, not a cell complex that exhaustively and
precisely captures all possible adjacency relations between
integral lines (formally v-paths). Thus, MS segmentations
target a subset of the applications enabled by the Morse-
Smale complex (specifically, involving data segmentation).
While the separatrices of the MS regions (Sec. 3.4) resemble
the 2-dimensional cells of the Morse-Smale complex, they
only correspond to the unstable sets of separating saddles
(Sec. 3.3), which constitutes a subset of all the saddles
(i.e. saddles where isosurfaces change their genus are not
considered). Finally, note that in DMT, local maxima (critical
d-simplices) cannot strictly occur on the boundary of M,

which only includes d′-simplices (with d′ < d).

4 METHOD

In this section, the algorithms for the computation of the
PLMSS are described in detail. First, necessary prepro-
cessing steps and data structures are presented. Then the
ascending and descending segmentation of the domain is
described, followed by the computation of the MS segmen-
tation.

4.1 Preprocessing
To prevent ambiguity during the computation of integral
paths, we apply a variant of Simulation of Simplicity [64]
on the input scalar field f . We first sort all vertices of the
domain according to their scalar value, where we resolve
ties based on the indices of the compared vertices. Then, we
derive the so-called order field f̄ that records for each vertex
its index in this sorted array. Note, that each critical point
of f is also a critical point of f̄ , but f̄ might exhibit addi-
tional critical points that result from the disambiguation.
These spurious critical points, however, can be removed
via topological simplification, which we apply in order to
remove non-persistent critical points from the scalar field.
For a detailed discussion on topological simplification and
its implementation in TTK, we refer the reader to the work
of Lukasczyk et al. [36].

The advantage of processing an order field over the
original input scalar field is that f̄ is injective, i.e., every
vertex has a distinct largest and smallest neighbor in the
order field. It is only possible that a vertex has no neighbor
with a larger or smaller order value, in which case the vertex
is a maximum or minimum, respectively. Hence, there is
always a distinct direction of steepest ascent and descent,
which is essential for the computation of the ascending and
descending manifolds, described next.

4.2 Segmentation and Extrema Retrieval
The segmentation of the domain is a two-step process. In
the first step, the ascending and descending segmentations
are created; representing areas of influence of minima and
maxima, respectively. These segmentations are intersected
to create the MS segmentation, representing the areas of
influence of minimum-maximum pairs.

4.2.1 Ascending and Descending Segmentation
MS segmentations subdivide a domain into areas of sim-
ilar flow behavior, meaning that forward and backward
integration for any vertex in the same region leads to the
same extremum pair. This means that each MS subset of
the domain corresponds to all steepest descent/ascent paths
that terminate in the same pair of extrema. To achieve this,
first, every vertex has to be assigned to its minimum and
maximum. Therefore, the ascending (asc) and descending
(dsc) segmentations of the domain are computed. As the
process is the same for both directions, without loss of gen-
erality, it will be described for the descending segmentation.

Maximum assignment for each vertex can be achieved by
iteratively finding the largest neighbor’s largest neighbor.
As this process is lengthy, taking many steps to converge

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 5

to the maximum, path compression [65] is used to double
the step size in each iteration. Fig. 2 gives an example path
compression run using 7 ordered vertices.

The segmentation computation starts by assigning each
vertex v to its largest neighbor in the triangulation ac-
cording to the order field function value dsc(v) =
argmaxx∈N(v)f̄(x), allowing for a fast lookup later in the
process. N(v) is the set of all vertices that are connected to
v via an edge in the triangulation.

At the same time, maxima can be extracted by recording
cases where no larger neighbor is found. For further pro-
cessing, each vertex that is not a maximum is written to a
list of vertices L0 that did not find their maximum yet.

In the second step, the maximum for each vertex in
L0 is found using path compression. Here, the value of
each vertex gets assigned to the largest neighbor’s largest
neighbor dsc(v) = dsc(dsc(v)). This allows doubling the
step size towards the maximum in each iteration. If the cor-
responding maximum is not found dsc(v) ̸= dsc(dsc(v)),
the vertex did not converge to its maximum and is written
to a second list L1. After fully iterating over L0, the process
starts again using L1, i.e. L0 = L1. If L1 = ∅ after iterating
over L0 the maximum dsc(v) is found for every vertex v.

In parallel environments, each vertex can be evaluated
independently with little communication in between iter-
ations, as both steps iterate over a set of vertices. Here,
the first step of finding the largest neighbor is equally dis-
tributed such that every thread executes the same amount
of vertices. Still, every thread t keeps a local list of active
vertices, i.e. L0t, L1t, executing the following iterations inde-
pendently for each thread. It is also possible to compute the
ascending and descending segmentations simultaneously,
further improving performance. To do this, both the largest
and smallest neighbors are found at the same time in the
first step, and a vertex is added to L1 if it did not converge
in both directions in the second step.

Gradient: 0 1 2 3 4 5 6

Iteration 1: 0 1 2 3 4 5 6

Iteration 2: 0 1 2 3 4 5 6

Result: 0 1 2 3 4 5 6

Fig. 2. Path compression example showing vertices as circles and
current vertex assignment as arrows. The number attached to a vertex
is the order field function value, and the outer ring shows if a vertex
converged (red). The gradient step assigns the largest neighbor to
each vertex and each following Iteration sets the neighbor’s neighbor
for active vertices. Please note that the order in which every iteration
is executed matters. In this example, it starts with the smallest active
vertex and continues in an increasing fashion. If iteration 1 would start
with the largest vertex in decreasing order the assignment would already
terminate after the first iteration.

4.2.2 Morse-Smale Segmentation
The ascending and descending segmentation obtained by
the algorithm above can be combined into an MS segmen-
tation. As the descending segmentation assigns a maximum
to each vertex and the ascending segmentation assigns a
minimum to each vertex, vertices with the same minimum
and maximum are assigned to the same MS id. Therefore,
the extremum pair combination is written to each vertex as a
tuple, allowing access to the involved extrema. This process
is trivial to parallelize, as each thread can independently
write the MS ids for its vertices.

4.3 Multi-Label Marching Triangles/Tetrahedra
To visually divide MS regions from each other, region-
separating geometries can be created between the regions.
As the triangulation consists of triangles in the 2D case and
tetrahedra in the 3D case, both cases have to be treated in
slightly different ways. In 2D, region-separating geometry is
created using edges that split triangles with multiple labels,
whereas in 3D, triangles are utilized to separate the vertices
of multi-label tetrahedra. Like marching tetrahedra [66],
each tetrahedron or triangle is evaluated independently,
considering the labels at its vertices for generating the
bisecting geometry.

4.3.1 Triangles
In the 2D case, a triangle can either have 1, 2, or 3 unique
labels at its vertices. In the case of 1 label, no edges have
to be generated as the vertices belong to the same region.
When 2 different labels are present, one vertex a has a
different label than the other two vertices b, c. Here, as
shown in Fig. 4, the centers of the edges connecting a to
b and a to c are used as the endpoints for the edge that
splits the labels. In the case of 3 unique labels, an edge is
created from the triangle center to all three of its edges.

a == c a == b a == c

b == c

000(0)

010(2)

100(4)

101(5)110(6)

noyes

no

yes

no

yes

yesno

Fig. 3. Decision tree for the triangle binary code creation. Each rhombus
represents a decision, each node shows the resulting code with the bit
representation in bold and integer representation in brackets.

Computationally, this is achieved using a lookup table
that describes every possible configuration in a triangle.
Therefore, a 3-bit binary code with values in the range of
{0, .., 6} is created to describe the current triangle config-
uration, utilizing the labels at the three vertices a, b, c of
the considered triangle, converted to a dense local repre-
sentation such that a = 0, b ∈ {0, 1}, c ∈ {0, 1, 2}. The
label a is always considered to be 0, b can either be 0 or
1 depending on the equality to label a, and c can either
be 0, 1, or 2 depending on the equality to labels a and b.
Therefore, b ∈ {0, 1} determines the left bit and c ∈ {0, 1, 2}

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 6

determines the last two bits. Fig. 3 provides the decision
tree. It should be noted that some binary codes cannot
appear, as c = 1 can only be the case if b = 1. Also, codes
like 011(3) are not possible in general, as there is no label 3.

Each of the five valid binary codes corresponds to a trian-
gle configuration, as shown in Fig. 4. This allows retrieving
the triangle edges that need to be connected. The whole
procedure is well-scaling as it is executed per triangle.

a

b

c
000(0)

a

b

c a

b

c
010(2)

a

b

c a

b

c
100(4)

a

b

c

a

b

c
101(5)

a

b

c a

b

c
110(6)

a

b

c

Fig. 4. All five valid cases for splitting a triangle. The label at the
vertices of the triangles is drawn by color (red = 0, blue = 1, green =
2), showing binary code and integer representation at the bottom, and
the resulting separating edge(s) in the middle. White circles mark the
points of intersection on the edges of the triangle.

4.3.2 Tetrahedra

In 3D, the domain is subdivided into tetrahedra. Therefore,
up to 4 unique labels a, b, c, d can be present at the vertices of
a tetrahedron. Similar to the triangle case, a 5-bit binary code
is created and translated into a tetrahedron configuration.
This configuration is used to create a consistent triangula-
tion that separates unique labels from each other.

The binary code for tetrahedra is created by an extended
logic. a is considered to be 0 again, b ∈ {0, 1} determines
the left bit, c ∈ {0, 1, 2} determines the next 2 bits and
d ∈ {0, 1, 2, 3} determines the last two bits. If the label
of a vertex with lower index matches, its label is used as
the resulting label, otherwise the index of the own vertex is
used. All valid configurations are provided in Tab. 1. Some
binary codes are invalid, as some labels might not exist
and can not be assigned to a vertex of a higher index. E.g.
00010(2) is not possible as d would have label 2, but c has
label 0, making label 2 non-existent in this configuration.

After the binary code is determined, a lookup table is
used to retrieve the resulting separating triangles utilizing
the edge, triangle, and tetrahedra centers to be connected.
This allows for a fast triangulation of the tetrahedra, as the
resulting triangle vertices are directly retrieved. Fig. 5 shows
the resulting triangulation for all cases ignoring permuta-
tions and rotations. The triangulation across tetrahedra is
always consistent, as the triangle labels of the tetrahedron
mimic the 2D case, i.e. triangles are either split by connect-
ing their edge centers to their triangle center, or two triangle
edges are connected. Therefore, the triangle connecting two
incident tetrahedra is always split in the same way and
the resulting triangulation separates labels from each other
without any holes in the geometry.

TABLE 1
All valid binary codes, the codes converted to an integer, the number of

unique labels of the tetrahedron, and the value of each label.

Binary code Case #Labels a b c d
00000 0 1 0 0 0 0
00011 3 2 0 0 0 3
01000 8 2 0 0 2 0
01010 10 2 0 0 2 2
01011 11 3 0 0 2 3
10000 16 2 0 1 0 0
10001 17 2 0 1 0 1
10011 19 3 0 1 0 3
10100 20 2 0 1 1 0
10101 21 2 0 1 1 1
10111 23 3 0 1 1 3
11000 24 3 0 1 2 0
11001 25 3 0 1 2 1
11010 26 3 0 1 2 2
11011 27 4 0 1 2 3

a
b

c

d

Cases: 3, 8, 16, 21

a
b

c

d

a
b

c

d

Cases: 10, 17, 20

a
b

c

d

a
b

c

d

Cases: 11, 19, 23-26

a
b

c

d

a
b

c

d

Cases: 27

a
b

c

d

Fig. 5. Triangulation for tetrahedra with more than 1 unique label ignoring
permutations and rotations. The case number below the tetrahedra
refers to Tab. 1.

4.3.3 Triangulation Options

As the information requested slightly varies from user to
user, two region-separating geometries are available. The
user can utilize any segmentation (ascending, descending,
and Morse-Smale) together with either region boundaries
or region separators. Fig. 1 showcases a closeup view of
the segmentations (b-e), where (b) and (d) show region
separators, and (c) and (e) show region boundaries.
Segmentation Selection: For some applications, a certain
segmentation will be of great interest. Here, either the MS,
ascending, or descending segmentation can be chosen to
deliver the labels for the marching tetrahedra algorithm.
Instead of using the MS segmentation, it is also possible to
show the union of the ascending and descending segmenta-
tion, producing intersecting geometry at the meeting points
of both region-separating geometries.
Region Separating Geometries: Both the region separators
and the region boundaries have slightly different use cases
and allow to map different information to its geometry.
The region separators divide all regions, or areas of influ-
ence of minima-maxima pairs, from each other by building

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 7

geometry between them. Therefore, information about the
minima and maxima involved in each separating triangle
can be displayed to the user. Each subset of the surface
that separates the same two regions can be extracted here.
Still, some overhead is involved in computing the region
separators, as many triangles have to be used to separate
the regions from each other, depicted in Fig. 5.

Region boundaries allow extracting the hull of regions
or areas of influence of minima-maxima pairs. They use all
tetrahedra with 3 vertices of the same label. Those 3 vertices
form a triangle in the input simplicial complex that can
be directly used as a separating geometry. This option will
result in faster computation times and allows the extraction
of geometry for each region.

5 RESULTS

In this section, three example datasets and their region-
separating geometry outputs for both algorithms are pro-
vided. The Noisy Terrain dataset in Sec. 5.1 is used to high-
light differences between both algorithms in the 2D case.
Sec. 5.2 shows that both algorithms produce a very similar
output when no saddle-saddle 2-cells are present. The last
two datasets indicate that the MS complex is providing
more geometry than necessary to effectively extract useful
information in many cases, while the PLMSS can extract the
areas of influence without additional preprocessing.

5.1 Noisy Terrain
The Noisy Terrain dataset is a triangulated surface with
elevation scalars attached, chosen as an illustrative example.
It has a 300x300 resolution and can be found in the TTK data
repository [67]. Generally, the dataset consists of hills and
valleys on a regular grid, where the hills are getting smaller
the closer they are to the border. Additionally, noise was
added to the terrain to showcase topological simplification.

Fig. 6 compares the PLMSS with the MS complex, using
the same color coding for critical points, separating geome-
tries, and segmentation in both versions. Slight differences
can be detected regarding the separating geometries, where
the MS complex separating geometries are defined on the
dual graph and are connecting triangle centers in the 2D
case. Concerning the PLMSS, triangles are split according
to the labels at the triangle vertices. Another difference
can be spotted at the borders of the MS complex, where
great sections of the border are not labeled, as a vanilla
implementation of the expansion-based discrete gradient
computation algorithm of Robins et al. [23] (implemented
in TTK) may miss PL maxima on the domain boundary
(local post-processing of the discrete gradient would be
required to enforce the detection of discrete maxima in
the star of boundary PL maxima). As the PLMSS assigns
a maximum-minimum pair to each vertex, every vertex is
properly labeled without skipping the boundary region.

5.2 AT Molecule
The AT dataset from the TTK Tutorial Data [68] shows the
simulation of the electron density of a molecule restricted to
a plane but embedded in 3D space. This example, provided
in Fig. 7, shows that the PLMSS and MS complex extract

(a) PLMSS (b) MS complex

(c) Region separators

Fig. 6. Noisy Terrain dataset [67] showing the PLMSS and MS complex
next to each other. Both show critical points (blue = Minima, white =
Saddles, red = Maxima), separating geometries in white, and the surface
colored by MS complex ids. The border region of the MS complex is
not fully segmented as a vanilla implementation of the expansion-based
discrete gradient computation algorithm [23] may miss maxima on the
boundary, whereas the boundary of the PLMSS is fully segmented. (c)
visually compares the region-separating geometry of the PLMSS (blue)
and the MS complex (red). The MS complex produces geometries with a
characteristic step-function shape (red), whereas the PLMSS produces
separating geometries with a linear-slope shape (blue).

the same underlying geometry at heart if no saddle-saddle
2-cells are present in the dataset. To allow an easier com-
parison of the separating geometries, all geometries were
colored by the underlying segmentation (ascending in red
and descending in blue) and smoothed. Most of the separat-
ing geometry coincides with at most 1 tetrahedron space in
between both representations. The largest difference can be
seen in the two narrow red geometries on the middle right
of the images, as their distance is smaller when using the
PLMSS. The difference between both representations them-
selves is a result of the dual graph definition of MS complex,
compared to the per-vertex definition of the PLMSS.

5.3 Viscous Fingering

The Viscous Fingering dataset [67] represents the result of
finite pointset method simulations that simulate the mixing
of salt solutions inside water. Regions of high salt concentra-
tion form structures called viscous fingers. The analysis of
such structures usually involves Reeb graphs or iso-surfaces
to identify single fingers in the dataset [69]. The MS complex
suffers from additional saddle-saddle 2-cells in such sce-
narios that stem from discrete Morse theory, complicating
effective analysis. Filtering these saddle-saddle 2-cells out
of the set of 2-cells is usually expensive as further post-
processing is required to identify and simplify the saddles
responsible for such 2-cells. The PLMSS, on the other hand,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 8

(a) PLMSS (b) MS complex

Fig. 7. Comparison between the region separators computed by
PLMSS (a), and the MS complex 2-cells computed by TTK (b) using the
AT dataset. The resulting surfaces are colored by the segmentation type,
i.e., red for the descending and blue for the ascending segmentation. To
ease visual comparison, both surfaces were smoothed 20 times using
TTK’s geometry smoother. Both surfaces are almost visually identical.

(a) PLMSS (b) MS complex

Fig. 8. Comparison of the PLMSS region boundaries and the MS com-
plex using the Viscous Fingering dataset [67] simplified with an absolute
persistence threshold of 0.1. Both images show the boundary interface
of viscous fingers as contours of the salt concentration density scalar
field, colored by the density from yellow (high concentration) to purple
(low concentration). (a) shows that the PLMSS region boundaries can
extract the region-separating geometries that separate single viscous
fingers effectively without cluttering the visualization. (b) provides the
original MS complex, where more geometry is extracted due to the
saddle-saddle 2-cells, cluttering the image. Those saddle-saddle walls
would have to be removed by additional postprocessing.

segments the data into regions of influence of maxima-
minima pairs, providing a region for each partial viscous
finger. The granularity of these separating geometries can
be controlled by topological simplification, allowing users
to achieve the desired level of detail of the segmentation.

Fig. 8 shows the Viscous Fingering dataset from the TTK
data repository [67] with an applied persistence threshold
of 0.1. The colored isosurfaces provide the finger surfaces
that correspond to regions of high salt concentration. To
allow a deeper look into the dataset, it was clipped in the
middle after all geometries were created. Figure 8a shows

that the PLMSS effectively separates fingers from each other,
providing the area of influence of the maxima and hence, for
the viscous fingers. The region separators are used to extract
the area of influence of single fingers to analyze the area
they are growing into with increasing salt concentration.
Fig. 8b provides the MS complex. As for additional saddle-
saddle 2-cells, the image is less clear and more cluttered,
which can be problematic with noisy or large datasets.
Those saddle-saddle walls would have to be removed by
additional postprocessing.

5.4 Rayleigh-Taylor instability (Miranda)
A concept of controlled fusion using hydrogen isotopes in a
laser-lighted fuel capsule lead to the discovery of Rayleigh-
Taylor instability [70] at the boundary of the capsule. The
simulation models the heating process of two hydrogen
isotopes for fusion burn. The energy from the laser is non-
uniformly distributed and causes small perturbations that
quickly grow. One time step of a simulation is analyzed
using the MS complex of TTK and the PLMSS.

To filter noise from the data, an absolute persistence
threshold of 0.1 was applied by utilizing localized topo-
logical simplification [36]. By solely extracting the border
surfaces of the area of influence created by maximum-
minimum pairs, the PLMSS removes clutter from the sep-
arating geometries of the MS complex due to the missing
saddle-saddle 2-cells.

Fig. 9 compares the visual results of the PLMSS with
the MS complex, using one timestep of a Rayleigh-Taylor
instability simulation. Here, the PLMSS manages to extract
the area of influence of minima and maxima in the dataset.
The region-separating geometry is very structured and the
boundary between regions of interest can be identified. In
contrast, the MS complex introduces a lot of noise due to
the remaining saddle-saddle 2-cells that clutter the result-
ing image. Additionally, the maxima on the boundary are
missing, as a vanilla implementation of the expansion-based
discrete gradient computation algorithm of Robins et al. [23]
(implemented in TTK) may miss PL maxima on the domain
boundary.

6 PERFORMANCE

In this section, the computational performance of our im-
plementation is analyzed and compared to the MS complex
implementation of TTK [60] and MSCEER [9]. As hinted by
the authors of MSCEER, we use the “steepest lstar” and
“extractms” packages, as they supply the fastest implemen-
tation without accurate geometry. Both strong scaling stud-
ies show that the PLMSS is scaling well with core count due
to the mentioned improvements. We utilize the Rayleigh-
Taylor instability (Miranda) dataset [70] at a resolution of
5123 and the Foot dataset [67] at a resolution of 2563 for the
computation speed comparisons of all three algorithms.

6.1 Algorithmic improvements
In general, three main aspects of the PLMSS result in a
strongly reduced computation time as compared to the MS
complex. First, the segmentation of the domain is improved
by path compression, which is much faster than computing

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 9

Fig. 9. Illustration showing the results of the piecewise linear Morse-Smale segmentation (PLMSS) (top) and the Morse-Smale (MS) complex
(bottom) utilizing a Rayleigh-Taylor instability simulation [70] dataset. The image shows extrema as large orange spheres, additionally providing
saddles as green small spheres in the MS complex, as saddle-saddle separatrices are the actual reason for the cluttered MS complex visualization.
Even though filtering out saddle-saddle separatrices is possible, the computational overhead will favor the PLMSS in situations where saddle-saddle
separatrices hide important features.

TABLE 2
Raw timing data of the MSCEER, TTK, and PLMSS algorithms in seconds. For each timing, the test was executed 10 times, removing the best

and worst time regarding the time listed in the last row, and averaging the remaining runs. It should be noted that the top-level cell count is 6 times
higher with TTK and PLMSS than with MSCEER. Similarly, the total number of cells in the input simplicial complex are differing by a factor of
roughly 3.24 (Miranda MSCEER: 1,070,599,167 / TTK, PLMSS: 3,473,956,851) (Foot MSCEER: 133,432,831 / TTK, PLMSS: 432,287,731).

Miranda 5123 Foot 2563

Task Algo. 1T 2T 4T 8T 16T 24T 1T 2T 4T 8T 16T 24T

DGF
TTK 1,326.76 685.52 365.00 200.15 112.10 84.55 152.65 78.00 42.45 23.32 13.32 10.08

MSCEER 116.51 67.33 34.43 20.25 15.11 12.80 20.54 12.25 7.78 5.67 4.94 4.86
PLMSS - - - - - - - - - - - -

Asc/Desc
TTK 442.15 269.68 197.04 167.68 158.19 152.42 35.12 28.23 24.54 22.92 22.38 22.63

MSCEER 167.60 99.48 53.12 28.71 15.89 11.63 34.77 24.07 21.35 19.88 18.97 19.25
PLMSS 39.61 20.08 10.64 5.73 3.07 2.31 4.40 2.23 1.16 0.68 0.43 0.36

MS
TTK 4.78 2.44 1.40 1.02 0.73 0.66 0.46 0.23 0.18 0.16 0.11 0.10

MSCEER - - - - - - - - - - - -
PLMSS 0.32 0.16 0.09 0.05 0.03 0.02 0.04 0.02 0.01 0.01 0.00 0.00

Index
TTK 152.24 90.30 46.73 24.59 12.80 9.43 26.73 16.49 8.83 4.58 2.56 2.07

MSCEER 117.00 58.92 30.87 16.20 8.68 6.24 15.70 8.37 4.90 3.00 2.07 1.77
PLMSS 39.00 19.62 10.24 5.28 2.72 1.89 4.81 2.42 1.27 0.67 0.41 0.29

Geometry
TTK 491.21 263.75 143.22 83.25 50.67 41.04 94.11 49.84 27.69 16.05 10.02 8.25

MSCEER - - - - - - - - - - - -
PLMSS 8.99 6.68 4.12 2.81 2.03 1.79 0.59 0.42 0.27 0.18 0.13 0.14

DGF + TTK 1,921.16 1,045.49 608.77 392.42 283.09 246.39 214.50 122.71 75.82 50.81 38.26 34.78
Index + MSCEER 401.12 225.73 118.43 65.16 39.68 30.67 71.02 44.70 34.03 28.56 25.98 25.87
Asc/Des PLMSS 78.61 39.70 20.89 11.01 5.79 4.20 9.21 4.65 2.43 1.35 0.84 0.65

a discrete gradient field. Second, the multi-label marching
tetrahedra algorithm supports computing the separating ge-
ometries in a well-scaling way. Third, splitting the marching
tetrahedra algorithms into indexing and geometry creation
steps allows the allocation of the resources needed in the
geometry creation step without additional computations.

6.1.1 Segmentation

The segmentation of the domain into the ascending and
descending manifold and the intersection of both manifolds,
called MS manifold, are computed differently for the MS
complex and the PLMSS. Both MS complex implementa-
tions require a discrete gradient field to be computed first,
then following the v-paths along the gradient field to assign
labels to each vertex. However, the PLMSS segmentation
utilizes path compression to assign each vertex to its des-

ignated minimum or maximum, without the need for any
additional structure other than the order field.

For path compression to work, all neighbors of each
vertex must be visited once to get the largest and smallest
neighbor of that vertex. With this information, the maximum
can be found iteratively by assigning its largest neighbor’s
largest neighbor to the vertex. This process is executed
in multiple iterations, where each iteration finds the des-
ignated maximum of a vertex or a vertex closer to the
designated maximum. Here, each time the step length is
doubled, yielding extremum assignment in log(s) steps for
each vertex, where s is the number of vertices on the integral
line of the vertex to the extremum. Also, the iterations get
smaller every time, as more and more vertices are assigned
to their extremum.

Tab. 2 shows the timings of those steps in the first three
rows, where ”DGF” refers to the discrete gradient field com-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 10

1 2 4 8 16 24
cores

101

102

103

Runtime (seconds)

1 2 4 8 16 24
cores

1

5

10

20
Speedup Factor

1 2 4 8 16 24
cores

0.4

0.6

0.8

1.0
Parallel efficiency

MSCEER PLMSS TTK

Fig. 10. Rayleigh-Taylor instability dataset [70] performance of all three algorithms at a resolution of 5123. The left graph shows the runtime sum of
the DGF, ascending and descending segmentation, and indexing as a log-log plot regarding the number of cores used for the experiment. In the
middle, the speedup factor, i.e. the runtime of 1 thread divided by the runtime of x threads, is also shown as a log-log plot regarding core counts.
On the right, the parallel efficiency, i.e. the speedup factor divided by the number of cores, is represented in a semi-log plot.

1 2 4 8 16 24
cores

100

101

102

Runtime (seconds)

1 2 4 8 16 24
cores

1

5

10

20
Speedup Factor

1 2 4 8 16 24
cores

0.2

0.4

0.6

0.8

1.0
Parallel efficiency

MSCEER PLMSS TTK

Fig. 11. Foot dataset [67] performance of all three algorithms at a resolution of 2563. The left graph shows the runtime sum of the DGF, ascending
and descending segmentation, and indexing as a log-log plot regarding the number of cores used for the experiment. In the middle, the speedup
factor, i.e. the runtime of 1 thread divided by the runtime of x threads, is also shown as a log-log plot of core counts. On the right, the parallel
efficiency, i.e. the speedup factor divided by the number of cores, is represented in a semi-log plot.

putation, ”Asc/Desc” refers to the ascending and descend-
ing segmentation, and ”MS” refers to the MS segmentation.
Please note that the MSCEER algorithm does not compute
an MS segmentation in the provided implementation.

Even in a single-threaded environment, the performance
gains of retrieving the ascending and descending segmenta-
tions already show strong improvements in the computation
time of the PLMSS compared to the MS complex imple-
mentations. For the Miranda dataset, PLMSS only needs a
total of 39.61s for the computation of the ascending and de-
scending segmentation. Comparing this to the MS complex
implementations (MSCEER: 284.11s / TTK: 1768.91s) leaves
us at a speedup of 7x and 44x respectively.

6.1.2 Multi-Label Marching Tetrahedra

After segmenting the domain into various regions, region-
separating geometries can be created that help to visualize
the segmentation effectively. Again, the PLMSS and the MS

complex implementations differ in the realization of this
step. Regarding the MS complex implementations, paths
between critical point pairs have to be traced on the DGF,
whereas the PLMSS uses a marching tetrahedra algorithm.

Marching tetrahedra algorithms scale very well as they
are executed per vertex. In our implementation, the binary
code, as described in Sec. 4.3, and the number of triangles
created per thread are computed in a preliminary step. This
allows the allocation of the exact amount of memory needed
for the triangles. In a follow-up step, this enables direct
writing of triangles to memory.

Tab. 2 shows the timings of those steps in the 4th and 5th
row, where ”Index” refers to the computation of simplex
indices that will spawn triangles, and ”Geometry” repre-
sents writing the triangles to memory. Please note that the
MSCEER algorithm does not compute the geometry itself in
the provided implementation, but only gathers the indices
of relevant simplices.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 11

A comparison of the single thread timings with the
Miranda dataset shows that the indexing is almost four
times faster compared to TTK and three times faster than
MSCEER. These speedups come from the excessive use of
lookup tables and a per tetrahedra execution that does not
require any tracing of paths. With the additional memory
counting in the indexing step and the lower number of trian-
gles created, the geometry-creating part strongly improved
regarding computation times.

6.2 TTK vs. MSCEER
Both MS complex solutions are slightly different in the
specifics of their implementation. First of all, TTK uses a
simplicial complex that uses tetrahedra and triangles as top-
level simplices, whereas MSCEER uses cubes and squares.
This already leads to roughly 324% more total cells and
six times more top-level cells in the case of the TTK-based
implementation, such as the MS complex or PLMSS. This
will have an effect on the runtime of the algorithms, as
well as the resolution of the extracted region-separating
geometries. Still, this is only a limitation of the current TTK
version and might change in the future to trade accuracy for
runtime efficiency.

Another issue, when comparing both algorithms with
each other, is the output generated by each implementation.
The version provided by Gyulassy et al. [9] only provides
an ascending and descending segmentation of the domain
and the indices of top-level cells that would spawn region-
separating geometries. The MS complex representation and
the surface geometries would be created by a different
software at runtime that was not supplied with the library.

6.3 Strong Scaling Setup
Both strong scaling studies were carried out on a dual Intel
XEON SP 6126 node with 24 CPU cores and 384GB of RAM.
For each algorithm, various timings were created, starting
with the computation of the discrete gradient field, ascend-
ing and descending segmentation, MS segmentation, index-
ing of tetrahedra or cubes that generate region-separating
geometries, and writing the region-separating geometries to
memory. The results for both studies are shown in Tab. 2,
where the last row shows the total time to get an ascending
and descending segmentation and mark all top-level cells
that generate region-separating geometries. To mimic the
layout of the 2-cells of the MS complex, the region separators
of the PLMSS were computed for those results.

For each combination of the dataset, the number of
threads, and the algorithm, the experiment was executed
10 times. From these 10 runs, the best and the worst
ones, regarding total computation time, were discarded. The
remaining 8 runs were averaged to achieve more stable
results.

6.4 Strong Scaling: Rayleigh-Taylor Instability
Utilizing the Rayleigh-Taylor instability dataset [70], a
strong scaling analysis was carried out for a 5123 subset
of the data, simplified with a persistence threshold of 0.1.
Computation times, speedup factor (i.e. the time a single
thread takes divided by the time the current number of

threads take), and parallel efficiency (i.e. speedup factor
divided by the number of threads) are plotted against the
number of cores, shown in Fig. 10.

The total execution time in the last row of Tab. 2 shows
that the PLMSS is more than an order of magnitude faster
than TTK and 5 to 7 times faster than MSCEER. As the
PLMSS still has to be executed on roughly three times the
cells, this is still an improvement of an order of magnitude
regarding the time per cell. The speedup factor and parallel
efficiency also show a clear trend that PLMSS is scaling very
well with more cores. In this regard, MSCEER beats TTK
in terms of scalability but clearly performs worse against
PLMSS. The speedup factor graph also hints that more cores
would be beneficial in future experiments as PLMSS still
scales well at 24 cores. Due to insufficient computational
resources, we were unable to offer a larger strong scaling
analysis.

6.5 Strong Scaling: CT Scan of a Human Foot
The foot dataset [67] was chosen to represent smaller data
sizes with a resolution of 2563, simplified with a persistence
threshold of 110. It consists of a CT scan of the tip of a foot,
where the threshold of 110 was chosen to represent each
bone with its own region.

Regarding the total execution time at 24 Threads in
Tab. 2, a speedup of over 50x and almost 40x (TTK and
MSCEER) can be achieved using PLMSS. The resulting
graphs in Fig. 11 also show clear improvements regarding
parallel efficiency, as PLMSS (0, 59) still achieves good re-
sults that hint towards using even more cores, where TTK
(0, 26) and MSCEER (0, 11) are already in a range where
more cores do not strongly improve runtime performance
and communication overhead takes over.

6.6 Discussion
For both datasets, the PLMSS showed good improvements
over the MSCEER and TTK implementation, yielding a
great parallel efficiency. Especially, for the foot dataset,
great runtime performance improvements of roughly 40x
were achieved. Even with the 5-7x runtime improvement
regarding the Rayleigh-Taylor instability dataset, 6x more
top-level cells had to be traversed compared to MSCEER.

7 LIMITATIONS

Our entire approach aims at efficiently computing ascend-
ing and descending segmentations of the input scalar field.
Its output is not a complete Morse-Smale complex. First, it
does not capture saddle-saddle connectors, which may be
useful in certain applications. Second, it does not output an
explicit CW complex modeling the Morse-Smale complex
(i.e. where vertices encode critical points, 1-dimensional
cells encode separatrices, 2-dimensional cells encode sepa-
rating geometries, and 3-dimensional cells encode regions
with identical integration extremities), only the domain
segmentation is provided. This can be detrimental in ap-
plications involving post-processing of the Morse-Smale
complex, such as regular remeshing [71] or hierarchical sim-
plification [72]. For these applications, a standard algorithm
based on discrete Morse theory (such as the one available in
TTK [60] or MSCEER [9]) should be preferred.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 12

8 CONCLUSION AND FUTURE WORK

The presented algorithm describes a well-scaling approach
to computing MS segmentations, allowing for speedups of
more than an order of magnitude compared to two MS
complex implementations. Utilizing path compression to
create the segmentations allows us to quickly extract the
labels for the multi-label marching tetrahedra algorithm that
powers the generation of region-separating geometries. The
algorithm is not only faster but also has a lower memory
footprint, as no discrete gradient vector field and little
preprocessing of the triangulation is needed. Only a scalar
field saving the 5-bit index representation for each vertex
has to be created. The utilization of only top-level cells and
vertices simplifies triangulation generation. Additionally,
maxima at the border of the MS complex are not allowed by
DMT design, often leading to missing border regions in each
segmentation. This issue is fixed by segmenting the whole
domain, also retrieving all border maxima in the process.
Regarding the generated separating geometries, several use
cases have been presented that show the applicability of
our approach where the MS complex failed to deliver
without expensive post-processing using saddle-saddle 2-
cell cancellation. Simply speaking, our algorithm allows
us to extract areas of influence of minima, maxima, and
minima-maxima pairs by separating their boundaries with
two available separating geometries that can be triggered by
three segmentation options. Still, this does not invalidate the
Morse-Smale complex as we only compute a segmentation
and not the complex itself. Features like the saddle-saddle
connectors are not computed. Therefore, we conclude that
the PLMSS is a versatile tool to generate MS segmentations
in a well-scaling parallel way, allowing users to explore their
data much faster, while still being able to fall back to the MS
complex on demand.

For future work, we are planning to improve the PLMSS
in various ways. The load on each of the threads can
be imbalanced when a particular thread receives a lot of
triangles to generate. Here, a workload balance system
could be introduced. To scale to even larger datasets, an
MPI implementation will be provided to enable distributed
memory execution. The knowledge gained from creating
the segmentations will be implemented into the TTK MS
complex implementation to improve its performance and
useability. As shown in Sec. 6, a thorough comparison
between MS complex implementations is out of the scope
of this paper. Comparing all publicly available implemen-
tations and characterizing them in terms of input simplicial
complex, handling of functions that are not Morse, available
simplification models (pre- vs. post-simplification), output
options, and memory footprint would be beneficial. Addi-
tionally, a version of the PLMSS using voxels as top-level
cells in 3D could potentially speed up the computation
considerably and would downsize the memory footprint
even more. Also, the effect of path compression might be ap-
plicable to the computation of the MS complex, so additional
research in integrating it might be of interest to achieve
better runtime efficiency of MS complex implementations.

ACKNOWLEDGMENTS

This research was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
252408385 – IRTG 2057. This work is also partially sup-
ported by the European Commission grant ERC-2019-COG
“TORI” (ref. 863464, https://erc-tori.github.io/).

REFERENCES

[1] M. Olejniczak, A. Severo Pereira Gomes, and J. Tierny, “A topolog-
ical data analysis perspective on noncovalent interactions in rela-
tivistic calculations,” International Journal of Quantum Chemistry,
vol. 120, no. 8, p. e26133, 2020.

[2] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and
P.-T. Bremer, “Topoms: Comprehensive topological exploration for
molecular and condensed-matter systems,” Journal of computational
chemistry, vol. 39, no. 16, pp. 936–952, 2018.

[3] A. Venkat, A. Gyulassy, G. Kosiba, A. Maiti, H. Reinstein, R. Gee,
P.-T. Bremer, and V. Pascucci, “Towards replacing physical testing
of granular materials with a topology-based model,” IEEE Transac-
tions on Visualization and Computer Graphics, no. 1, pp. 76–85, 2021.

[4] U. Homberg, D. Baum, A. Wiebel, S. Prohaska, and H.-C. Hege,
“Definition, extraction, and validation of pore structures in porous
materials,” in Topological methods in data analysis and visualization
III. Springer, 2014, pp. 235–248.

[5] D. Laney, A. Mascarenhas, P. Miller, and V. Pascucci, “Under-
standing the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1053–1060, 2006.

[6] A. Gyulassy, A. Knoll, K. C. Lau, B. Wang, P.-T. Bremer, M. E.
Papka, L. A. Curtiss, and V. Pascucci, “Interstitial and interlayer
ion diffusion geometry extraction in graphitic nanosphere battery
materials,” IEEE transactions on visualization and computer graphics,
vol. 22, no. 1, pp. 916–925, 2015.

[7] T. Sousbie, “The persistent cosmic web and its filamentary
structure–i. theory and implementation,” Monthly Notices of the
Royal Astronomical Society, vol. 414, no. 1, pp. 350–383, 2011.

[8] T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet,
P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe,
P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai,
M. Soler, P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak,
“An Overview of the Topology ToolKit,” in TopoInVis, 2019.

[9] A. Gyulassy, P. Bremer, and V. Pascucci, “Shared-memory par-
allel computation of morse-smale complexes with improved ac-
curacy,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 1183–1192, 2018, https://github.com/sci-visus/
MSCEER.

[10] J. Milnor, Morse Theory. Princeton university press, 1963.
[11] R. Forman, “Morse theory for cell complexes,” Advances in mathe-

matics, vol. 134, no. 1, pp. 90–145, 1998.
[12] T. Banchoff, “Critical points and curvature for embedded polyhe-

dra,” Journal of Differential Geometry, vol. 1, no. 3-4, pp. 245–256,
1967.

[13] T. F. Banchoff, “Critical points and curvature for embedded poly-
hedral surfaces,” The American Mathematical Monthly, vol. 77, no. 5,
pp. 475–485, 1970.

[14] T. Lewiner, “Critical sets in discrete morse theories: Relating for-
man and piecewise-linear approaches,” Computer Aided Geometric
Design, vol. 30, no. 6, pp. 609–621, 2013.

[15] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical
morse complexes for piecewise linear 2-manifolds,” in Proceedings
of the seventeenth annual symposium on Computational geometry, 2001,
pp. 70–79.

[16] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-
smale complexes for piecewise linear 3-manifolds,” in Proceedings
of the nineteenth annual symposium on Computational geometry, 2003,
pp. 361–370.

[17] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci, “A
topological hierarchy for functions on triangulated surfaces,” IEEE
Transactions on Visualization and Computer Graphics, vol. 10, no. 4,
pp. 385–396, 2004.

[18] E. Danovaro, L. D. Floriani, and M. M. Mesmoudi, “Topological
analysis and characterization of discrete scalar fields,” in Geometry,
Morphology, and Computational Imaging. Springer, 2003, pp. 386–
402.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://erc-tori.github.io/
https://github.com/sci-visus/MSCEER
https://github.com/sci-visus/MSCEER

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 13

[19] E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and
E. Puppo, “Morphology-driven simplification and multiresolution
modeling of terrains,” in Proceedings of the 11th ACM international
symposium on Advances in geographic information systems, 2003, pp.
63–70.

[20] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, “Efficient
computation of morse-smale complexes for three-dimensional
scalar functions,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1440–1447, 2007.

[21] R. Forman, “A user’s guide to discrete morse theory.” Séminaire
Lotharingien de Combinatoire [electronic only], vol. 48, pp. B48c–35,
2002.

[22] D. Günther, J. Reininghaus, H. Wagner, and I. Hotz, “Efficient com-
putation of 3d morse–smale complexes and persistent homology
using discrete morse theory,” The Visual Computer, vol. 28, no. 10,
pp. 959–969, 2012.

[23] V. Robins, P. J. Wood, and A. P. Sheppard, “Theory and algorithms
for constructing discrete morse complexes from grayscale digital
images,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 33, no. 8, pp. 1646–1658, 2011.

[24] H. King, K. Knudson, and N. Mramor, “Generating discrete morse
functions from point data,” Experimental Mathematics, vol. 14, no. 4,
pp. 435–444, 2005.

[25] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A prac-
tical approach to morse-smale complex computation: Scalability
and generality,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1619–1626, 2008.

[26] A. Gyulassy, V. Pascucci, T. Peterka, and R. Ross, “The parallel
computation of morse-smale complexes,” in 2012 IEEE 26th Inter-
national Parallel and Distributed Processing Symposium. IEEE, 2012,
pp. 484–495.

[27] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W.
Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building
blocks for custom data analysis,” in 2011 IEEE Symposium on Large
Data Analysis and Visualization. IEEE, 2011, pp. 105–112.

[28] N. Shivashankar, M. Senthilnathan, and V. Natarajan, “Parallel
computation of 2d morse-smale complexes,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 10, pp. 1757–1770,
2012.

[29] N. Shivashankar and V. Natarajan, “Parallel computation of 3d
morse-smale complexes,” Computer Graphics Forum, vol. 31, pp.
965–974, 2012.

[30] V. Subhash, K. Pandey, and V. Natarajan, “Gpu parallel com-
putation of morse-smale complexes,” in 2020 IEEE Visualization
Conference (VIS). IEEE, 2020, pp. 36–40.

[31] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth, “A survey of topology-
based methods in visualization,” in Computer Graphics Forum,
vol. 35. Wiley Online Library, 2016, pp. 643–667.

[32] A. Gyulassy, P.-T. Bremer, and V. Pascucci, “Computing morse-
smale complexes with accurate geometry,” IEEE transactions on
visualization and computer graphics, vol. 18, no. 12, pp. 2014–2022,
2012.

[33] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann, “Topologically clean distance
fields,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1432–1439, 2007.

[34] D. Günther, R. A. Boto, J. Contreras-Garcia, J.-P. Piquemal, and
J. Tierny, “Characterizing molecular interactions in chemical sys-
tems,” IEEE transactions on visualization and computer graphics,
vol. 20, no. 12, pp. 2476–2485, 2014.

[35] A. Gyulassy, D. Günther, J. A. Levine, J. Tierny, and V. Pascucci,
“Conforming morse-smale complexes,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 20, no. 12, pp. 2595–2603, 2014.

[36] J. Lukasczyk, C. Garth, R. Maciejewski, and J. Tierny, “Localized
topological simplification of scalar data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 27, no. 2, pp. 572–582,
2020.

[37] R. Fellegara, F. Luricich, L. De Floriani, and K. Weiss, “Efficient
computation and simplification of discrete morse decompositions
on triangulated terrains,” in Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2014, pp. 223–232.

[38] T. Weinkauf, Y. Gingold, and O. Sorkine, “Topology-based smooth-
ing of 2d scalar fields with c1-continuity,” in Computer Graphics
Forum, vol. 29. Wiley Online Library, 2010, pp. 1221–1230.

[39] S. Beucher and C. Lantuejoul, “Use of watersheds in contour
detection. int,” in Workshop on Image Processing, CCETT/IRISA,
Rennes, France, 1979.

[40] S. Beucher, “Watersheds of functions and picture segmentation,”
in ICASSP’82. IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 7. IEEE, 1982, pp. 1928–1931.

[41] F. Meyer, “Integrals, gradients and watershed lines,” in Proc.
Mathematical morphology and its applications to signal processing,
1993, pp. 70–75.

[42] L. Najman and M. Schmitt, “Definition and some properties of the
watershed of a continuous function,” in Mathematical Morphology
and its applications to Signal Processing, 1993, pp. 76–81.

[43] F. Meyer, “Topographic distance and watershed lines,” Signal
processing, vol. 38, no. 1, pp. 113–125, 1994.

[44] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, vol. 13, no. 06, pp. 583–598,
1991.

[45] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo, “Morse
complexes for shape segmentation and homological analysis: dis-
crete models and algorithms,” in Computer Graphics Forum, vol. 34.
Wiley Online Library, 2015, pp. 761–785.

[46] F. Meyer and S. Beucher, “Morphological segmentation,” Journal
of visual communication and image representation, vol. 1, no. 1, pp.
21–46, 1990.

[47] Y. Gabrielyan, V. Yeghiazaryan, and I. Voiculescu, “Parallel parti-
tioning: Path reducing and union–find based watershed for the
gpu,” in 2022 IEEE International Conference on Image Processing
(ICIP). IEEE, 2022, pp. 1501–1505.

[48] V. Yeghiazaryan and I. Voiculescu, “Path reducing watershed
for the gpu,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2018, pp. 577–585.

[49] P. Soille, Morphological Image Analysis Principles and Applications.
Springer, 2004.

[50] A. P. Mangan and R. T. Whitaker, “Partitioning 3d surface meshes
using watershed segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 5, no. 4, pp. 308–321, 1999.

[51] S. L. Stoev and W. Straßer, “Extracting regions of interest applying
a local watershed transformation,” in Proceedings Visualization
2000. IEEE, 2000, pp. 21–28.

[52] G. Nielson and R. Franke, “Computing the separating surface
for segmented data,” in Proceedings. Visualization ’97 (Cat. No.
97CB36155), 1997, pp. 229–233.

[53] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,” ACM siggraph computer
graphics, vol. 21, no. 4, pp. 163–169, 1987.

[54] G. M. Nielson and B. Hamann, The asymptotic decider: Rosolving
the ambiguity in marching cubes. eScholarship, University of
California, 1991.

[55] H. Carr, T. Moller, and J. Snoeyink, “Artifacts caused by simpli-
cial subdivision,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 2, pp. 231–242, 2006.

[56] M. Chouchane, A. Rucci, and A. A. Franco, “A versatile and effi-
cient voxelization-based meshing algorithm of multiple phases,”
ACS Omega, vol. 4, no. 6, pp. 11 141–11 144, 2019.

[57] T. Müller and F. Raether, “3d modelling of ceramic composites
and simulation of their electrical, thermal and elastic properties,”
Computational Materials Science, vol. 81, pp. 205–211, 2014.

[58] D. Weinstein, “Scanline surfacing: building separating surfaces
from planar contours,” in Proceedings Visualization 2000, 2000, pp.
283–289.

[59] N. Zhang, X. Zhou, D. Sha, X. Yuan, K. K. Tamma, and B. Chen,
“Integrating mesh and meshfree methods for physics-based frac-
ture and debris cloud simulation.” in PBG@ SIGGRAPH, 2006, pp.
145–154.

[60] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux,
“The Topology ToolKit,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 1, pp. 832–842, 2017, https://
topology-tool-kit.github.io/.

[61] H. Edelsbrunner and J. Harer, Computational Topology: An Introduc-
tion. American Mathematical Society, 2009.

[62] A. J. Zomorodian, “Topology for computing,” in Algorithms and
Theory of Computation Handbook (Second Edition), M. J. Atallah and
M. Blanton, Eds. CRC Press, 2010, ch. 3, pp. 82–112.

[63] P. Guillou, J. Vidal, and J. Tierny, “Discrete Morse Sandwich:
Fast Computation of Persistence Diagrams for Scalar Data – An
Algorithm and A Benchmark,” ArXiv e-prints, 2022.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 202X 14

[64] H. Edelsbrunner and E. P. Mücke, “Simulation of Simplicity: A
Technique to Cope with Degenerate Cases in Geometric Algo-
rithms,” ACM Transactions on Graphics (tog), vol. 9, no. 1, pp. 66–
104, 1990.

[65] R. Seidel and M. Sharir, “Top-down analysis of path compression,”
SIAM Journal on Computing, vol. 34, no. 3, pp. 515–525, 2005.

[66] A. Doi and A. Koide, “An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 74, no. 1, pp. 214–224, 1991.

[67] TTK Contributers, “TTK Data Repository, 2020,”
https://github.com/topology-tool-kit/ttk-data.

[68] ——, “TTK Tutorial Data, 2021,”
https://topology-tool-kit.github.io/stuff/ttk tutorial data.zip.

[69] J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet,
J. Tierny, R. Maciejewski, B. Hamann, and H. Leitte, “Viscous
fingering: A topological visual analytic approach,” in Applied
Mechanics and Materials, vol. 869. Trans Tech Publ, 2017, pp. 9–19.

[70] A. W. Cook, W. Cabot, and P. L. Miller, “The mixing transition
in Rayleigh-Taylor instability,” Journal of Fluid Mechanics, vol. 511,
pp. 333–362, 2004.

[71] S. Dong, P. Bremer, M. Garland, V. Pascucci, and J. C. Hart,
“Spectral surface quadrangulation,” ACM Trans. Graph., vol. 25,
no. 3, 2006.

[72] A. Gyulassy, V. Natarajan, V. Pascucci, P. Bremer, and B. Hamann,
“A topological approach to simplification of three-dimensional
scalar functions,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 4,
2006.

Robin G. C. Maack received the Master’s de-
gree in computer science in October 2020 from
the University of Kaiserslautern. He started as
a student assistant in January 2017 and now
further develops his projects as a PhD student.
His research interests include topological data
analysis, medical image analysis and visualiza-
tion, biochemical visualization, and uncertainty
visualization.

Jonas Lukasczyk received his Ph.D. de-
gree from the Visual Information Analysis
Group, Technische Universitat Kaiserslautern,
Germany, where he also studied applied com-
puter science and mathematics. His recent work
focuses on topology-based characterization of
features and their evolution in large-scale sim-
ulations.

Julien Tierny received the PhD degree in com-
puter science from the University of Lille, in
2008. He is currently a CNRS senior scientist,
affiliated with Sorbonne University. Prior to his
CNRS tenure, he held a Fulbright fellowship
(U.S. Department of State) and was a post-
doctoral researcher at the Scientific Computing
and Imaging Institute at the University of Utah.
His research expertise lies in topological meth-
ods for data analysis and visualization. He is
the founder and lead developer of the Topology

ToolKit (TTK), an open source library for topological data analysis.

Hans Hagen is a computer science professor
at University of Kaiserslautern and an adjunct
professor at University of California, Davis. He
received a Bachelor’s degree in computer sci-
ence, a Master degree in mathematics from the
University of Freiburg and a PhD in mathematics
(geometry) from the University of Dortmund. His
main research interests are scientific visualiza-
tion and geometric modeling. He is a member of
the IEEE Visualization Academy of Science, and
he got the IEEE Visualization Career Award, the

ACM Solid Modeling Pioneer Award and the John Gregory Memorial
Award among others.

Ross Maciejewski is a professor with the
School of Computing and Augmented Intelli-
gence at Arizona State University and director
of the Center for Accelerating Operational Effi-
ciciency - a Department of Homeland Security
Center of Excellence. His primary research in-
terests include the areas of geographical visual-
ization and visual analytics.

Christoph Garth received the PhD degree in
computer science from Technische Universität
(TU) Kaiserslautern in 2007. After four years
as a postdoctoral researcher with the Univer-
sity of California, Davis, he rejoined TU Kaiser-
slautern where he is currently a full professor
of computer science. His research interests in-
clude largescale data analysis and visualization,
in situ visualization, topology-based methods in
visualization, and interdisciplinary applications
of visualization.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3261981

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/topology-tool-kit/ttk-data
https://topology-tool-kit.github.io/stuff/ttk_tutorial_data.zip

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Input Data
	3.2 Critical Points
	3.3 Integral Lines
	3.4 Morse-Smale Segmentation
	3.5 Discrete Morse Theory

	4 Method
	4.1 Preprocessing
	4.2 Segmentation and Extrema Retrieval
	4.2.1 Ascending and Descending Segmentation
	4.2.2 Morse-Smale Segmentation

	4.3 Multi-Label Marching Triangles/Tetrahedra
	4.3.1 Triangles
	4.3.2 Tetrahedra
	4.3.3 Triangulation Options

	5 Results
	5.1 Noisy Terrain
	5.2 AT Molecule
	5.3 Viscous Fingering
	5.4 Rayleigh-Taylor instability (Miranda)

	6 Performance
	6.1 Algorithmic improvements
	6.1.1 Segmentation
	6.1.2 Multi-Label Marching Tetrahedra

	6.2 TTK vs. MSCEER
	6.3 Strong Scaling Setup
	6.4 Strong Scaling: Rayleigh-Taylor Instability
	6.5 Strong Scaling: CT Scan of a Human Foot
	6.6 Discussion

	7 Limitations
	8 Conclusion and Future Work
	References
	Biographies
	Robin G. C. Maack
	Jonas Lukasczyk
	Julien Tierny
	Hans Hagen
	Ross Maciejewski
	Christoph Garth

