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Abstract—Hybrid visualizations combine different metaphors into a single network layout, in order to help humans in finding the “right
way” of displaying the different portions of the network, especially when it is globally sparse and locally dense. We investigate hybrid
visualizations in two complementary directions: (i) On the one hand, we evaluate the effectiveness of different hybrid visualization
models through a comparative user study; (ii) On the other hand, we estimate the usefulness of an interactive visualization that
integrates all the considered hybrid models together. The results of our study provide some hints about the usefulness of the different
hybrid visualizations for specific tasks of analysis and indicates that integrating different hybrid models into a single visualization may
offer a valuable tool of analysis.
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1 INTRODUCTION

G RAPHS are widely used to model networked data sets
in a variety of application domains. Their visualization

amplifies human cognition and accelerates knowledge ex-
traction processes. Choosing which layout metaphor is more
suitable for a pictorial representation of a graph is a central
problem, and the heterogeneous connectivity structure of
many real-world networks makes it often difficult to find a
clear and unanimous answer. Hybrid visualizations combine
different metaphors into a single network layout, in order
to help humans in finding the “right way” of displaying the
different portions of the network.

In this scenario, particular interest is devoted to those
real-world networks that exhibit a double structural nature:
they are globally sparse but locally dense, i.e., they contain
clusters of highly connected nodes (also called communities in
social network analysis) that are loosely connected to each
other (see, e.g., [2], [3], [4]). Examples include social and fi-
nancial networks [5], [6], [7], [8], as well as biological and in-
formation networks [9], [10]. The visualization of networks
of this type through a unique node-link diagram is some-
times unsatisfactory, due to the visual clutter caused by the
high number of edges in the dense portions of the network
(see, e.g., Fig. 1(a)). One of the seminal ideas to overcome
this problem is the NODETRIX hybrid visualization model
introduced by Henry, Fekete, and McGuffin [11]. It adopts a
node-link diagram to represent the (sparse) global structure
of the network, and a matrix representation for denser
subgraphs identified and selected by the user (Fig. 1(c)).
After the introduction of NODETRIX, hybrid visualizations
have become an emerging topic and inspired an array of
both theoretical and application results [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].

A preliminary version of this paper appeared in the proceedings of the 29th
International Symposium on Graph Drawing and Network Visualization [1];
the article received the best paper award and the authors have been invited to
submit an extended version to IEEE TVCG.

• All authors work at the Department of Engineering, University of
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fabrizio.montecchiani, alessandra.tappini}@unipg.it.

Contribution. In this paper we investigate hybrid visualiza-
tions in two complementary directions:

• We compare different hybrid visualization models
through a user study that addresses two main research
questions: RQ1 – “Are hybrid visualizations more ef-
fective than node-link diagrams for the visual analy-
sis of clustered networks?”; RQ2 – “When consider-
ing specific tasks of analysis, are there differences in
terms of response time or accuracy among different
hybrid visualization models?”. The study focuses on
three models designed to work on similar types of
networks: The aforementioned NODETRIX model [11];
the CHORDLINK model [15], which represents clus-
ters as chord diagrams instead of adjacency matrices
(Fig. 1(b)); and the RCI-NODETRIX model [25], a vari-
ant of NODETRIX that allows independent orderings
for the matrix rows and columns to reduce inter-cluster
edge crossings (Fig. 1(d)).

• We estimate the usefulness of an interactive visual-
ization that integrates all the above hybrid models
together, thus allowing the user to choose the preferred
way of representing different portions of a network
(Fig. 2). The evaluation is done by means of the ICE-T
methodology, introduced by Wall et al. [27], which en-
ables a quantitative measurement of the “value” of a vi-
sualization, within a framework defined by Stasko [28].

To the best of our knowledge, our study is the first
that addresses research question RQ1, and that considers
RQ2 for hybrid visualizations that adopt different styles
to represent clusters. Our work is also motivated by open
questions in [15], [25]. Namely, [15] suggests to perform
a user study to compare CHORDLINK and other hybrid
visualizations, and [25] asks what is the impact of reduc-
ing crossings between inter-cluster edges at the expenses
of independent row/column orderings in NODETRIX. The
results of our study provide some hints about the usefulness
of the different hybrid visualizations for specific tasks of
analysis. Also, the assessment through the ICE-T methodol-
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(a) NODELINK (b) CHORDLINK

(c) NODETRIX (d) RCI-NODETRIX

Fig. 1. The same clustered network with our four visualization models.

ogy indicates that integrating different hybrid models into
a single visualization may offer a valuable tool of analysis.
Nonetheless, as every other cognitive experimental work,
our study has several limitations, which we clearly discuss
and which trace the perimeter of our results.

The paper is structured as follows. Section 2 briefly
surveys the scientific literature related to our work. Sec-
tion 3 explains in detail the design of our user study, while
Section 4 analyzes the corresponding findings. Section 5
reports the results of the ICE-T methodology. Conclusions
and future research directions are discussed in Section 6. All
the experimental data are available at http://mozart.diei.
unipg.it/tappini/hybridUserStudy/data-extended.html.

2 RELATED WORK

Our paper pertains two main research topics: Hybrid graph
visualizations and user studies in graph drawing and net-
work visualization. We briefly survey these two topics, fo-
cusing on those aspects that are more related to our research.
Hybrid graph visualizations. Early works propose hybrid
models that mix Euler/Venn diagrams and Jordan arcs to
represent different types of relationships between sets of
objects [29], [30]. Similar drawing styles are used to repre-
sent compound graphs, where the nodes are hierarchically
grouped into clusters and edges can connect clusters other
than nodes (see [31], [32], [33] for surveys on the subject).
Hybrid visualizations that combine node-link and treemaps
are also studied [34], [35], [36].

Our focus is on hybrid graph representations that mix
different visual metaphors to visually convey both the
global structure of a sparse network and its locally dense
subgraphs. In this context, the NODETRIX model introduced
by Henry, Fekete, and McGuffin [11] for social network
analysis is one of the most cited contributions of the InfoVis
conference [37]; this model is implemented in a system
where the user can select (dense) portions of a node-link
diagram to be represented as adjacency matrices. NODETRIX
is also exploited to analyze other real-world graphs, such as
ontology graphs [16] and brain networks [26].

Along the same research trajectory, Angori et al. [15]
propose an alternative model, called CHORDLINK. Similarly
to NODETRIX, this model is designed to work in a system
where users can visually identify and select clusters on an
initial node-link diagram; differently from NODETRIX, the
selected cluster regions are represented as chord diagrams.
CHORDLINK aims to represent all edges as geometric links
and to preserve the layout outside clusters by possibly
duplicating some nodes within a cluster; however, each
node can appear in at most one cluster, as for NODETRIX.

The user study presented in our paper compares NODE-
TRIX and CHORDLINK, as they are conceived to work on
networks with similar structure and within systems with
similar characteristics. Additionally, it considers the RCI-
NODETRIX model [25], a variant of NODETRIX that allows
independent orderings of the rows and columns in a matrix,
to possibly reduce crossings between inter-cluster edges.
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Fig. 2. Network visualization that integrates all different hybrid models considered in this article. The network represents the co-authorships on
TVCG articles in the years 2018–2020. To the right of the drawing canvas, the list of node labels is shown, ordered by decreasing values of node
degrees; four nodes in this list are selected and the corresponding nodes are highlighted in the network layout.

In the context of social network analysis, Henry, Beze-
rianos, and Fekete [22] investigate a variant of NODETRIX
that considers “overlapping clusters”, i.e., where a node can
occur in multiple clusters at the same time. They conclude
that this kind of node duplication may help in the execution
of community-related tasks, but sometimes interferes with
other graph readability tasks.

Batagelj et al. [17] propose a system where the user
can choose to represent each cluster according to a de-
sired drawing style. Differently from NODETRIX and
CHORDLINK, the system in [17] is designed to automatically
compute a set of clusters that guarantees desired properties
(e.g., planarity) for the graph of clusters and adopts the
orthogonal drawing style [38] (instead of a straight-line
node-link diagram) to represent the outside of the clus-
ters. Hybrid visualizations are also used for the analysis
of dynamic networks (see, e.g., [39], [40], [41]). Finally,
several theoretical contributions study the complexity of
minimizing inter-cluster edge crossings in different hybrid
visualization models [12], [13], [14], [18], [19], [20], [21], [23],
[24], [25], [42], [43], [44].

User studies in graph drawing and network visualization.
The evaluation of graph visualization methods and systems
through the execution of cognitive user studies has an estab-
lished tradition, which dates back to the late 90s [45], [46].
We discuss here the contributions that are mainly related
to our study, while we refer the reader to [47] for a recent
comprehensive survey on the subject.

There is a series of works that compare node-link di-
agrams with matrix-based representations [48], [49], [50],
[51], [52], [53], [54], [55]. A common finding of these studies
is that node-link diagrams have usually better performance

on topology and connectivity tasks when graphs are not too
large and dense, while matrices perform better on group
tasks. Our study does not aim to further compare node-link
and matrix representations, but rather to investigate hybrid
visualizations that integrate these two, or other types of,
drawing conventions.

In the context of hybrid graph visualizations, Henry
and Fekete [56] conduct a user study on MatLink, a model
that combines adjacency matrices overlaid with node-link
diagrams using curvature for the links. They find that
MatLink outperforms the two individual metaphors (node-
link diagrams and adjacency matrices) for most of the
considered tasks, including path-related tasks, where matri-
ces are usually worse than node-link. Differently from our
study, [56] does not focus on the visualization of networks
with clusters. Henry et al. [22] present a user study aimed
to understand whether node duplication for non-disjoint
clusters improves the performance of NODETRIX for some
types of tasks. Since the majority of hybrid visualizations
are designed to deal with disjoint clusters, our study focuses
on this setting; moreover, we consider tasks that are mostly
different from those addressed in [22].

As a final remark, to the best of our knowledge, our eval-
uation on the usefulness of integrating multiple models into
a single visualization is the first attempt in this direction.

3 DESIGN OF THE COMPARATIVE USER STUDY

This section describes in detail the design of our user study.
The target population consists of researchers and analysts
(including practitioners, academics, and students) that make
use of network visualization to accomplish tasks of analysis
on real-world networks. In the following we discuss the
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visualization models, the tasks and the hypotheses, the
stimuli, and the experimental procedure.

3.1 Visualization Models
We evaluate four different models for the visualization of
undirected clustered networks, where subsets of nodes are
grouped into clusters (see Fig. 1 for an illustration). An edge
connecting two nodes in the same cluster is an intra-cluster
edge; every other edge is an inter-cluster edge. The models are:

– NODELINK (NL). The classical node-link model, where
nodes are represented as small disks and edges are straight-
line segments connecting their end-nodes. In this model,
we visually highlight each cluster through a colored convex
region that includes all the cluster’s nodes.
– CHORDLINK (CL). The model proposed in [15], [57].
Nodes outside clusters and inter-cluster edges are drawn
as in the NODELINK model. Clusters are represented as
chord diagrams. A node in a cluster may have multiple
copies, each represented as a colored circular arc along the
circumference of the chord diagram; all copies of the same
node have the same color. An intra-cluster edge is a “ribbon”
connecting two of the copies representing its end-nodes.
– NODETRIX (NT). The model introduced in [11]; each
cluster C of size n is represented by an n × n adjacency
matrix. Nodes outside clusters and edges between them are
drawn as in NODELINK. An inter-cluster edge having an
end-node v in a cluster C is drawn as a curve incident to the
row or to the column associated with v, on one of the sides
of the matrix representing C .
– RCI-NODETRIX (RC). A variant of NODETRIX, proposed
in [25], [58]. The difference with the NODETRIX model is that
in each adjacency matrix, the row and the column associated
with the same node may have different indices, in order
to avoid some crossings between inter-cluster edges. As a
consequence the matrices may not be symmetric.
Rationale. Among the various types of hybrid visualiza-
tions described in the literature, we selected NT and CL
as they are designed to work similarly within visualization
systems devoted to the analysis of real-world networks. We
exploited the system in [15], which implements both these
models in a unique interface, where the implementation of
NT reflects the one given in [59] by the authors of [11]. The
system in [15] allows direct support for clustered drawings
in the NL model and makes it possible to create drawings in
all the supported models by defining the same set of clusters
on the same node-link diagram. For the purposes of our
experiment, we enriched the system with the RC model.

3.2 Tasks
We defined six different tasks, listed in Table 1. The tasks
of Table 1 have two attributes: LeeTax, which classifies
each task according to the taxonomy by Lee et al. [60];
and AmarTax, which describes the low-level visual analytics
operations needed to execute each task according to the
taxonomy by Amar et al. [61].
Rationale. We designed the user study with a set of tasks
that requires to explore the drawing locally and globally.
Moreover, each task is easy to explain, it can be executed in

a reasonably short time, and it can be easily measured. Con-
centrating on representative tasks is a common approach
for this kind of experiments (see, e.g., [62]), which supports
generalizability to more complex tasks that include these
representatives as subroutines. Most of our tasks are used
in previous graph visualization user studies (e.g., [46], [55],
[63], [64]) and they cover all task categories of LeeTax [60],
with the exception of the browsing category. We excluded
the latter because it requires to interact with the visualiza-
tion and we decided to avoid interaction to keep the test as
simple as possible and avoid possible confounding factors.

With respect to the recent top-level task classification by
Burch et al. [47], we observe that all our tasks are interpreta-
tion tasks. Indeed, our goal is to evaluate the differences of
the considered visualization models in terms of readability,
understandability, and effectiveness.

The specific chosen tasks are designed to be represen-
tative of real exploratory questions that a user formulates
when analyzing a network. At the same time each task is
formulated in a way that makes it possible to easily measure
the user’s performance. Namely: T1 refers to a classical
question about whether two entities of a network are di-
rectly connected; T2 focuses on establishing the importance
of a node with respect to another based on node-degree; T3
simulates a task where the user wants to establish whether
two nodes are relatively close to each other in terms of the-
oretical distance in the network; T4 concentrates on quickly
detecting a node in a portion of the network based on one of
the displayed attributes; T5 reflects a task in which the user
wants to establish the relevance of a cluster with respect to
another in terms of their level of connectivity; T6 aims to
estimate the level of connectivity between different portions
of the network. About task T5, we also point out that there
are two commonly used definitions for the density of a
graph with n nodes and m edges: d1 = m

n and d2 = 2m
n(n−1) .

We adopted definition d1 for two reasons: (a) it is simpler
to explain to a user; (b) according to previous research
work [65], d1 is a better descriptor of the complexity of real-
world networks. Indeed, the visual perception of the density
of a cluster region is affected by the number of nodes in
the cluster; if a drawing contains two clusters with different
sizes, the largest one may be perceived as a denser portion
of the drawing, even if it has lower density according to d2.

3.3 Hypotheses

Similarly to previous works (e.g., [22], [55]), we define our
hypotheses based on tasks, structuring them according to
the task categories of LeeTax.

H1: On topology-based tasks (T1, T2, T3), we expect
NODELINK to have faster response time than hybrid visu-
alizations. In contrast, we expect hybrid visualizations to
have a lower error rate than NODELINK, and CHORDLINK
to behave better than NODETRIX and RCI-NODETRIX.

H2: On attribute-based tasks (T4), we expect NODETRIX
and RCI-NODETRIX to outperform the other two models
in terms of response time and error rate.

H3: On overview tasks (T5, T6), we expect hybrid visual-
izations to perform better than NODELINK in terms of both
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TABLE 1
Tasks used in our study.

Task LeeTax AmarTax

T1. Is there an edge that links the two highlighted nodes? topology-based
(adjacency) retrieve value

T2. Which of the two highlighted nodes has higher degree? topology-based
(adjacency)

retrieve value;
sort

T3. Is there a path of length at most k that connects the two highlighted nodes? topology-based
(connectivity)

retrieve value;
compute derived value;
filter

T4. Which of the following three node labels appear in the highlighted portion of the network? attribute-based
(on the nodes)

retrieve value;
filter

T5. What is the denser∗ cluster between the two highlighted? overview
filter;
compute derived value;
sort

T6. How many edges directly connect the two highlighted parts of the drawing? overview filter;
compute derived value

∗The cluster density is the ratio between the number of edges and the number nodes in a cluster

response time and error rate. Among the hybrid visualiza-
tions, we expect NODETRIX and RCI-NODETRIX to be better
than CHORDLINK, especially for cluster density estimation.
Rationale. About H1, our expectations in terms of response
time are motivated by the fact that NODELINK is quite
intuitive and widely used. Moreover, hybrid visualizations
intrinsically require to switch from a visualization metaphor
to another during the visual exploration, which may repre-
sent a cognitive effort. Concerning the error rate, we think
that, by reducing the visual clutter, hybrid visualizations
help to avoid ambiguities (such as edges that are almost
collinear) and therefore may better support topology-based
tasks. Also, since topology-based tasks are known to be
harder when dealing with matrices, we expect CHORDLINK
to have better performance than NODETRIX and RCI-
NODETRIX in terms of error rate. About H2, we believe
that placing labels on a matrix side is more effective than
placing them around chord diagrams or near nodes in a
node-link diagram. In chord diagrams labels may be harder
to read due to their rotation, while in node-link diagrams
they may be hidden by edges. About H3, we expect hybrid
visualizations to behave better than NODELINK due to their
capability to provide a clearer cluster representation. For
tasks that require to estimate cluster density, NODETRIX
and RCI-NODETRIX have the advantage that the proportion
between black (edges) and white (non-edges) cells immedi-
ately conveys the density of a cluster; this estimation is more
difficult in CHORDLINK, where node duplication may give
the impression that a cluster is sparser than it actually is.

3.4 Stimuli
Our experimental objects are three real-word networks of
small/medium size. The first one, weavers, is an animal
social network with 64 nodes and 177 edges, describing the
interactions of a colony of weavers in the usage of nests [66],
[67]. The second one, e.coli, is a biological network with 97
nodes and 212 edges that describes transcriptional interac-
tions in the Escherichia coli bacterium [68]. The third one,
dblp, is a co-authorship network obtained from the DBLP
repository [69] by searching for the keyword “network
visualization” and considering only the largest connected
component, which has 118 nodes and 322 edges.

For each of the four visualization models described
in Section 3.1, we produced a diagram of the three net-
works described above. The diagrams for NODELINK are
computed through the force-directed algorithm in the D3.js
library [70]. Starting from these drawings, we defined some
geometric clusters with the K-means-based technique de-
scribed in [15]. As explained in Section 3.1, the system
presented in [15] is used to compute the diagrams in the
CHORDLINK, NODETRIX, and RCI-NODETRIX models with
the same sets of clusters. The algorithm for NODETRIX is
based on [11], [59] and uses the leaf order method to com-
pute the row/column order [71]. The algorithm for RCI-
NODETRIX is a variant of the one for NODETRIX, where
the orders for the rows and the columns are independently
computed to reduce the number of crossings between inter-
cluster edges; this is done by an adaptation of the sifting
algorithm for layered drawings [72], [73]. In all four dia-
grams of the same network, we labeled all the nodes that
belong to clusters and few high-degree nodes outside the
clusters. We avoid label duplication in all the drawings; this
reduces visual clutter and suffices to correctly interpret the
data in all models; in particular, in NODETRIX and RCI-
NODETRIX we filled each cell whose row and column refer
to the same node with a color distinct from black and
white (these cells correspond to the main matrix diagonal
in NODETRIX). Also, we use numerical id labels instead of
real names to guarantee anonymity and to avoid that users
could be influenced by their knowledge about the network.

Each of the 12 stimuli obtained by applying each of the 4
conditions (models) to the 3 experimental objects (networks)
is used in all of the 6 tasks described in Section 3.2, for a total
of 4× 3× 6 = 72 trials. For T1, T2, and T3, we highlighted
the node labels with a yellow background; to help the user
to locate the nodes, we also put a red cross close to the
clusters containing them. For T4 and T6, we highlighted
the regions of interest by enclosing them inside a colored
polygonal area. Finally, for T5 we indicated the two clusters
of interest with large red labels. The trials for the network
weavers can be found in the Supplemental Material.

Rationale. The visualization models that we compare are
suitable for networks with up to few thousand nodes and
edges, while for significantly larger networks ad-hoc tech-
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niques are required that typically reduce the amount of
displayed information. The choice of using networks with
few hundred elements avoids an excessive burden for the
participants. Namely, we wanted that each trial could be
executed in a reasonable amount of time without an exces-
sive fatigue and that the whole test could be completed in
about 30 minutes. Further, since we decided to show static
images (without zoom), the whole picture of the network
should be displayed with a level of zoom that keeps the
labels readable. Since the considered hybrid models are
intended to visualize networks that are globally sparse but
locally dense, we selected three networks that exhibit this
structure. Moreover, we designed the specific trials so that
the user was required to explore both the sparse parts of the
network, represented by the node-link metaphor, and the
dense parts, represented in different ways depending on the
model. Finally, we remark that for each task we generated
three different trials, one for each network. To mitigate the
fatigue effect and keep the overall time of the experiment
reasonable, we did not formulate multiple repeats of each
task for the same network.

3.5 Experimental Setting and Procedure

We designed a between-subject experiment where each par-
ticipant was exposed to one of the four conditions and
hence to 18 trials. The users executed the test fully on-line.
The questionnaire was prepared using the LimeSurvey tool
(https://www.limesurvey.org/) and is structured as follows.
First, some information about the user are collected, namely:
gender, age, educational level, expertise in graph visual-
ization, screen size, and possible color vision deficiency.
Then, the visualization model to be assigned to the user is
decided in a round robin fashion. Based on this assignment,
a video tutorial is presented, followed by a training phase
in which the user has to answer a trial for each task with
an explanatory feedback in case of wrong answer. Next, the
18 trials are presented in random order. Finally, the user
is asked for some qualitative feedback: two Likert scale
questions about the aesthetic quality of the drawings and
about the easiness of the questions, plus an optional free
comment. While no time limit was given to complete the
test, the participants were asked to answer each question as
fast as they could but, at the same time, trying to be accu-
rate. For each user, we collected the answers and the time
spent on each question. We recruited the participants with
announcements to the gdnet, ieee vis, infovis mailing lists
and to the computer engineering students of the universities
of Perugia and Roma Tre.

The actual experiment was preceded by a pilot study
with 19 participants, mostly colleagues and students in
computer engineering, who are representatives of our class
of target users. Based on the feedback received from the pilot
study, we made some small changes to the survey. More
precisely, for task T4 we increased the number of labels to
be found from one to three, because we had 100% correct
answers. For task T6 we changed the type of question from
a single choice question (the user selects the answer from
a fixed set of values) to a free text answer. We made this
change because the limited number of options helped to
guess the right answer (some participants reported that

when they had in mind a wrong value that was not present
among the options, they selected the closest value).

Rationale. As previously explained, exposing the users to
all four conditions would imply each user solving 72 trials.
We believe that keeping the same level of attention in such
a long experiment is difficult, and may cause many partici-
pants prematurely quitting the test. Besides such undesired
fatigue effect, a within-subject design would also imply that
each user sees the same experimental object 24 times, which
makes it difficult to avoid the learning effect. Hence, we
adopted a between-subject design, where each participant
is exposed to only one condition. This choice limited the
number of trials per user to 18, thus mitigating both the
fatigue and the learning effect, which is further counteracted
by presenting the trials in a random order. Finally, since the
test includes a video tutorial and a training phase to make
the user familiar with the given visualization model, an
additional advantage of the between-subject design is that
these phases can be focused on one model only. About the
execution of the experiment, we opted for a fully on-line test
for two reasons: (i) the difficulties to perform a controlled in-
person experiment due to the COVID-19 pandemic; (ii) the
possibility of recruiting a larger number of participants that
better represent our target population, through announce-
ments on the aforementioned mailing lists.

4 RESULTS OF THE COMPARATIVE USER STUDY

Participants. We collected questionnaires from 89 partici-
pants. We discarded seven tests for various reasons. One
of the participants indicated in the free comments area that
some images were not shown properly. Four participants
indicated to have some color vision deficiency. Since they
happened to be all assigned to the same model, we decided
to discard their tests to avoid an unbalanced effect of this
factor on the results of the experiment. Finally, since the
experiment was fully online and thus not controlled, we
discarded two tests whose total response time (i.e., the total
time spent to answer the 18 trials) was an outlier. According
to common practice, we consider the total response time of
a test an outlier if it falls more than 1.5 times IQR below the
first quartile or above the third quartile. Of the remaining 82
tests, 19 were for CHORDLINK and 21 for each of the other
models. Regarding the participants, 66 (80.49%) were males,
15 (18.29%) were females, and 1 (1.22%) preferred not to
answer. The majority of them (82.72%) were aged below 40.
85.37% of the participants has at least a Bachelor’s degree,
with 34.15% of them having a doctoral degree. 62.2% of
the participants declared medium or high familiarity with
graph visualization and 68.29% used a screen of size at
least 15”. See the Supplemental Material for detailed charts
about the personal information about the participants.

First-level Analysis - Quantitative Results. We compared
the performance of the four models over all data in terms
of error rate and response time. For T1–T5, the error rate
of a user is the ratio between the number of wrong answers
and the total number of questions. Recall that there are three
questions per task and that in T4 the user has to find three
labels for each question. About T6, the error on a question
is computed as 1 − 1

1+|u−r| , where u is the value given by
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TABLE 2
Results for error rate (top) and response time (bottom) for each task.

Kruskal-Wallis Pairwise comparisons (p-value)
Task Models ranked by average values

H(3) p-value NL-CL NL-NT NL-RC CL-NT CL-RC NT-RC

Er
ro

r
ra

te

Overall CL (0.222), RC (0.262), NT (0.280), NL (0.283) 3.042 0.385 - - - - - -
T1 CL (0.175), NL (0.191), RC (0.254), NT (0.349) 8.471 0.037 1.000 0.179 1.000 0.036 1.000 0.549
T2 CL (0.140), NL (0.143), RC (0.191), NT (0.238) 2.419 0.490 - - - - - -
T3 CL (0.140), RC (0.143), NT (0.270), NL (0.333) 10.882 0.012 0.035 0.788 0.024 1.000 1.000 1.000
T4 NT (0.048), CL (0.053), RC (0.101), NL (0.138) 6.703 0.082 - - - - - -
T5 NT (0.270), NL (0.302), CL (0.386), RC (0.397) 2.407 0.492 - - - - - -
T6 RC (0.246), NL (0.282), CL (0.290), NT (0.293) 0.478 0.924 - - - - - -

R
es

po
ns

e
ti

m
e

Overall NL (28.77), NT (35.35), RC (35.97), CL (39.81) 8.190 0.042 0.032 0.666 0.321 1.000 1.000 1.000
T1 NL (16.64), NT (19.91), RC (23.47), CL (26.12) 20.084 <0.001 0.000 1.000 0.031 0.016 0.832 0.720
T2 NL (25.23), CL (36.35), NT (37.63), RC (39.95) 12.632 0.006 0.058 0.061 0.006 1.000 1.000 1.000
T3 NL (24.58), RC (39.56), NT (42.68), CL (47.69) 19.533 <0.001 0.000 0.005 0.011 1.000 1.000 1.000
T4 NT (35.88), RC (37.04), NL (42.36), CL (50.60) 9.793 0.020 1.000 0.579 1.000 0.018 0.143 1.000
T5 NL (29.71), NT (37.76), CL (42.30), RC (44.24) 3.657 0.301 - - - - - -
T6 RC (31.56), NL (34.07), CL (35.83), NT (38.26) 1.265 0.737 - - - - - -

the user and r is the correct value; the error rate for T6 is
the average of the errors on the three questions of the task.

By performing the Shapiro-Wilk test with significance
level α=0.05, we found that data were not normally
distributed. Hence, we performed the non-parametric
Kruskal–Wallis test with significance level α=0.05, which is
suitable for comparing multiple independent samples. We
finally performed post-hoc pairwise comparisons by using
Bonferroni corrections. (See also [74], [75].)

Table 2 summarizes the results of our analysis both for
the error rate (top) and for the response time (bottom). For
each task, we list the models sorted by increasing values of
average error rate or response time (shown in parentheses).
We report in the table the statistic (column H(3)) and the
p-value of the Kruskal-Wallis test. Finally, for those results
that are statistically significant, we report the adjusted sig-
nificance for each pairwise comparison (after Bonferroni
corrections). Comparisons that are statistically significant
are in bold. The box-plots of the error rate and response time
for all the tasks can be found in the Supplemental Material.

Per-expertise Analysis - Quantitative Results. We refined
the first-level analysis described above and performed
a second-level analysis aimed at understanding whether
there is a difference between users that are more expert
in network visualization and those that are less expert. We
think that experts can take advantage of hybrid visualiza-
tions more than non-experts. Indeed, hybrid visualizations
intrinsically require more effort, which could result in an
obstacle to the analysis for non-expert users. To investigate
this, we restrict the general analysis described above to
experts and non-experts, separately. We refer to this analysis
as per-expertise analysis.

To identify expert users, we consider two different cri-
teria: the self-declared levels of expertise and of education;
see Fig. 3. Regarding the level of expertise, we distinguish
between veterans, namely those users who declared high or
medium expertise, and novices, namely those who declared
low or none expertise. Concerning the educational level, we
distinguish between seniors, namely those users with a Mas-

veteran novice

user educational level

senior junior

high/medium low/none MSc/PhD HSD/BSc

expertise

Fig. 3. Users’ classification for the per-expertise analysis of the results.

ter’s or a doctoral degree, and juniors, namely those users
with at most a Bachelor’s degree. Since all the recruited
users have a background in computer science and some
familiarity with network visualization, the educational level
can be considered a good indicator of the users’ expertise.
This is also confirmed by the fact that 80% of users with
a Master’s or a doctoral degree declare a high or medium
expertise and 73% of those who declare a high or medium
expertise have a Master’s or a doctoral degree.

Tables 3 and 4 summarize the results of our analysis for
expert users, namely veterans and seniors. We report in the
Supplemental Material the charts showing the average error
rate and the average response time for novices and juniors.

Motivated by the lack of statistical significance in the
results for non-experts (both novices and juniors), we con-
ducted an additional independent experiment with another
set of non-expert users. We recruited 41 students from the
Bachelor’s course in computer engineering of the University
of Perugia, who executed the same test described above,
with exactly the same environment and procedure as for
the first experiment. This new experiment provided some
evidence of the null hypothesis for this class of users,
as the only significant result (p-value = 0.016) concerns
task T2, for which NODELINK has a lower average error
rate than NODETRIX.

Qualitative Results. At the end of the test, we presented to
the users the following questions: (F1) “How much do you
like the diagrams you have seen?” and (F2) “How easy did you
find answering the test questions?”. The answers, given in a
5-point Likert scale, are summarized in the Supplemental
Material, where we also report the answer distributions as

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3233389

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. , NO. , 8

TABLE 3
Results for error rate (top) and response time (bottom) for each task considering only veterans.

Kruskal-Wallis Pairwise comparisons (p-value)
Task Models ranked by average values

H(3) p-value NL-CL NL-NT NL-RC CL-NT CL-RC NT-RC

Er
ro

r
ra

te

Overall CL (0.120), RC (0.197), NL (0.228), NT (0.288) 10.346 0.016 0.386 1.000 1.000 0.008 0.423 1.000
T1 CL (0.056), NL (0.067), RC (0.103), NT (0.292) 22.240 <0.001 1.000 0.002 1.000 0.000 1.000 0.005
T2 CL (0.056), NL (0.100), RC (0.103), NT (0.292) 10.693 0.014 1.000 0.199 1.000 0.023 1.000 0.77
T3 CL (0.056), RC (0.128), NT (0.292), NL (0.333) 11.141 0.011 0.015 1.000 0.106 0.184 1.000 0.940
T4 CL (0.017), NT (0.044), RC (0.062), NL (0.160) 6.517 0.089 - - - - - -
T5 NL (0.233), CL (0.250), NT (0.271), RC (0.308) 0.824 0.844 - - - - - -
T6 CL (0.175), NL (0.200), RC (0.223), NT (0.256) 1.802 0.614 - - - - - -

R
es

po
ns

e
ti

m
e

Overall NL (23.94), NT (33.11), RC (35.17), CL (44.35) 14.509 0.002 0.001 0.419 0.104 0.136 0.803 1.000
T1 NL (13.40), NT (20.52), RC (24.80), CL (27.05) 21.646 <0.001 0.000 0.113 0.003 0.069 1.000 0.947
T2 NL (19.49), NT (36.82), RC (40.40), CL (40.66) 17.271 <0.001 0.003 0.034 0.001 1.000 1.000 1.000
T3 NL (20.40), NT (39.30), RC (39.96), CL (55.26) 17.531 <0.001 0.000 0.027 0.024 0.643 1.000 1.000
T4 NT (34.72), RC (35.99), NL (43.85), CL (53.20) 11.771 0.008 1.000 0.359 1.000 0.008 0.085 1.000
T5 NL (20.09), NT (31.46), RC (39.55), CL (53.80) 9.078 0.028 0.027 1.000 0.958 0.132 0.707 1.000
T6 NL (26.44), RC (30.34), NT (35.84), CL (36.15) 3.536 0.316 - - - - - -

TABLE 4
Results for error rate (top) and response time (bottom) for each task considering only seniors.

Kruskal-Wallis Pairwise comparisons (p-value)
Task Models ranked by average values

H(3) p-value NL-CL NL-NT NL-RC CL-NT CL-RC NT-RC

Er
ro

r
ra

te

Overall CL (0.104), RC (0.218), NT (0.278), NL (0.289) 9.786 0.020 0.043 1.000 1.000 0.027 0.381 1.000
T1 CL (0.083), NL (0.167), RC (0.214), NT (0.405) 13.006 0.005 1.000 0.077 1.000 0.008 1.000 0.063
T2 CL (0.083), NL (0.167), RC (0.119), NT (0.214) 3.247 0.355 - - - - - -
T3 CL (0.042), RC (0.119), NT (0.262), NL (0.333) 8.657 0.034 0.046 1.000 0.135 0.575 1.000 1.000
T4 CL (0.013), NT (0.043), RC (0.107), NL (0.190) 11.714 0.008 0.012 0.071 1.000 1.000 0.183 0.948
T5 CL (0.167), NL (0.267), NT (0.310), RC (0.333) 1.927 0.588 - - - - - -
T6 CL (0.150), RC (0.193), NL (0.230), NT (0.236) 1.546 0.672 - - - - - -

R
es

po
ns

e
ti

m
e

Overall NT (20.20), NL (29.58), RC (36.38), CL (40.04) 5.394 0.145 - - - - - -
T1 NL (14.73), NT (20.20), RC (24.13), CL (25.72) 14.676 0.002 0.005 0.530 0.010 0.270 1.000 0.709
T2 NL (25.18), CL (33.97), NT (38.61), RC (44.39) 9.682 0.021 0.614 0.290 0.011 1.000 1.000 1.000
T3 NL (24.87), RC (42.35), NT (42.98), CL (46.59) 10.475 0.015 0.024 0.073 0.058 1.000 1.000 1.000
T4 RC (36.64), NT (36.70), NL (46.22), CL (49.02) 6.635 0.074 - - - - - -
T5 NL (30.12), RC (37.96), NT (40.22), CL (56.18) 0.297 0.961 - - - - - -
T6 RC (32.82), NL (36.38), CL (28.78), NT (36.45) 1.265 0.737 - - - - - -

box-plots; we assigned a score from 1 (lowest) to 5 (highest)
to each answer. While there is no statistically significant dif-
ference among the models, about (F1) NODELINK received
the highest percentage of strongly negative appreciations
and NODETRIX received the highest percentage of strongly
positive appreciations, although with high variance. About
(F2), the easiness of answering was judged medium on
average for all the models. Moreover, concerning (F1) ex-
perts (veterans in particular) prefer hybrid visualizations
rather than NODELINK, while there is no evident differ-
ence between the models for non-experts (both novices and
juniors). About (F2), both for experts and non-experts the
answers are in line with the general case.

In what follows we report, for each model, a summary
of the main free comments posted by the participants at the
end of the study.

NODELINK: All comments point out that the visual clutter
caused by dense portions of the network makes the execu-

tion of some tasks difficult. This is coherent with the motiva-
tion behind the introduction of hybrid graph visualizations.
CHORDLINK: The comments point out that node duplica-
tion affects the drawing readability and makes it difficult
to perform tasks related to cluster density. This is coherent
with our rationale about Hypothesis H3, i.e., node dupli-
cation may give the impression that a cluster is sparser
than it actually is. Other comments highlight that cluster
regions represented by circles with small diameter make
intra-cluster edges difficult to distinguish in some cases.
NODETRIX: The main comments report a difficulty in read-
ing inter-cluster edges and their incidence to the matrices.
RCI-NODETRIX: The main comment here is that it is some-
what counter-intuitive that the matrices do not use the same
row and column order, and this has a negative impact on
following paths in the network.

We further report that two participants found our defi-
nition of density (denoted as d1 in Section 3.2) less intuitive
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than the alternative one (denoted as d2 in Section 3.2).

Discussion. The following highlights are a summary of our
results. We first discuss the results per hypothesis and, for
each of them, we describe the results about the first-level
analysis and about the per-expertise analysis. We then con-
sider the results over all tasks. We conclude the discussion
by looking at the data from different perspectives.

– Hypothesis H1 is largely supported by the results in terms
of response time and partially supported in terms of error
rate. First-level analysis. NODELINK is faster (with statistical
significance) than: CHORDLINK and RCI-NODETRIX for
task T1; RCI-NODETRIX for task T2; all hybrid models
for T3. The slower response time of RCI-NODETRIX with
respect to NODELINK for all the topology-based tasks seems
to confirm the difficulty pointed out by some participants
about dealing with non-symmetric matrices. In terms of
error rate, while there is no statistically significant difference
for task T2, we observe that for task T3 both CHORDLINK
and RCI-NODETRIX yield better accuracy than NODELINK,
and for task T1 CHORDLINK behaves better than NODE-
TRIX. One may wonder why the same behavior is not
observable between CHORDLINK and RCI-NODETRIX on
task T1; our interpretation is that this might depend on the
smaller number of crossings that RCI-NODETRIX usually
causes between edges that are incident to the matrices with
respect to NODETRIX. Per-expertise analysis. In terms of re-
sponse time, for both veterans and seniors the results for T1
and T3 are essentially confirmed, while for veterans we have
additional statistical significance; in particular, NODELINK
is faster than all hybrid models. The data support H1 in
terms of error rate also in the smaller group of expert users.
Namely, the better performance of CHORDLINK with respect
to NODETRIX is confirmed for task T1 and it is additionally
observed on T2 for veterans. Also, the better accuracy of
CHORDLINK with respect to NODELINK for T3 is confirmed.

– The data provide some evidence to support hypothesis H2.
First-level analysis. The two models based on matrices seem
to lead to faster response time than the other two models,
with statistical significance when comparing NODETRIX and
CHORDLINK. In terms of error rate, we do not observe any
statistically significant difference that supports or disproves
our hypothesis. The high accuracy achieved with all models
seems to reveal that this task is indeed generally easy.
Per-expertise analysis. In terms of response time, the results
for veterans in the per-expertise analysis confirm what we
observed in the first-level analysis. Concerning the error
rate, we mention that for seniors CHORDLINK has better
performance than NODELINK in the per-expertise analysis.

– Hypothesis H3 is not supported by our results. First-
level analysis. We do not observe any statistically signifi-
cant difference among the four models. Per-expertise anal-
ysis. The only statistically significant result related to H3
is NODELINK being faster than CHORDLINK on T5 for
veterans, which contrasts our hypothesis.

– We now evaluate the four visualization models on over
all tasks. First-level analysis. The general analysis shows that
NODELINK outperforms CHORDLINK in terms of response
time with statistical significance. Per-expertise analysis. The
per-expertise analysis for veterans confirms what observed

in the first-level analysis in terms of response time. Further,
concerning error rate CHORDLINK outperforms NODETRIX
both for veterans and seniors and CHORDLINK outper-
forms NODELINK for seniors. These results suggest that
NODELINK is faster than CHORDLINK, which however is
more accurate than NODETRIX.
– Concerning the comparison between expert and non-
expert users, the results of the per-expertise analysis par-
tially support our idea that hybrid visualizations are more
suited for expert users than for non-experts. Namely, veter-
ans and seniors achieve better accuracy with CHORDLINK
than with NODELINK on some tasks. Also, the only sta-
tistically significant result of the second experiment with
students (concerning T2) indicates that non-experts have
better performance with NODELINK.
– To better understand the difference between expert and
non-expert users, we further analyzed the data from a differ-
ent perspective: for each visualization model we compared
the performance of the experts and of the non-experts.
The results of this analysis, called per-model analysis, are
reported in the Supplemental Material. They show that, not
surprisingly, the expert users (both veterans and seniors)
have better accuracy than non-experts on several tasks. This
is particularly evident for CHORDLINK. On the other hand,
novices are faster than veterans with CHORDLINK. Our
interpretation of this observed phenomenon is that novices
found the CHORDLINK model more tricky to use and thus
they tend to guess the right answer.
– There are other interesting questions that are suggested by
the data collected from our experiments. For example, one
may wonder whether there are visualization models that
are more hindered by a screen of small size, or what is the
impact of the network size on the performance of the users
with the different models. These analyses did not lead to
statistical significant results, but we report in the Supple-
mental Material the charts showing the average error rate
and the average response time for each visualization model.

Limitations. We conclude by discussing the limits of our
study. The choice of not allowing interaction implied to use
networks of small/medium size that fit into the screen win-
dow; also, it required to have a set of predefined clusters that
the user cannot change. On the other hand, a non-interactive
environment facilitated the execution of an on-line test; we
believe that enabling visual interaction for the considered
models would require a different study design, preferably
based on a controlled experiment. Further, interactions may
introduce confounding factors and it is difficult to design
interaction features that are fair to all models.

The networks used for the comparative study have sim-
ilar characteristics in terms of size, density, and cluster
structure. Hence, our results should not be generalized to
networks that have significantly different characteristics.

The number of tasks was limited to six, which is in line
with many previous studies. Although some works use a
larger number of tasks (see, e.g., [55]), we believe that more
tasks may cause long execution times and a high fatigue
effect for the users, which may result in less reliable data.

As pointed out at the end of Section 3.4, to keep the
experiment affordable for the user we decided to avoid
multiple repeats for each task. We believe that the potential
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impact of our choice on the quality of the results is less
relevant than the one caused by an eccessive fatigue effect,
which might produce unreliable answers from the user. To
better evaluate the implications of this aspect, it would be
interesting in the future to design new experiments that con-
sider the execution of the same type of task multiple times,
without increasing significantly the total number of stimuli.
For example, one can think of a between-subject experiment
that partitions the types of tasks over the different groups
of users, as we did for the visualization models. Such an
experiment would require a larger number of participants.

About the interpretation of the results, we remark that
for tasks T1–T5 the error rate of a user is computed as the
ratio between the number of wrong answers and the total
number of questions, while for T6 the answers are evaluated
on a fuzzy rating scale. An alternative approach could be
redesigning the experiment so that all the tasks allow for a
fuzzy rating scale evaluation. Depending on the type of task,
this may lead to an interpretation of the results that better
reflects how network visualizations are used in practice.

Finally, the visualization models that we compare may
be sensitive to the specific algorithms used to produce the
drawings. This justifies further investigation with different
layout algorithms.

Findings and guidelines. Keeping in mind the discussed
limitations, we conclude this section by summarizing the
major findings of our experiment.

• When a user aims to get insights on the structural prop-
erties of a globally sparse but locally dense network
(e.g., connectivity level between nodes or node cen-
trality), node-link diagrams may lead to faster analysis
than hybrid visualizations.

• Still about getting insights on the structural properties
of the network, if one wants the analysis to be more
accurate even if slower, using hybrid visualizations (in
particular CHORDLINK) is recommendable. This is even
more evident for expert users.

• When the analysis requires to find nodes with specific
attributes, our results suggest that matrix-based visual-
izations (in particular NODETRIX) are recommendable,
both for experts and for non-expert users.

5 ICE-T EVALUATION

The comparative study presented in the previous section
does not identify a hybrid model that is clearly superior
to the others for the execution of both topology-based,
attribute-based, and overview tasks, independently of the
user’s expertise. Also, as highlighted in the previous section,
one of the limits of our comparative study is the lack
of user interaction. This makes it natural to evaluate the
effectiveness of a system that integrates different types of
hybrid models and that offers a more powerful interactive
interface to the user. In particular, besides the possibility
of getting an initial set of automatically computed clusters
(like in the comparative study), the user should be able to
manually modify these clusters and decide how to visualize
them, based on her ability to interpret a certain type of
diagram rather than another, and depending on the size and
connectivity level of each cluster. This flexibility could be

considered an additional element of complexity for the user.
However, we believe that, after a suitable training phase,
the higher degree of freedom that it offers with respect to
using a unique model for clusters representation, can help
the user to get more insights from the visualization.

Following the considerations above, we implemented
an interactive Web-based environment that allows users
to visualize a network by arbitrarily combining all hybrid
models presented in this paper; the system is available
at http://mozart.diei.unipg.it/tappini/ChordLink/ and it
is shown in Fig. 2. Among typical zooming and panning
operations, this system provides facilities to: (i) manually or
automatically select clusters and decide the representation
of each cluster, including the possibility of collapsing it
into a single (bigger) node; (ii) quickly change the type of
visualization for a cluster; (iii) drag vertices into a cluster
or move vertices of a cluster out of it; (iv) customize the set
of node labels that are displayed, either by applying specific
predefined policies or by acting manually on each single
label. Additionally, the system has a panel to the right of
the drawing canvas, which lists the labels of all nodes in the
network, ordered alphabetically or by decreasing values of
node degrees, depending on the user’s preference. One can
interact with this list, searching for a specific label or select-
ing a label to highlight the corresponding node in the layout.

We conducted an evaluation of this visualization envi-
ronment by means of the ICE-T methodology proposed by
Wall et al. [27], which enables a quantitative measurement of
a visualization within a framework defined by Stasko [28].
According to this framework, the value of a visualization is
a linear combination of four components, each referring to
a specific ability of the visualization: (1) Insight – Ability
to spur and discover insights and/or insightful questions
about the data; (2) Time – Ability to minimize the total
time needed to answer a wide variety of questions about
the data; (3) Essence – Ability to convey an overall essence
or takeaway sense of the data; (4) Confidence – Ability to
generate confidence, knowledge, and trust about the data,
its domain and context.

The methodology of Wall et al. introduces a hierarchical
extension of the original value framework of Stasko. Each of
the four components comprises one to three guidelines, cap-
turing the core-concepts of the component; each guideline
contains one to three heuristics, i.e., an actionable and rate-
able statements that reflect how the visualization achieves
that guideline. These heuristics must be individually rated
by visualization experts on a 7-point rating scale from 1
(strongly disagree) to 7 (strongly agree), or NA-not appli-
cable. This rating is collected using a survey, available at
http://visvalue.org, with a total of 21 heuristics.

Following the ICE-T methodology (which suggests using
five ore more experts), we recruited 6 participants in the
field of graph drawing and network visualization, 4 from
academy and 2 from industry. For each participant we
established an individual remote session (over MS Skype or
MS Teams) of about 30 minutes, in which we: (i) introduced
the visualization environment to the participant; (ii) invited
her to train with the environment under our supervision;
(iii) asked the participant to continue interacting with the
environment and completing the evaluation offline. For this
last phase, we provided the participant with a collaboration
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Fig. 4. Participants’ ratings. The color mapping is red (1) to green (7)
with white (4) being neutral. The table shows the overall strength of each
visualization with respect to each of the four components. The values
in a column show how the different raters scored a visualization with
respect to a specific component. For each component we also report
the average and the standard deviation.

network representing co-authorships in IEEE TVCG articles
in the years 2018–2020, and we suggested some potential
general tasks (local and global) to perform, leaving the par-
ticipant the freedom to expand the analysis at her discretion.
The evaluation process ended when the participant sent the
filled ICE-T survey to the evaluators; we also collected some
post-evaluation feedback to complement their ratings.

The results of the evaluation are reported in the table
of Fig. 4. Following the methodology in [27], for each
participant we determined the score of a component by
first computing the score of each guideline as the average
of the scores of its heuristics, and then by averaging over
the scores of all component’s guidelines. All components
received a cumulative average score higher than 5, which,
according to the indications in [27], is considered a positive
evaluation. More in details, the strength of the visualization
is particularly evident in terms of the components Insight
and Essence, which received a cumulative average score
above 6, with a general consensus across all participants.
In terms of Time, the average score of one participant is
slightly below the neutrality threshold. Looking at the scores
of the single heuristics for this component, the participant
disagrees that the visualization supports using different
data attributes to reorganize the visualization’s appearance
and indicates that the visualization does not sufficiently
support smooth transitions between different levels of detail
in viewing the data. We feel that this second aspect could
be improved by designing suitable morphing techniques
to pass from a level of detail to another; this opens to a
future research direction, mostly unexplored in the context
of hybrid visualizations. We finally remark that, in terms
of Confidence, one participant considered NA the heuristic
that estimates whether the visualization helps understand
data quality; this is coherent with the fact that our visualiza-
tion is not specifically tailored to address this issue.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper we have investigated hybrid visualizations in
comparison with the classical node-link representations. The
study has covered two complementary directions: (i) On the
one hand, we evaluated the effectiveness of different hybrid
visualization models through a comparative user study;
(ii) On the other hand, we estimated the usefulness of an

interactive visualization that integrates all the considered
hybrid models through an ICE-T evaluation.

Concerning direction (i), as an answer to RQ1, the
results of the comparative study suggest that hybrid visual-
izations may help to overcome some limits of node-link dia-
grams in accurately executing topology-based tasks on glob-
ally sparse but locally dense networks, at the expenses of the
execution time. About RQ2, we could not conclude that any
of the considered hybrid models is superior; however, for
some tasks, we observed better accuracy with CHORDLINK
and faster execution with NODETRIX. These findings are
more evident when focused on expert users, while a focus
on non-experts does not reveal specific advantages when
using a model rather than another. We also remark that
our comparative study has some limitations and should
not be generalized to settings significantly different from
ours. In particular, in addition to considering networks with
structural properties that are different from those used in
our study, another possible extension can include interaction
features and, as a consequence, tasks in the browsing cate-
gory [60]. Also, the users of our experiment are researchers
and analysts that make use of network visualization to
accomplish tasks of analysis on real-world networks. It is
natural to ask to what extent our findings hold true for users
unfamiliar with any network visualization technology.

Concerning direction (ii), the general outcome of the
ICE-T evaluation is rather positive, especially in terms of
insight and essence of the visualization. We also learned
that the visualization does not sufficiently support smooth
transitions between different levels of detail in viewing the
data. This last remark suggests a novel research direction,
namely the study of efficient and effective morphing tech-
niques to pass from a level of detail to another in the context
of hybrid visualizations.

We conclude this paper by mentioning three additional
research directions that stem from our work.

• We described a between-subject experiment. It would
be interesting to design a similar experiment in which
the visualization models are a within-subject factor.

• We investigated visualizations in which clusters are
spatially separated. One could extend the experimental
study to visualization models that allow the spatial
overlap of clusters (see, e.g., [76], [77]).

• The outcome obtained with the ICE-T evaluation results
from integrating the node-link model with different
hybrid visualization models. Comparing our interactive
system to one that allows the interaction with just one
model (in particular node-link) is another direction for
future work.
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