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Brandon Yushan Feng and Amitabh Varshney, Fellow, IEEE

Abstract—We introduce a framework for compactly representing light field content with the novel concept of neural subspaces. While
the recently proposed neural light field representation achieves great compression results by encoding a light field into a single neural
network, the unified design is not optimized for the composite structures exhibited in light fields. Moreover, encoding every part of the
light field into one network is not ideal for applications that require rapid transmission and decoding. We recognize this problem’s
connection to subspace learning. We present a method that uses several small neural networks, specializing in learning the neural
subspace for a particular light field segment. Moreover, we propose an adaptive weight sharing strategy among those small networks,
improving parameter efficiency. In effect, this strategy enables a concerted way to track the similarity among nearby neural subspaces
by leveraging the layered structure of neural networks. Furthermore, we develop a soft-classification technique to enhance the color
prediction accuracy of neural representations. Our experimental results show that our method better reconstructs the light field than
previous methods on various light field scenes. We further demonstrate its successful deployment on encoding light fields with irregular
viewpoint layout and dynamic scene content.

Index Terms—Light fields, volumetric videos, neural network, compression.

✦

1 INTRODUCTION

L IGHT field content can display scenes at unprecedented
levels of realism and immersion. However, the vast

amount of data in high quality light fields exceeds the
storage, transmission, and interactive rendering capabilities
of current graphics pipelines. Previous efforts to compactly
represent light field content were mostly built on established
concepts in image and video compression. Nonetheless,
they still fall short of enabling large-scale, real-time dissem-
ination of high-resolution light field content.

Recently, neural representation of light fields [1] has
emerged as a viable alternative to conventional compres-
sion methods for efficiently storing light fields with high
fidelity. For a given light field, a neural network is trained
to learn the mapping function between each light field
pixel’s coordinates and color values. The key to achieving
high accuracy of this neural network is to transform the
input coordinates with a set of basis functions so that the
network can more easily capture the high-frequency details.
For instance, Fourier basis and Gegenbauer polynomials
have been shown to be effective in transforming light field
coordinates for a more accurate network [1], [2], [3], [4].
After training, multiple viewpoints from a light field scene
(hundreds of megabytes) are compactly encoded into such a
neural network’s weights (a few megabytes). These weights
are the only necessary information for storage and stream-
ing. Moreover, this trained neural network can be evaluated
at arbitrary viewpoints, thus quickly enabling interpolation
for a smooth viewing experience.

This unified design of training a single neural network
to cover the entire light field has simplistic appeal as a
concept. However, it is not ideal in practical scenarios
that emphasize efficient transmission and rendering. Such
scenarios generally involve only rendering a subset of light
field viewpoints. Therefore we incur unnecessary costs to
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transmit and evaluate a single neural network that contains
other unrelated views. This question naturally arises: how
can we improve the neural representation of light fields
to accelerate decoding/rendering at a particular viewpoint
without sacrificing visual quality?

In signal processing research, subspace learning is a
well-known concept for dimensionality reduction of high-
dimensional data. Its most notable example involves using
principal component analysis (PCA) to find a small number
of orthogonal basis vectors (principal components) with
most data variability. Naively constructing a single subspace
without adequately considering the structural attributes
of the data would be suboptimal. If the data contains
patterns that evolve over a long period, or the data are
simultaneously captured by multiple sensors at different
locations, constructing a global subspace may require many
parameters to adequately represent the data, which would
defeat the purpose of dimensionality reduction. It would
be more sensible to divide such inherently composite data
into multiple local subspaces such that each corresponds
to a small segment or region of the data. The subsequent
problem of tracking the changing subspace of data with
such composite structures is often referred to as subspace
tracking.

We first recognize the conceptual connection between
the neural representation of light fields and the construct
of subspace learning. When a neural network is trained to
encode a given light field scene, it reduces dimensionality on
the high-dimensional light field data. Specifically, the neural
network succinctly describes the pixel coordinate to color
mapping relationship. The fact that basis functions such as
the Fourier basis or Gegenbauer polynomials improve net-
work accuracy is deeply connected to how an appropriate
basis function forms a more suitable subspace to analyze
the data. Effectively, this network is trained to parametrize
through its weights a neural subspace of the light field data.

Moreover, in the initial neural representation of light
fields, one global neural subspace is learned for every part
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Fig. 1: We illustrate our proposed concept of neural subspaces for light fields. Given a light field scene, we divide it into
multiple local segments and construct a neural subspace for each segment. This figure shows an example of a light field
partitioned into four segments in space; the same concept could be similarly applied to light field videos with segments
across different periods. Each neural subspace of a light field is parameterized by a multi-layer neural network, which
outputs the color value given its coordinates as input. The neural subspace construction is equivalent to training the
network parameters to learn accurate coordinate-to-color mappings. We further introduce an adaptive weight sharing
strategy, which implicitly utilizes the similarity among nearby subspaces and reduces the total number of parameters
to represent the entire light field. Compared to previous methods, this new framework achieves a higher light field
compression rate for storage and streaming without sacrificing reconstruction accuracy.

of a light field scene, leading to potential inefficiencies in
scenarios that concern only a subset of the scene. This is
similar to the issues that motivate subspace learning for
composite data, prompting us to construct multiple local
neural subspaces for light field data. Indeed, it is not tech-
nically necessary to treat light fields as one unified entity
and encode the viewpoints altogether - light fields can be
regarded as a composite collection of local segments. Such
a perspective is meaningful in practice since only a subset
of the light field might be relevant at a particular moment
for streaming or rendering. Moreover, it is plausible that
networks specialized in local segments could represent the
data more accurately than a global network while using
fewer parameters overall.

This paper presents a novel approach to constructing
neural subspaces for light fields. With experimental results,
we demonstrate improving parameter efficiency and recon-
struction accuracy under this novel perspective. Unlike the
initial attempt that trains one global network for the entire
light field, we train a set of local neural networks that
encode only a subset of viewpoints. As each local network
specializes in a particular region, this specialization permits
smaller networks without sacrificing accuracy, if not further
boosting accuracy. Next, recognizing the similarity among
nearby subspaces, we propose a weight-sharing strategy for
those local networks to enhance overall parameter efficiency
while maintaining network capacity within each subspace.
Effectively, this proposed strategy achieves the tracking of
implicit neural subspaces. Furthermore, we introduced a
new soft-classification technique for neural representations
to produce the RGB color predictions, which further im-
proves the reconstruction accuracy. Experimental results
on various light field scenes indicate that the proposed
framework leads to better efficiency and accuracy than the

original neural representation of light fields and a range of
previous methods.

In summary, our contributions are as follows:

• We introduce neural subspaces for light fields, a
general framework for improving the compactness
of neural representation of light fields via subspace
learning.

• We propose a soft-classification technique to predict
the pixel color values, which further improves the
reconstruction quality.

• We propose an adaptive weight sharing strategy
to improve parameter efficiency by leveraging the
layered structure of neural networks.

• We achieve results superior to the state-of-the-art
compression on various light fields with our pro-
posed light field encoding framework.

1.1 Scope
The work is focused on accurately encoding and decoding
pixels captured in a light field. The related but orthogonal
tasks of novel view synthesis or 3D volume reconstruction
is beyond the scope of this paper.

2 RELATED WORK

2.1 Light Field Compression for Streaming
Traditional light field compression relies on classic coding
strategies that typically involve analytical basis functions
such as the Fourier basis and wavelets. Prior research has
augmented this analytical approach with disparity [5], [6],
[7] and geometry information [8]. Some sophisticated ap-
plications of light field video [9], [10] also integrate motion
prediction [11] and build on existing video codec algorithms
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such as HEVC (H.265) [12] and VP9 [13]. More recently,
Le Pendu et al. [14] propose a Fourier Disparity Layer
representation specific for sub-aperture light fields, which
allows upsampling [15] and compression [16], [17] in the
Fourier domain.

A different approach towards light field compression
involves learning a dictionary of basis functions. This idea
is inspired by progress in sparse coding from machine
learning, where dictionaries learned with data-driven al-
gorithms have been shown to outperform analytical basis
functions [18], [19], [20], [21]. However, the dictionaries
learned with conventional algorithms such as K-SVD [22]
still contain too much redundancy and have a high storage
cost. The state-of-the-art dictionary-based method [23], [24]
for light field compression improves this approach by learn-
ing an ensemble of orthogonal dictionaries with a novel pre-
clustering strategy.

Recently, a hierarchical tree structure of light fields has
been introduced [25], where a root node stores a represen-
tative key view image for a given light field, and the child
nodes store the sparse residuals (difference from their parent
node’s image) for each remaining image. Compression is
achieved by only encoding the sparse residuals of those chil-
dren’s views instead of their full-color values. Specifically,
they use the standard JPEG2000 to encode the representative
key view and Bounded Integer Sequence Encoding [26] for
the sparse residual views. Pratapa et al. [11] later extend this
hierarchical method to incorporate the motion prediction
and compensation concept widely used in traditional video
encoding techniques.

While previous research has made substantial progress,
most methods remain conceptual extensions to traditional
image compression methods, which independently treat
each image patch or camera view. Such methods essentially
achieve compression by taking advantage of the redun-
dancy within each patch or viewpoint without exploring
potentially more optimal strategies that further utilize the
redundancy between views or patches and between differ-
ent time steps in the case of dynamic videos.

This paper presents a method based on the neural
subspace that improves the compression rate through an
adaptive weight sharing strategy. Specifically, we utilize the
implicit redundancy between viewpoints or time steps to
explicitly reduce the number of parameters to represent the
entire light field scene.

2.2 Neural Light Field

Recent research [2], [3], [4] has shown the potential of using
coordinate-input MLP networks to represent multidimen-
sional data such as audio signals, images, videos, volumes,
signed distance functions, and wave equations. Fourier-
inspired techniques are the key to their breakthroughs in
accurately approximating content with high-frequency de-
tails. The neural radiance field (NeRF) network [4] achieves
state-of-the-art free viewpoint synthesis on static scenes by
transforming the input coordinates with cosine and sine
functions. Tancik et al. [3] further analyze this transform
strategy, which is closely related to the Fourier basis func-
tions, and show its effectiveness on 2D images. Concur-
rently, SIREN networks [2] replace the ReLU activation in

conventional MLPs with a sine activation, also achieving ac-
curate coordinate-to-color mappings for images and videos.

While it is straightforward to re-purpose those Fourier-
inspired MLPs into light field representation by setting light
field coordinates as the network input, they achieve less
than ideal results [1]. Feng et al. introduce SIGNET, an MLP
that encodes light field with high fidelity through a novel co-
ordinate transformation strategy based on the Gegenbauer
polynomials. They further demonstrate the compression
capability of such a neural representation of light fields and
show SIGNET’s superior performance over the state-of-the-
art compression methods based on sparse dictionaries.

This paper extends the initial success of neural represen-
tation of light fields and shows that its formation generalizes
to learning a concept called neural subspace. Moreover, we
show how the concept of subspace learning reveals the
inefficiencies of not adapting to the different compositions
of light field data. We then present how our techniques
significantly optimize the parameter efficiency compared to
using the original architectures of SIGNET.

Several recent works closely relate to light field repre-
sentations with neural networks, but they focus on different
problems than this paper. Kalantari et al. [27] and Bemana et
al. [28] use neural networks to interpolate between nearby
light field viewpoints, but the networks do not represent
the known light field images themselves. Recent develop-
ments of neural light fields have also achieve successes in
modeling appearance [29] and geometry [30] in unbounded
3D scenes, as well as view interpolation without geometric
structures [31]. In the context of video compression with-
out considering multi-view redundancies, implicit neural
representations [32] have also been shown to outperform
established neural video codecs.

2.3 Subspace Learning and Tracking

Subspace learning and tracking have been instrumental for
signal processing and computer vision applications. In the
traditional settings for learning subspaces from multidimen-
sional data, the purpose is to detect meaningful patterns or
correlations using a few parameters constructing a reduced
number of dimensions. This technique is useful for applica-
tions such as object tracking from radar or video [33], [34],
image denoising [35], and video background removal [36].
Since these tasks generally only require a coarse represen-
tation of the data points, the traditional subspace learning
or dimension reduction methods are sufficient and have led
to proven successes. However, the problem of constructing
neural light fields requires decoding each light field pixel
as accurately as possible, which is hard to achieve by tra-
ditional subspace learning methods, which only provide a
rough estimation of the general patterns in the data.

We propose a framework that utilizes the expressive
power of neural networks to construct a highly accurate
and condensed representation of the subspace of our light
field data. Compared to previous methods for light field
compression, we tackle this problem from a different per-
spective based on the newly proposed neural representation
paradigm. We break away from previous methods that use
various basis functions to construct an analytically defined
subspace. Instead, we propose learning a neural subspace,
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Fig. 2: Illustration of our proposed weight sharing strategy for a classic 4D light field. The light field is partitioned into
segments, in this example 16 segments, each containing 2×2 viewpoints. We construct a neural subspace for each segment
that summarizes its pixel-to-color mapping relationship. Each subspace shares a set of network layers while possessing its
local layers that enable network specialization on its corresponding data segment.

which is realized by multiplying the input basis functions
through a sequence of matrices with non-linear activations
(MLP network), whose parameters (network weights) are
adaptively learned for each light field scene. More impor-
tantly, we introduce a strategy to divide the neural subspace
into segments properly. Then, starting from the learned
neural subspace at one segment, we devise a method to
update it for another segment without re-learning every
parameter from scratch. This specialization allows us to
downsize the total representation and the memory required
to decode each pixel.

3 METHOD

3.1 Neural Light Fields with MLP

A neural light field representation [1] uses an N -layer neural
network (MLP) to encode a light field (sub-aperture in the
original case). Formally, it learns the following function F :

F(u, v, x, y) = ϕL ◦ ϕL−1 ◦ ... ◦ ϕ1([Θi(u, v, x, y)]
N
i=1) (1)

Here, (u, v, x, y) stands for the coordinate of a pixel within
a sub-aperture light field, Θi stands for the orthogonal basis
functions used to transform the coordinates, ϕl stands for
the l-th layer of the neural network with a weight matrix
Wl, bias vector bl, and an activation function σ(x) = sin(x).
The output from each layer is ϕl(x) = σ(Wlx+ bl).

The MLP predicts the pixel color separately as
F(u, v, x, y) = c̃p. The training objective directly minimizes
the regression error between the predicted color cPred

p and
ground truth cp across all known pixels in a light field:

LRegress =
∑
p

∥c̃p − cp∥2. (2)

3.2 Constructing Light Field Segments

A global MLP is responsible for learning the coordinate-
to-color mapping for all the pixels in a sub-aperture light

field in the original neural representations for light fields.
As discussed in Section 1, such a unified construct would be
suboptimal in other camera configurations. Instead, we first
partition a given light field into different segments in our
method. For each segment’s content, we then train an MLP
to encode its coordinate-to-color mapping F .

There are two aspects in which we could partition a
given light field: space and time. To partition a light field in
space means that we group camera viewpoints into separate
clusters. To partition a light field in time means dividing
a light field video into separate time intervals. In prior
subspace learning and tracking methods, this partitioning
strategy is key to achieving efficient dimension reduction
of high-dimensional data. In our case of light field en-
coding, we conjecture that this partitioning strategy would
significantly improve the parameter efficiency of light fields
compared to SIGNET.

For example, consider a sub-aperture static light field
with 16 × 16 viewpoints. Suppose we train an MLP that
specializes in the particular segment of the top-left 4 × 4
viewpoints. In that case, it could require much smaller
weight matrices to achieve the same reconstruction accuracy
compared to training a global MLP for all 16 × 16 camera
viewpoints. In the case of light field videos, we could sim-
ilarly extend the partition strategy to divide the temporal
dimension into several time intervals.

3.3 Adaptive Weight Sharing in MLP

It is not hard to imagine that if we partition a large light field
into segments, we could use a much smaller MLP to encode
each segment because it now needs to encode a simpler
neural subspace. Nonetheless, is that the best we could do
to make the neural subspaces as compact as possible?

A distinctive feature of the parametrization of the neural
subspace is that each neural network contains a series of
layers. Suppose every network contains N layers, and we
partition the light field into D segments. Then if we naively
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Scene Method PSNR(↑) SSIM(↑) EncMB(↓) DecMB(↓)

Lego
909 MB

AMDE 40.90 0.973 29.3 29.3
KSVD 38.39 0.960 29.3 29.3

SIGNET 41.26 0.976 9.0 9.0
Ours 41.95 0.982 22.9 2.2

Tarot
909 MB

AMDE 38.54 0.973 44.2 44.2
KSVD 38.81 0.980 44.3 44.3

SIGNET 37.47 0.975 9.0 9.0
Ours 38.21 0.975 22.9 2.2

Bracelet
568 MB

AMDE 39.90 0.980 18.1 18.1
KSVD 36.73 0.973 18.1 18.1

SIGNET 38.70 0.973 12.0 12.0
Ours 39.64 0.985 22.9 2.2

TABLE 1: Results on Sub-aperture Light Fields. We com-
pare to previous methods AMDE [23], KSVD [22], and
SIGNET [1]. DecMB is the memory (in MB) required in
streaming to decode any frame, and EncMB is the memory
(in MB) required to encode the entire light field in storage.

train an MLP for each segment, we would need to learn and
store ND weight matrices for those layers.

We observe that this approach leads to possible param-
eter redundancy. More concretely, although each MLP is
constructing a different neural subspace, nearby subspaces
inevitably contain similar patterns. The redundancy occurs
when we use too many parameters to represent those simi-
lar patterns. Therefore, it makes sense to let MLPs covering
nearby segments share a portion of their parameters. For
instance, we may let the D segments share the first K
matrices in their neural subspace construction, and thus
we could only learn and store (N − K)D + K weight
matrices instead of ND matrices. In Fig. 2, we illustrate
our modification to the MLP layers in the classic case of
a sub-aperture light field. These modifications could be
easily extended to light field videos by sharing weights
among adjacent time intervals instead of nearby viewpoints.
Initially, we train the network at Level 0, optimizing all
N layers for all light-field pixels. After the first round of
training, we pick the (N −K)-th layer as the starting point
of fine-tuning. Specifically, when fine-tuning at Level 1, we
freeze the first N − K layers trained at Level 0 and only
optimize the last K layers. In the example shown in Fig. 2,
this step is equivalent to creating four copies of the last
three matrices and then separately fine-tuning each copy on
one patch of pixels at Level 1. When finetuning Level 2, we
additionally freeze the (N − K + 1)-th layer (green matrix
in Fig. 2) and train the remaining K − 1 layers.

3.4 Soft-Classification for RGB Prediction
RGB color values are the common network output in neural
representations of light fields, images, videos, and radiance
fields. Visual information is often stored as 8-bit color with
256 possible discretized values, but are usually normalized
to be within 0 to 1, before being used to train those neural
representations. As a result, the final layer of the neural net-
work is often designed to directly output three scalar values
corresponding to the normalized RGB values. Effectively,
the network weights, along with the final activation function
(such as linear or sigmoid), perform a direct regression on
the color values.

While this standard direct regression approach is sen-
sible and works well in practice, it is not the only valid
approach. A naive alternative would be to let the network
classify, out of all possible colors, which specific color the
input pixel belongs to. However, the 8-bit RGB format
essentially covers (28)3 = 224 individual colors, which
would require the final network layer to have M × 224

parameters and defeat the purpose of using this network
for compression.

Instead, we let the network classify each of the three
color channels separately. Specifically, its final layer outputs
a vector with 768 values, which we then reshape into a 3 ×
256 matrix. We then apply the softmax function separately
for each of the three rows. As a result, the 256 values in each
row represent the probability of those 256 possible colors
being the true color of this channel.

Common machine learning applications adopt hard clas-
sification, where the final prediction is determined as the
class with the highest corresponding probability. This is ap-
propriate when the classes are discrete and have no ordered
relationship (e.g. predicting dog/cat/chicken). However, in
our setting, the possible classes are by definition ordered,
and thus we do not have to adopt hard classification in
practice. Instead, we multiply the predicted probability with
their actual value (from 0 to 255), and then sum them up
as the final output. As shown in later experimental results,
our soft-classification approach enhances the reconstruction
quality of our neural representation. Moreover, compared
to hard classification, it does not restrict the output to be
discrete color levels; it has the same flexibility as direct re-
gression to produce any floating numbers with comparable
numeric precision.

4 EXPERIMENTS

In this section, we provide detailed analysis of our method
through quantitative experiments. First, we confirm its
overall validity by comparing its compression performance
with several prior methods on traditional sub-aperture light
fields. Second, we validate our use of the adaptive weight-
sharing strategy, juxtaposing it with an alternative approach
that seems potentially more effective but achieves inferior
results in practice. Third, we demonstrate the benefit of
predicting RGB color using our proposed soft-classification
strategy. Fourth, we show the efficacy of our framework
on dynamic light field scenes where its streaming-friendly
property flourishes. Finally, we analyze the impact of the
varying the hyper-parameters of the network architecture.

4.1 Training Setup
We train the MLPs in PyTorch using the Adam optimizer
with default parameters in all our experiments. We super-
vise the network based on the mean squared error loss
between reconstructed and ground truth colors. We train
and test the networks under the automatic mixed precision
mode in PyTorch using 16-bit floats. We adopt the cosine-
annealing learning rate scheduler, with the initial learning
rate as 1 × 10−5 and the final learning rate as 1 × 10−8.
We randomly shuffled all the training samples and divided
them into batches of size equal to 2048. To ensure repro-
ducibility, we set the random seed as 0.
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Fig. 3: Two possible strategies to incorporate local sub-
spaces into the network architecture. Weight Sharing fine-
tunes the later network layers, while Residual Adding ad-
justs the features through addition for different subspaces.
Our empirical results show Weight Sharing achieves better
quality while using fewer parameters.

Method PSNR(↑) SSIM(↑) DecMB(↓)

SIGNET 39.14 0.975 9.0

+ Residual Adding 35.30 0.943 2.3
+ Weight Sharing 38.91 0.972 1.8

+ Hard Classification 39.26 0.979 2.2
+ Soft Classification 39.93 0.982 2.2

TABLE 2: Quantitative Comparison of Different Strate-
gies. Weight Sharing achieves subspace specialization with
better quality than Residual Adding, despite using fewer
parameters. Soft Classification achieves better performance
in improving prediction accuracy over Hard Classification
and Direct Regression (used by SIGNET).

Unless otherwise noted, we set all networks to have ten
layers with residual connections, where the intermediate
layers have a dimension size of 512 × 512. We apply layer
normalization after all MLP layers except the final one.

For networks with sine activation functions, we follow
the initialization method suggested by Sitzmann et al. [2].

4.2 Quantitative Metrics

To evaluate the reconstruction accuracy, we compute PSNR
and SSIM, two commonly used metrics for measuring the
fidelity of image data. To holistically evaluate the parameter
efficiency, we compute two metrics: DecMB, the memory
required to decode any frame in megabytes completely,
and EncMB, the memory needed to encode the entire light
field for storage in megabytes. In the context of streaming
applications, DecMB better reflects the cost for real-time
transmission and on-device decoding and rendering. In con-
trast, EncMB captures the total storage cost of the server and
is less relevant to the cost of large-scale, repetitive content
transmissions.

4.3 Sub-aperture Light Fields
We first deploy our framework on the classic sub-aperture
light fields from the Stanford Light Field Archive [37]. We
report the performance of our methods compared with
previous methods in Table 1, using the same set of scenes se-
lected by Miandji et al. [23] for a direct comparison. Results
indicate that our method achieves a significant (ranging
from 5.2x to 12.5x) reduction in the decoding bandwidth
cost with improved reconstruction accuracy. Moreover, to
comprehensively evaluate the improvement of our method
over SIGNET, we present results on the rest of the Stanford
Light Field Archive scenes in Table ??.

4.3.1 Comparison with the Residual Approach
While the above preliminary results may serve as a proof
of concept of the overall framework, we now demonstrate
the specific importance of our weight-sharing strategy in
enabling subspace specialization. We present an alternative
approach with a residual adding setup, shown in Fig. 3.
For this approach, instead of finetuning the later layers
for a local segment, we train a parallel path of layers that
learns to produce the residual error of the original path. This
residual adding approach is similar to many conventional
modifications to neural network architectures [38], [39], [40],
and on the surface, it might seem more promising than the
weight sharing setup. However, as the results in Table 2 and
?? and Fig. ?? show, it is much less effective in accurately
constructing a local neural subspace, even if we allow it to
use more parameters than the weight sharing approach.

4.3.2 Improved Accuracy with Soft Classification
Using the sub-aperture scenes, we also analyze the impact of
using different strategies to obtain the final color prediction.
We train our network with Soft Regression, Hard Classifica-
tion, and Soft Classification as discussed in Section 3. Soft
Regression directly outputs the predicted color values as
done in [1]. Hard Classification uses the color level with the
highest predicted probability as the output for each channel.
Soft Classification aggregates the predicted probability with
multiply-then-sum approach introduced in Section 3. We
measure the performance on the scenes as in Table 1, and
the averaged results are provided in Table 2.

4.4 Volumetric Light Fields
The results thus far validate our method’s usefulness on
classic light field scenes, and they also approve the specific
implementation of our weight-sharing strategy. Nonethe-
less, the neural subspace method truly shines in the case
of large-scale light fields with irregular camera layout and
even dynamic content. In this scenario, it is reasonable to
assume that only a small portion of the light field scene
must be streamed and displayed in real-time. It makes more
sense to encode each local subspace separately to reduce the
streaming bandwidth.

Therefore, we try to relax the assumption of only fo-
cusing on classic light fields with the two-plane parame-
terization. We create our dataset of room-scale light field
scenes captured using 64 synchronized motion cameras at
the resolution of 1640 × 1232 and 30 frames per second.
Unlike the classic light fields where all the viewpoints exist
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Naïve - 29.73 dB

Ours – 40.64 dB

Naïve - 28.99 dB

Ours – 40.40 dB

Fig. 4: Comparisons from the cylindrical light field scenes. We show the original image (left), reconstructed images using
the Naive method (top right), and our method (bottom right). The Naive method only uses one MLP network to encode the
content (similar to a slim SIGNET), but without the subspace specialization and weight sharing described in Section 3. We
design the MLP such that the Naive method incurs a similar streaming bandwidth cost. The residual errors are visualized
in yellow. Our subspace setup achieves superior visual quality.

Scene Method PSNR(↑) SSIM(↑) EncMB(↓) DecMB(↓)

Cup
(370MB)

SIGNET 38.04 0.955 9.0 9.0
Naive 29.73 0.898 0.38 0.38
Ours 40.64 0.967 5.2 0.46

Violin
(370MB)

SIGNET 37.69 0.953 9.0 9.0
Naive 28.99 0.891 0.38 0.38
Ours 40.40 0.966 5.2 0.46

Training
(370MB)

SIGNET 39.29 0.970 9.0 9.0
Naive 30.38 0.911 0.38 0.38
Ours 42.81 0.982 5.2 0.46

TABLE 3: Results on Volumetric Light Fields. Naive refers
to naively reducing the width of the MLP networks without
specializing on subspace segments as described in Section 3.
Our results achieves higher accuracy and better parameter
efficiency than SIGNET. Compared to the Naive method,
our subspace-based method better balances the trade-off
between streaming and storage efficiency.

on a single 2D plane and are restricted to the same front-
facing orientation, our 64-camera setup contains viewpoints
distributed on a cylindrical surface. It provides a 360◦ all-
around coverage of the scene. For each scene, we record 210
frames and capture various human movements.

Compressing high-resolution scenes with such a struc-
tural layout is not straightforward for prior methods. Many
prior methods for light field compression are tailored to
light fields with viewpoints restricted to a 2D planar grid
[11], [25], [41] . The non-planar layout of the cameras results
in both translation and rotation among the viewpoints,
which is ill-posed for these compression methods that uti-
lize translation between viewpoints to represent repetitive
patterns compactly. On the other hand, some other meth-
ods [22], [23] explicitly construct a dictionary for encoding
a new set of content, and they require sending this sizable
dictionary for decoding, which is not ideal for streaming ap-
plications. On the contrary, neural-network-based methods
like SIGNET and ours are flexible towards different camera
layouts without a dictionary requirement. Considering their
superior compression performance over previous methods

Scene Method PSNR(↑) SSIM(↑) MB/s(↓) ∆f (↓)

Vid-Cup MPEG 37.12 0.959 0.15 44.89
Ours 38.21 0.968 0.15 45.25

Vid-Violin MPEG 37.54 0.957 0.15 38.39
Ours 38.11 0.962 0.15 38.31

Vid-Training MPEG 37.61 0.955 0.15 39.95
Ours 38.14 0.962 0.15 40.12

TABLE 4: Comparison to MPEG on Dynamic Light Field
Videos. Controlling for the same level of bitrates, our
method achieves higher fidelity without the blocking arti-
facts commonly seen (e.g. Fig. 5) in traditional, patch-based
methods represented by MPEG. ∆f measures the level of
flickering as discussed in Sec. 4.4.2.

already shown in Table 1, we thus primarily focus on the
neural network-based methods in this section.

Since the light field scenes, in this case, cannot be
parametrized by two planes, we label the cameras using
cylindrical coordinates, which make up the angular part of
each light field pixel’s input coordinate to the MLP network.

Let us consider encoding a static moment captured by
the volumetric light field. First, we directly deploy the
original SIGNET design on our dataset by training one MLP
to encode all 64 images of each scene. Then, to achieve a
streaming-friendly file size, we train a slim SIGNET version
on our data by reducing SIGNET’s network width by four
times, which effectively cuts the number of parameters by
sixteen times. We call this the Naive method since it merely
reduces the network’s representation capacity compared
to a full SIGNET without adjusting to compensate for its
representation quality.

Finally, we apply our neural subspace framework on
these light field scenes. Each scene is divided into 16 seg-
ments. Each segment contains four viewpoints vertically
aligned. We construct the neural subspaces across these
16 segments by training their corresponding MLP network
weights. The MLP network’s architecture is specifically de-
signed to incur a streaming bandwidth cost similar to the
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Ours 0.15 MB/s

Ours 0.15 MB/s

MPEG 0.15 MB/s

Original Frame

Original Frame

MPEG 0.15 MB/s

Fig. 5: Results on Dynamic Volumetric Light Field scenes. For each example frame, we show zoomed-in comparisons
between MPEG (top) and our method (bottom). At a similar bitrate level, our method avoids the blocking artifacts
commonly seen in MPEG-compressed content.
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Fig. 6: Impact of Changing the Number of Shared Layers K . As the number of shared layers increases, there are fewer
subspace-specific layers as we maintain the total number of layers, reducing the benefit of subspace specialization. On the
other hand, having more shared layers reduces the total storage cost EncMB.

Naive method. Specifically, the first four layers are shared
across the subspace, while the remaining layers are adapted
for each subspace. More details of the network architecture
are listed in Table ??.

In Table 3 and Fig. 4 we show the quantitative and
qualitative results. Compared to SIGNET, our method con-
siderably reduces storage and streaming costs while im-
proving the reconstruction accuracy due to the local sub-

space specialization. The Naive method, while achieving
a lightweight file size suitable for streaming, fails to accu-
rately encode the data, which shows the importance of our
proposed strategy of subspace specialization.

4.4.1 Extension to Dynamic Content
We further apply our framework on dynamic sequences
captured with our volumetric setup. We partition each light
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Fig. 7: Impact of Changing the Number of Local Subspaces D. As the number of local subspaces increases, each subspace
covers a smaller region in the light field, therefore reducing the network fitting difficulty and hence higher reconstruction
quality. On the other hand, having more individual subspaces entails higher storage cost EncMB.
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Fig. 8: Impact of Changing the Layer Width M . As the width of the intermediate layers increases, the network has more
capacity to fit the data and achieves higher reconstruction quality. However, the number of parameters required in storage
(EncMB) and decoding (DecMB) increases at the same time.

field scene into 14 temporal subspaces (each encompassing
0.5 seconds of content) and train the neural network weights
for each subspace with the same layer allocation as in the
static case. We provide the quantitative results in Table 4,
and in Fig. 5 we show example frames reconstructed from
our network juxtaposed with frames processed using the
conventional MPEG codec. We control the MPEG bitrates
to be as low as possible without sacrificing the frame rate.
Quantitatively, our method achieves higher fidelity and
avoids the typical blocking artifacts of MPEG as in Fig. 5.

4.4.2 Possible Flickering Across Subspaces
To quantitatively measure the possible flickering when mov-
ing across subspaces, we adopt the Flicker metric [42], [43],
which measures the temporal flickering across consecutive
frames. Unlike previous works [42], [43] that measure the
flickering across entire videos, we are interested in how
the subspace division strategy affects the level of flickering.
Specifically, assuming the previous subspace ends at time
t − 1 and the next subspace starts at time t, we compute
the flicker ft−1→t+1. For all subspace initial time steps t, we
record the difference in flickering between the reconstructed
frames and original ground truth frames

∆ft = |fRecon
t−1→t+1 − fTrue

t−1→t+1|, (3)

and report the average ∆f in Table 4. The level of flickering
exhibited between subspaces is similar to using MPEG.

4.5 Hyper-parameter Analysis

Our strategy to achieve subspace specializations through
the network design involved several hyper-parameters,
such as the number of shared layers K among the sub-
spaces, the number of subspaces D to divide the light
field, and the width M of the network layers. In Figs. 6, 7,
and 8, we present the results of varying each of those hyper-
parameters while fixing all others, using the same dataset
(Lego) and the same training batch size.

Changing K or D does not change the number of
parameters required to decode any view, DecMB , while
changing M affects both the storage cost EncMB and DecMB.
When changing the number of subspaces D, D = 2 refers
to separating all viewpoints into the left and right halves,
D = 4 divides the viewpoints into quadrants, D = 16 is our
adopted setup dividing the two viewpoint axes by 4, and
D = 64 divides the two axes by 8.
5 DISCUSSIONS

5.1 End-to-end v.s. Two-stage Learning

Our method essentially performs a two-stage learning, with
the global stage of training the network to represent the
entire light field, followed by a local stage where we fine-
tune the layers specific to each subspace. A conceptually
viable alternative is to combine the two separate stages and
directly train the method end-to-end. Specifically, at each
training iteration, we may dynamically select the subspace-
specific layers for the current training batch.

However, we observe inferior reconstruction accuracy
from such an end-to-end learned network. We believe a
major reason is that, under the end-to-end learning scenario,
each training batch comes from the same subspace. In con-
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trast, in the implementation of this paper and SIGNET [1],
all light field pixels are randomly shuffled and divided into
batches at the first (global) stage. Compared to just sampling
2048 pixels randomly from one randomly selected image,
this completely randomized data preparation was adopted
because it led to a better global accuracy. Therefore, when
we use the end-to-end scheme with batches from the same
subspace, it is not surprising that it learns an inferior global
solution than training with completely randomized batches.
If we use global randomized batches while dynamically
selecting the subspace layers at each training iteration,
we would need to split up the batch on-the-fly in every
forward pass, sort the pixels by their subspaces, and then
separately infer them using their own local subspace layers.
This leads to approximately 20× slower run-time using
PyTorch. In other words, this potentially helpful approach
is unfortunately not computationally efficient enough under
the current deep learning framework.

5.2 Limitations
Our method’s encoding and decoding speed are inherently
dependent on neural networks’ training and inference speed
on the available hardware. We train the MLP network
weights from scratch to encode a new scene, which takes
over an hour to achieve acceptable quality. Decoding a
1024 × 1024 image, the network takes around 0.258 sec-
onds to complete the forward pass on an NVIDIA A4000
GPU. Another limitation is that our method currently only
achieves lossy compression. It remains uncertain whether
such neural-network-based methods could ever come close
to lossless encoding under a prolonged training regime or if
they could theoretically establish an error bound.

5.3 Future directions
It would be worthwhile for a future study to explore in-
corporating meta-learning or few-shot learning [44], [45] to
speed up the encoding, potentially utilizing the prior knowl-
edge or re-using the weights learned from earlier light field
scenes. Moreover, since the implicit neural representation
naturally allows random access to individual pixels, another
interesting direction is to combine it with foveated [46] or
view-dependent rendering techniques [47] to enable more
efficient rendering. Considering the lossy nature of neural
representation, it would therefore be a promising research
direction to explore advancing such a neural-network-based
method towards lossless compression.

6 CONCLUSION

As the intersection among neural networks, graphics, and
multimedia processing is rapidly expanding, content cre-
ation and application possibilities based on high-resolution
light field data are on the horizon. Compactly representing
such densely sampled data is crucial for the light field’s
wider dissemination and impact on people’s activities. Our
work builds on the recent progress of neural computing. It
invokes the classic idea of subspace learning, taking neural
light field representations to the next step by making them
more compact and streaming-friendly. We hope the new
framework of neural subspace for light fields inspires more

progress in bringing light field content closer to a ubiquitous
component of our daily lives.
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