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A Survey of Smooth Vector Graphics:
Recent Advances in Representation, Creation,
Rasterization and Image Vectorization

Xingze Tian and Tobias Ginther

Abstract—The field of smooth vector graphics explores the representation, creation, rasterization, and automatic generation of
light-weight image representations, frequently used for scalable image content. Over the past decades, several conceptual approaches
on the representation of images with smooth gradients have emerged that each led to separate research threads, including the popular
gradient meshes and diffusion curves. As the computational models matured, the mathematical descriptions diverged and papers started
to focus more narrowly on subproblems, such as on the representation and creation of vector graphics, or the automatic vectorization
from raster images. Most of the work concentrated on a specific mathematical model only. With this survey, we describe the established
computational models in a consistent notation to spur further knowledge transfer, leveraging the recent advances in each field. We
therefore categorize vector graphics papers from the last decades based on their underlying mathematical representations as well as on
their contribution to the vector graphics content creation pipeline, comprising representation, creation, rasterization, and automatic image
vectorization. This survey is meant as an entry point for both artists and researchers. We conclude this survey with an outlook on
promising research directions and challenges to overcome in the future.

Index Terms—Vector graphics, diffusion curves, gradient meshes, survey

1 INTRODUCTION

ECTOR GRAPHICS is a branch of computer graphics

describing the representation and synthesis of images
based on geometric primitives. Compared to raster graphics,
which require to keep per-pixel information, vector graphics
provide a more compact representation. In particular, the
specification of the image content in vector-based images is
resolution-independent, meaning that they can be scaled and
sampled to any desired output resolution. The simplicity of
vector graphic representations can be a double-edged sword.
While it is easy to create simple color gradients, complex
color variations like smooth shadows, caustic effects, and
defocus blur are hard to be represented directly through basic
gradient functions [101]. When the amount of required detail
increases, the editing process of vector graphics demands
both solid artistic skills and a large amount of working time
to obtain complex results. Therefore, vector graphics are
more often used to represent stylized images, such as line
drawings [33], [37], [100], fonts [92], [107], clipart [30], [38],
[59], [114], [139], image triangulations [76], and sketches [12],
[117]. With the goal of increasing the expressiveness of
smooth vector graphics, current research on gradient-based
vector graphics can be divided into two directions. One
direction is to enhance the artistic control of vector graphics,
such that more complicated effects can be constructed and
manipulated with less effort. Thereby, the rendering process
that converts vector representations into raster images is
a crucial component, as high-quality results are expected
to be generated at interactive or even real-time speed
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during editing. The other direction seeks to find the most
suitable vector representation for a given image in a (semi-)
automatic way with as few primitives as possible, which
is called vectorization. The vector representations generated
from the two directions are often on opposite ends of the
expressiveness spectrum. Usually, complex color variations
are hard to represent directly by a single primitive or through
simple artistic interaction, hence, the vectorization approach
often leads to a richer set of primitives, and the results
are therefore more difficult to manipulate directly. The two
directions are not completely orthogonal. The advances in
the formulation of artist-friendly primitives may inspire
vectorization methods, while the vectorized results can act
as a basis for further editing and manipulation. Until now,
both directions have been studied intensively within their
respective vector representations.

Currently, there are two major extensions to simple shapes
and gradients: mesh-based and curve-based representations, as
explained by Barla and Bousseau [6] in their artist-oriented
introduction to gradient art. Mesh-based representations
divide the image domain into 2D patches, where color
and other attributes are stored at the vertices or in the
patch interiors. The research on mesh-based methods can
be divided roughly into two directions, aligning with the
two aforementioned directions in vector graphics. One path
focuses on finding better topological representations of
the color variations, such as grouping smaller patches [7],
[8], [9], using subdivision-based techniques [84], [144], or
adopting irregular shapes like Bézigons [139]. These methods
mainly concentrate on automatic extraction of a vector-
based description from a given image. The other path
adds expressiveness by defining additional attributes on
the patches, and hence provides more artistic control. For
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example, the gradient mesh formulation [74], [118] allows
users to specify tangents at the patch vertices. In this way,
color gradients can be controlled directly. Despite this, mesh-
based representations can still be less intuitive as users
may need to decompose the domain by themselves. In
contrast, the creation process of curve-based methods is
closer to free-hand drawing. Curve-based methods use
various curves with different attributes like color and normal
derivatives as the fundamental primitives. Users can draw
the outline of their design and add colors afterwards.
The rasterization process of curve-based representations
like diffusion curves [101] often requires solving a partial
differential equation (PDE) on the entire domain, which
inhibits local control. In addition, the solving step may suffer
from discretization problems, and an additional blurring
step may be required to generate smoother results. Hence,
most research in curve-based methods either focused on
establishing sound formulations to enhance local control [41],
[61], [64], [68], or put effort in developing better rendering
techniques to avoid the intrinsic discretization issues [69],
[120], [121]. As curve-based representations often describe
color discontinuities in an image, it can still be difficult to
represent either extremely smooth or very detailed regions.

With ongoing research, advances have been made on both
fronts, adding new representations, creation tools, rasteriza-
tion methods, and vectorization algorithms to both mesh-
based and curve-based methods. Synergies are possible, since
the edges of patches are often aligned with the curvilinear
features of an image. However, in general, the research
threads within both approaches evolved independently with
their own mathematical formulations, making it challenging
to transfer ideas from one branch to the other. Our goal is not
only to present a comprehensive overview of the advances
in smooth vector graphics, but also to convey a solid
understanding of the underlying mathematical formulations
by phrasing them consistently in the same notation. Further,
we provide an in-depth discussion of existing algorithms,
such that a generalized and unified representation may be
developed in the future to unite the advantages of previous
methods.

1.1

Research over the past decades led to a wide range of vector
graphics representations, which we categorize into two types:

Methodology

1) Mesh-based representations decompose an image
into 2D patches, where color is interpolated inside
each patch. In this survey, we consider this formula-
tion as generalization of simple shapes and gradients.

2) Curve-based representations mimic the traditional
artistic habits of drawing on paper. The curves
usually represent extrema in the color gradient, and
the resulting image is often computed by solving a
partial differential equation (PDE).

For each type of primitive, we classify the research efforts
into the following parts of the content creation pipeline:

Representation.  Research on this topic introduces
novel vector graphics representations, which consist of two
ingredients: (1) the definition what kind of information is
stored on the geometric primitives, such as colors or other

features, and (2) the underlying mathematical model to fill in
void areas between primitives for which appropriate solvers
can be chosen or developed.

Creation.  Tools for the creation of vector art are
often tailored to a particular vector graphics representation.
Methods that ease the creation and editing process or that
provide more flexibility and richness in the final results are
classified into this category.

Rasterization. Given a vector graphics representation,
the rasterization computes a rasterized image. Methods in
this category seek to improve either the rendering quality or
the rendering speed on a desired output device. Currently,
solvers are tightly linked to a particular representation, i.e.,
there is no unified solver for all existing formulations.

Vectorization. For any input image or video, vectoriza-
tion methods output a vector graphics representation, which
resembles the input image or video as closely as possible.
When additional information is provided, e.g., when the
curve geometry is known [68], [71], the vectorization process
may only solve for a part of the model.

As illustrated in Figure 1, the research topics are internally
connected to each other. The creation and editing outputs a
vector graphics representation, which is then rendered to a
raster image or a video (i.e., an image sequence). On the other
hand, vectorization acts as an inverse process that converts
rasterized image(s) into a vector graphics representation.

1.2 Structure of the Survey

The survey is structured with respect to the categorization
proposed in Section 1.1. For each vector graphics primitive,
we describe state-of-art methods in representation, creation,
rasterization, and vectorization. In Section 2, we introduce
the mathematical notation used in this paper, and we discuss
related mathematical foundations. We then concentrate on
mesh-based representations in Section 3, including simple
shapes and gradients. Subsequently, we thoroughly analyze
curve-based vector graphics representations in Section 4.
Lastly, we conclude the survey in Section 5, where we discuss
the connections between the formulations and cover possible
avenues for future work.

2 MATHEMATICAL PRELIMINARIES
2.1 Notation

In order to unify the mathematical formulations in this paper,
we adopt the same notations for all equations. Scalars and
scalar-valued functions are expressed with italic letters, such
as s or s(t). Scalar-valued basis functions are denoted with
capital italic letters, for example B(t). Vectors and vector-
valued functions are expressed with bold lowercase letters,
like v or v(t). All vectors are laid out as column-vectors.
Matrices are denoted by capitalized bold letters, such as M.
To make it clear whether a symbol denotes a constant or
a function, we always list functions with their arguments,
for example x(¢). When needed, discrete values are indexed
with lower scripts, such as x;. Note that user parameters are
treated as constants in the expressions and are therefore not
explicitly listed in the function arguments. If a derivative
is a user-defined constant, we use 0, f; ; to abbreviate the
derivative at a discrete location %

lu=u;,v=v;"
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Fig. 1: The connections between the main research topics in vector graphics: a vector graphics representation is defined by
its underlying mathematical model, which can be created or edited accordingly. The rasterization process generates raster
image(s) from a vector graphics representation, while vectorization describes the inverse problem.

2.2 Bézier Curves

Bézier curves are widely used as the fundamental represen-
tation of curve-based methods, as well as patch boundaries
in mesh-based methods. A Bézier curve x(¢) : [0,1] — R? is:

@ B —1)"" (1)

where BJ'(t) are Bernstein basis functions and b; are Bézier
control points. The first and last control point are always
interpolated, i.e., x(0) = by and x(1) = b,,. A cubic Bézier
curve has a polynomial degree of n = 3 and is specified by
4 control points by, ..., bz € R2. From the tangent x(¢) =
4x(t) the curve normal n(t) : [0,1] — R? is defined as:

10}
n(t) = <(1) _01) ||z§3|| - <Z§§3>

When interpolating multiple points, it is numerically more
suitable to join multiple curves, as described next.

x(t) = iBf(t) -b; with B'(t) =
=0

2

2.3 Spline Curves

Two (or more) curves xi(t) : [to,t1] — R? and xa(t) :
[t1,ta] — R? can be joined at the end points with suit-
able continuity constraints to form a Bézier spline curve
x(t) : [to,t2] — RZ For example, C%-continuity requires
matching end points x; (¢1) = x2(t1), whereas C-continuity
requires C° and matching tangent vectors % (t1) = Xa(t1).
For a cubic curve, the hardest constraint is CZ—continuity,
i.e., C! and matching acceleration vectors X (1) = X2(t1).
Finding the control points of a cubic Bézier spline that
interpolates given points x(tp) = po, x(t1) = p1 and
x(t2) = p2 for a given parameterization (o, t1, t2) requires
the solution of a linear problem with boundary conditions to
find a unique solution. When selecting natural end conditions
X1(to) = %X2(t2) = 0, the resulting curve minimizes the
approximate bending energy |, ttoz |%(¢)||? dt. In analogy to
the extension of this minimizer to surfaces, this curve is
sometimes also referred to as thin plate spline. The solution
of a global linear problem can be avoided if a continuity
constraint is given up. For example, Catmull-Rom and
Hermite splines are only C' continuous cubic curves that
can be computed locally. Switching from Bernstein basis
functions B! (t) to B-spline basis functions leads to B-splines,
which are equivalent to Bézier splines in terms of the function
space. The control points of B-splines are called de Boor
points. Rational B-splines are an extension that includes a
weighting term for each de Boor point, making it possible
to also represent conic sections. We refer to Farin [36] for a
comprehensive introduction to curve design.

3 MESH-BASED METHODS

We begin our overview of vector graphics representations
with mesh-based methods. An overview of existing methods
is presented in Table 1, which follows the categorization from
Section 1.1. We start with the different mesh representations.

3.1

Mesh-based methods divide the image domain into non-
overlapping 2D patches across which colors are interpolated.
The representation is mainly concerned with the placement
and connectivity of patches and determines how color is
interpolated. The patch shape can be triangular, rectangular,
or even irregular, while color and other attributes are stored
at vertices or in the patch interior. Fig. 2 provides an overview.
Next, we categorize the methods based on the domain
decomposition.

Representation

3.1.1 Triangular Meshes

Triangle-based methods interpolate a function f(u,v,w)
across each triangle with u,v,w € R being barycentric
coordinates with v + v + w = 1. Given discrete control
values f; j x and associated basis functions F}"; ; (u, v, w) of
degree n with 4,j,k € {0,...,n} and i + j + k = n, the
continuous function f(u, v, w) is:

f(u7 v, U)) = Z Fﬁ],k(uu v, w) : fi,j,k (3)
i+j+k=n
Using Bernstein polynomials B}'; ; (u, v, w) = 5 ;.L!Ik!uivjwk

as basis functions £7; «(u, v, w) gives rise to Bézier trian-

gles and the special case of n = 1 corresponds to linear
barycentric interpolation.

The usage of triangulations or triangular patches to
represent images has a long history [27], [29], [116], especially
in image vectorization. An overview of basic triangle primi-
tives is shown in Fig. 3. Basic triangulations with piecewise
constant colors as in Fig. 3(a) require too many triangles to
depict complex color variations [132]. Further, C° continuity
across patch boundaries may become noticeable at higher
resolution for smooth regions [84]. One way to better align
the features is to use curved edges around the triangular
patches. Xia et al. [132] proposed a representation using
non-overlapping triangular patches with curved edges, see
Fig. 3(b). Each patch is modeled as a 2D Bézier triangle as
specified in Eq. (3), such that every boundary is a 2D cubic
Bézier curve as in Eq. (1). The color of interior Bézier control
points is fitted by thin plate splines. The boundary Bézier
curves are aligned with color discontinuities for a given
image, which enables larger color variation at the boundaries
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TABLE 1: An overview of existing mesh-based methods.

Type [ Method [ Representation [ Creation [ Rendering [ Vectorization
Tri lation, lift to 3D,
[132] Cubic Bézier triangle - Thin plate spline rlanguiation, Bt {0 55,
project to 2D
Multi-level editing, ) Feature deteFtiorT, 'sub-division,
[84] .. Surface rendering mesh simplification,
local shape and color editing AT
- color optimization
Subdivision surfaces - — .
Multi-level editing, . Feature detection,
[144] Surface rendering . . L
Triangular sharpness factor triangulation, color optimization,
o . . Feature detection and simplification,
[135] Quadratic Bézier triangle - Surface rendering . . .
triangulation, mesh refinement
Feature detection,
Multi-level editi h terizati
[146] TCB-spline surface wi-level edifing, TCB-spline interpolation mesh parameterization,
local selection and editing knot mesh generation,
geometry and color optimization
I tation,
Lo . Hole filling, Multi-level editing, Lo . fmage segmenation
[105] Bicubic Bézier patch . .. . Bicubic interpolation grid generation
object editing, user path for animation -
patch fitting
M 1 initialization,
[118] - Bicubic interpolation anuatini lé 1zla 10,“
parameter optimization
Image segmentation,
[74] Quality control attribute Bicubic interpolation triangulation, reparameterization,
local refinement
Example-based Lo .
[136] p Bicubic interpolation -
Rectangular color transfer
Optimization-based Lo .
[137] Ferguson patch ptimization-base Bicubic interpolation -
color transfer
[127] Scribble-based interface Bicubic interpolation -
Local refi t
[5] ocal retinement, Hermite interpolation -
branching, sharp color
[55] Noise textures Bicubic interpolation -
[130] Local. control, image. mosaic, Bessel interpolation Cross field gener'ation
image embedding quadrangulation
[3] Mesh color textures Hermite interpolation -
[81] Arbitrary polygon - Cubic mean coordinates Iterative node removal
mentahi Fith
[139] Bézigon - Specific rasterization function Segmenta on b'ourjldary itting,
optimization
Irregular [86] Multi-level editing Surface rendering -
[122] . Local refinement, multi-level editing Surface rendering -
Subdivision surfaces - - —
Local refinement, multi-level editing, .
[126] o Surface rendering -
sharp color transition
[145] Local refinement, multi-level editing Surface rendering -
>
Simple Shapes Gradient Rectangular > R llar > Irregul > Irregular
Mesh
Simple colors: constant, Ferguson patches: Tg pology;'preferr;/ \ng Polygonal patches: Arbitrary manifold patches:
linear, radial, etc color + tangent handles ol ;’Eﬁz g gnat E ;\sd.l les color + tangent + normal color + tangent
Topological * * V + *
Triangular Triangular Triangular Iregular Triangular
T I -
Triangular Bézier patches: Trangular = Subdiaion :Z[ches Bezigons: TCB-spline surface
TPS fit color subdivision pa‘chgs. h color f color function
smooth color function smootl F‘;zﬂ_e‘;m"o"*

Fig. 2: Evolution of mesh-based representations, including gradient-meshes and topology-based representations.

the triangular patches, such that the boundary curves are C*?
continuous. Other than regions with discontinuity features
(for example across edges that are intended to be sharp), the
final color is no less than C'! continuous [84]. The patches are
constructed using a piecewise smooth subdivision scheme.

a) b) c)

Fig. 3: Different triangular patches. From left to right: basic
triangle with straight edges; Bézier triangle with curved
edges; subdivision-based triangles.

and smooth colors inside the patches. More recently, Xiao et
al. [135] used quadratic Bézier curves as the patch edges. The
control points, which are placed on the edges, are computed
through an optimization process. However, neither thin
plate spline fitting nor energy minimization guarantees
Ct continuity at non-edge patch boundaries [84], [135].
Alternatively, subdivision-based methods can be used to
tackle the continuity problem, as illustrated in Fig. 3(c). Liao
et al. [84] improved the continuity property within and across

The color attributes are stored at the vertices and are opti-
mized such that the color function over the entire image is
C' continuous. Zhou et al. [144] also used subdivision-based
triangular meshes as their fundamental primitives. They
used cubic B-splines to describe the curvilinear features in
an image. The triangular meshes are constructed and refined
similarly as in Liao et al. [84]. The color attributes are stored
at the vertices. To model sharp edges, they used two nearby
curves with separate colors. In addition, a sharpness factor
is stored at the edges to control edge smoothness. Generally,
the subdivision-based approaches may generate an excess
amount of primitives, and can be strongly dependent on
the feature extraction output [146]. Recently, Zhu et al. [146]
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proposed to use quadratic triangle configuration B-splines
(TCBs) [19], [112] to faithfully depict complex color variations
while remaining C'! continuous. An image can be treated as
a surface in 5D (geometry and color) and can therefore be
approximated and refined as a TCB-spline surface.

3.1.2 Rectangular Meshes

Rectangular meshes interpolate functions f(u,v) over a u, v-
parameter domain from given control points f; ; with ¢ €
{0,...,n}and j € {0,...,m} by computing tensor products
with the basis functions £ (t) and F]"(t):

n m
fluo) =2 > F'w) F"(v) - fi; )
i=0 j=0

Price and Barret [105] used bi-cubic tensor product surfaces,
also known as Bézier patches, where the basis functions
F*(t) are the Bernstein basis functions B}*(¢) from Eq. (1)
and n = m = 3. Thus, every patch has four rows and
columns of Bézier control points x; ;, each representing a
cubic Bézier curve. Colors c; ; are stored at the control points
and are likewise interpolated using Eq. (4).

ﬁ)O Ao Ao S0

9,fo0 |  9vfro
LA \ Mo
037X f3

7
O f03  Oufis

(a) Ferguson patch (b) Gradient mesh

(c) Mesh with holes

Fig. 4: Most common gradient mesh types. Images (a)(b)
inspired from [118], (c) inspired from [74].

Although the bi-cubic Bézier patch formulation is simple
and straightforward, it still lacks control over the color
variations from the editing perspective. One alternative is
to use gradient meshes. This representation was first intro-
duced by Adobe Illustrator for manually creating complex
color variations, although the actual implementations were
proprietary. In 2007, Sun et al. [118] published a formal
definition of gradient meshes that are composed of Ferguson
patches [40]. A Ferguson patch is a bi-cubic tensor-product
surface following Eq. (4), which is specified through four
corners fi;» with 7/, j° € {0,3} and u, v-tangent handles at
each of the four corners 9, fi;» and 0, fij+ see Fig. 4(a). By
definition, the second-order mixed partials 9,0, fi/ ;» are set
to zero at the corners, which is referred to as zero twist, cf.
later Section 3.3.2. A gradient mesh is composed by aligning
Ferguson patches along mesh-lines, see Fig. 4(b). Each vertex
g of the gradient mesh’s mesh-lines stores:

Position: The 2D position x, = (4, y,)" of the vertex.

Tangents: Every corner has four u, v tangents, shared by
the four neighboring patches, see Fig. 4(b). The four tangents
are constructed by the two directions 9,x4 and d,%, while
the opposite directions are scaled by factors «,, and a,.

Color: Each vertex has an RGB value ¢, = (4, g4, bq) T

Color derivatives: For every vertex g, its color deriva-
tives d,¢q, 0ycq along the u, v tangents are estimated per
color channel with monotonic cubic spline interpolation [131].

For example, in Fig. 4(b), the color derivative in the u
direction can be analytically calculated from the cubic splines
between vertices ¢ — 1, ¢ and ¢, ¢ + 1. The color derivative
for the v direction can be computed analogously.

One limitation in Sun et al. [118] is that regions with
holes are hard to represent. Thus, Lai et al. [74] proposed
a topology-preserving gradient mesh representation, which
models a cut in a surface x(u, v) by duplicating consecutive
horizontal grid lines, see Fig. 4(c). Let x(u) := x(u, v.) be
the horizontal curve with u € [ug, u1] and v, = const, along
which the surface is cut. The two formerly adjacent patches
receive distinct boundary curves X(u) and x(u), requiring G°
continuity (X(uo) = X(up) and X(u1) = x(u1)), as well as G*
continuity (0, X(ug) = —0,X(ug) and 9, X(u1) = —0,X(u1))
at the end points to form a closed loop. If there is more
than one hole in the mesh, several cuts can be performed
accordingly. By splitting a topology-preserving mesh [74]
with n holes along the horizontal grid lines, this represen-
tation can be transformed into n 4 1 gradient meshes [118].
The two representations were adopted by many following
works [127], [130], [136], [137]. Later, Barendrecht et al. [5]
used cubic rectangular patches and extended the primitives
to support local refinement.

3.1.3

Swaminarayan and Prasa [123] used polygonal patches with
constant color, see Fig. 5(a), where the edges of the polygons
align with curvilinear features of an input image. Apart from
polygonal patches, constant colors and linear gradients have
been used in other shapes, such as areas of homogeneous
features [43], see Fig. 5(b). More recently, Yang et al. [139]
used Bézigons (closed regions bounded by Bézier curves) to
depict clipart images. The color in each region is represented
by a spatially-varying color function. Later, Hettinga et

Irregular Meshes

(a) Swaminarayn et al. [123]

(b) Froumentin et al. [43]

Fig. 5: Patches of arbitrary shape, filled with constant color.

al. [53] investigated several schemes to interpolate the values
and gradients of color from boundary conditions, including
the approach for topologically unrestricted gradient meshes
by Lieng et al. [86], the cubic mean value coordinates
by Li et al. [81], and two newly-proposed interpolation
methods based on the Gregory generalized Bézier patch
and the Charrot-Gregory corner interpolator. The extension
to gradient meshes of arbitrary topology by Lieng et al. [86] is
illustrated in Fig. 6, where each patch can have an arbitrary
number of vertices and edges. Each control point has an
assigned color value and color gradients, and the edges can
be set to different discontinuity levels (C L smooth, CY crease,
or C~! discontinuous).
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(b) Lieng et al. [86]

(a) Li et al. [81]

Fig. 6: Gradient meshes of arbitrary connectivity.

3.2 Creation

While simple shapes and gradients are easy to control,
vector-based representations are more difficult to create and
edit when the amount of required detail increases. In the
following, we cover manual and data-driven approaches, as
well as alternative recoloring and texturing methods, leading
to representations as illustrated in Fig. 7.

3.2.1 Manual Methods

Simple shapes are directly specified by shape parameters,
e.g., position and radius of a circle. In Adobe Illustrator,
gradient meshes are created manually by selecting an object
and specifying the number of vertices per row and column.
Users then need to choose a color for each grid point. Sun
et al. [118] enabled users to create meshes in a similar way:.
After specifying the objects and dividing each object into 4
components, each sub-object is uniformly split parametrically.
Users can click to add or remove mesh lines. The position of
a vertex can be dragged or typed in, the four derivatives can
be dragged through tangent handles, and the color can be
picked from a color palette. Xia et al. [132] allowed users to
select patches of interest and to edit colors using thin plate
splines. Similarly, Liao et al. [84] let users select and edit
either an individual vertex or a feature, or even a local region
by defining a radius around a selected vertex or feature.
After selecting the center of deformation, the geometry can
be refined through distortion minimization [63]. Users can
change the color of the chosen vertex or feature by assigning
a new color or by blending the new color with the old
color. Sverja et al. [122] edited irregular meshes by adding
faces to the mesh interactively, and by splitting or collapsing
edges of the mesh. Verstraaten and Kosinka [126] further
let users add sharp color transitions in this formulation.
Barendrecht et al. [5] added branching such that the mesh is
not restricted to a rectangular grid. They also extended sharp
color transitions such that a control point can be assigned
with up to 4 different colors. Subdivision-based methods
provide users with multi-resolution editing [147]. Liao et
al. [84] and Zhou et al. [144] let users deform the mesh at
a desired resolution level. Lieng et al. [86] enabled users to
change colors at a higher resolution, while the geometry is
manipulated at a coarser level.

3.2.2 Color Transfer, Recoloring, and Textures

Rather than relying on manual color editing, color transfer
methods have been proposed to ease color assignment.
Xiao et al. [136] proposed an example-based color transfer
method for gradient meshes. Given a reference image, the

algorithm transforms the colors of a gradient mesh using
a linear operator constructed by PCA-based color transfer
algorithms [1], [134]. The method assumes Gaussian color
distributions in both the reference image and the gradient
mesh, but may fail to preserve image details like textures
after color transfer [136], [137]. Later, they proposed a refined
method using an optimization-based linear operator [137].
The color transfer process is modeled by minimizing the
difference in color distribution, which also enables adding
image gradients as additional constraints such that fine
details can be preserved after color transfer. Instead of using
a reference image, Wan et al. [127] developed a scribble-based
method to recolor a gradient mesh. Given an input mesh and
scribbles by the user, an auxiliary mesh called control net is
constructed. The control net structure can be computed for
both classic gradient meshes [118] or topology-preserving
gradient meshes [74], which are then recolored with extended
chrominance blending [140] and are in the end converted
back to a gradient mesh representation.

High-frequency image details often lead to a large num-
ber of patches when converted to a mesh-based represen-
tation, and can therefore be a burden for future editing.
Methods have been presented to add texture details in
different ways. Hettinga et al. [55] added Perlin, Worley
and Gabor noise. Baksteen et al. [3] used mesh colors to add
textures to gradient meshes, which is another option for 3D
texture mapping in 2D [142]. In this representation, colors
are defined at both the vertices, and at uniformly sampled
points along the edges and inside the patches to represent
complex color variations with a limited number of patches.

3.3 Rasterization

The rasterization process determines how colors are com-
puted within each patch, which may be constant, a linear
gradient, a combination of simple gradients, or the result
of a fitting or interpolation from boundary colors. The
rasterization process of mesh-based representations can be
roughly divided into subdivision-based methods [84], [86],
[144] that may use adaptive GPU-accelerated tessellation [52],
and interpolation-based methods [81]. In this section, we
discuss approaches for the various mesh formulations.

3.3.1 Triangular Meshes

Xia et al. [132] rendered triangular Bézier patches in three
steps. First, they recursively subdivided each patch into 4
smaller Bézier patches until triangles were smaller than a
pixel. Second, they determined the associated patch and its
barycentric coordinates for each pixel. Third, the color of
the pixel was computed by thin plate spline fitting using
the barycentric coordinates. Liao et al. [84] accelerated the
rendering by a GPU-based patch subdivision. Zhu et al. [146]
used TCB-spline interpolation for image reconstruction.

3.3.2 Rectangular Meshes

Across rectangular patches, colors are interpolated using
tensor products. Using Bernstein basis functions B} () from
Eq. (1) with n = m = 3 in Eq. (4) gives rise to bi-cubic Bézier
patches. Instead of specifying 16 control points fy 0, fi1,0,-- -,
f3,3 for the color function, the same tensor product surface
f(u, v) can be expressed equivalently using only the corner
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(a) Verstraaten et al. [126]

(b) Wei et al. [130]

(c) Baksteen et al. [3] (d) Xiao et al. [135]

Fig. 7: Images created with different mesh-based frameworks.

control points and their first-order and second-order mixed
partial derivatives, cf. Sun et al. [118]:

flu,v) =t(u)"-CT-Q-C-t(v) ()
with the monomial basis functions t(¢) = (1,t,t2,¢3)T and
10-3 2 Joo Josz  Oufoo  Oufos
=00 3 -2 Q= fso  f3z  Oufso  Oufss
01-2 1p Ouf0,0 Oufo,3 0ulyfo,0 0ulyfos3

00-1 1 Ouf3,0 Oufsz Oulufap 3u3vf3,3(6)
Since the Ferguson patch formulation specifies only the
corner control points and its first-order partial derivatives,
the mixed second-order partial derivatives in Eq. (6) are
usually set to 0, such that 0,0, fo,0 = 0,0y fo,3 = 0u0y f3,0 =
0u0y f3,3 = 0. By substituting positions x, and tangents
Ouxq, OuXq or colors ¢, and tangents 0,cq, 0yCq, respec-
tively, into f, and its tangents 0, f,, 0. fq in Eq. (6) allows
for the interpolation of positions and colors. Equivalently,
Barendrecht et al. [5] used cubic Hermite boundary curves.

3.3.3 Irregular Meshes

SVGenie [9] and SVGWave [7] both use polygonal mesh
representations, for which a constant color or a simple
color gradient can be assigned directly. Lecot and Lévy [77]
approximate the color in each polygonal region with a
linear combination of constant, linear and quadratic basis
functions for each color channel. Later, more advanced
techniques have been developed to interpolate polygons.
Li et al. [81] used cubic mean values to interpolate the
colors and gradients at the vertices, which was developed
from the mean value property for biharmonic functions.
Beatson et al. [10] then extended the domain to piecewise
quadratic boundaries, where they proposed the Hermite
mean value interpolation technique for polygons. Hettinga
et al. [53] further adjusted the interpolation schemes from
generalized Bézier patches [125] and Charrot-Gregory corner
interpolation patches [22] (both are multi-sided parametric
patches) such that the interpolation scheme can be used for
2D gradient meshes. By using the algorithm from Chiyokura
and Kimura [25], they achieved at least G' continuity for
the color. Lieng et al. [86] proposed an interpolation method
based on Catmull-Clark subdivisions for rendering gradient
meshes with arbitrary topology [21], [98].

3.4 Vectorization

In contrast to the manual creation of meshes, a vectorization
process decomposes a given image into 2D patches. Common

starting points are image segmentations and triangulations
based on edge detections. When complex color models are
used, such as gradient meshes with color tangents [118] or
Bézigons with parametric edges [139], optimization tech-
niques that minimize a reconstruction error are commonly
used. Apart from the generic mesh types discussed in
the following, several learning-based techniques have been
proposed to vectorize line drawings [33], [49], sketches or
manga [35], [117], and floorplans [91].

3.4.1

Triangular patches are often extracted in two steps. The first
step determines the mesh geometry, then the second step
extracts or optimizes the color attributes at the vertices or
within the patches. Xia et al. [132] performed a triangulation
at pixel resolution as their first step. In order to keep image
features, subpixels are inserted at edges. By treating each
color channel as a height field, every pixel is lifted to a
vertex in a 3D domain, and every subpixel is transformed
into two vertices with the same 2D projection but with
distinct color values to avoid blurry edges. Afterwards,
the 3D meshes are simplified collectively regarding the
quadric error metric [47] and are projected to the 2D image
space. Non-overlapping triangular Bézier patches are fit to
the triangulated domain through an optimization process.
Colors are fit to the Bézier patches using thin plate spline
fitting [103]. Liao et al. [84] performed the vectorization
in a hierarchical manner. First, a Canny edge detector [18]
is used to extract image features. In order to obtain region
boundaries, GrabCut [109] is applied for image segmentation.
Second, an initial mesh is constructed, where each pixel is
initialized with a vertex, and additional vertices are inserted
at the extracted features if needed. A retriangulation step is
performed locally. Third, the dense mesh is simplified using
quadric error metrics [47]. The color at the vertices is globally
optimized. Zhou et al. [144] developed the vectorization
step similarly for their subdivision-based patches. First,
curvilinear features are extracted using contour detection [2]
and corner detection [96]. Cubic B-splines are then fit to the
detected edges. Second, a constrained Delaunay triangulation
is carried out to obtain the initial mesh. Colors are assigned
to the subdivision patches through an optimization process
similar to Hoppe et al. [58]. The color at each vertex is
then optimized through a least squares minimization. For
places where the color fitting error exceeds a threshold, new
vertices are added, and a constrained Delaunay triangulation
is further applied for refinement. More recently, Hettinga
et al. [51] fit cubic Bézier triangles to an input image, and

Triangular Meshes
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mapped textures as mesh colors through an optimization
process. Later, they extended the vectorization framework to
enhance user control and feature extraction [54].

3.4.2 Rectangular Meshes

Early methods like Price and Barret [105] vectorize an image
in two steps. First, the mesh geometry is constructed. For this,
a graph cut [16] is used to extract the object contour, which
is guided by the user. Once an object is detected, curvature
is used to locate four corner points on the object. Then, axes
can be added to the object by conducting a least cost search
to find a minimum cost path. Mesh lines are added similarly
by subdividing the object and recursively performing the
search. Each mesh cell is then fit by a Bézier patch. Second,
color attributes are assigned to the Bézier control points by
sampling colors from the input image. As gradient meshes
have a richer set of attributes, the geometry and the attributes
are often optimized together in a single minimization step.
Sun et al. [118] required a manual initialization in which
users first decompose the input image into multiple sub-
objects, and then divided the boundary of each sub-object
into 4 segments to which cubic Bézier splines were fitted.
Users can interactively subdivide the patches further. The
manual result is then used as initialization to a non-linear
least-squares minimization to fit Ferguson patches to the
input image, which includes the color values and color
derivatives. The non-linear optimization is solved with the
Levenberg-Marquardt algorithm [79], [99]. Users can guide
the optimization further by drawing preferred directions of
the mesh lines. Lai et al. [74] extended the representation
to topology-preserving gradient meshes, and proposed a
fully automatic vectorization method for this representation.
They first segmented the image into objects, using a graph-
based method for coarse segmentation [39], and refined the
boundary with Grab-Cut [109]. The objects are converted into
triangular meshes by performing a constrained Delaunay
triangulation on the samples from a saliency map with error
diffusion [67]. This is computed by applying a compass filter
on the image. The triangular mesh is then mapped into a
rectangular domain, and is reparameterized for local refine-
ment. Color are sampled from the underlying image and for
each control point, color is computed through interpolation.
The derivatives of color are calculated using monotonic cubic
interpolation [131]. Wei et al. [130] developed a faster method
by adopting quadrangulation techniques for 3D meshes that
are often used in geometry processing tasks.

3.4.3 Irregular Meshes

The Data Dependent Triangulation method (DDT [32]) in
SVGenie [9] and the Wavelet Based Triangulation method
(WBT [78]) in SVGWave [7] both decompose the image
domain into triangles and group the triangles into polygonal
patches based on similarity. SVGenie [9] seeks for a locally
optimal triangulation iteratively. Based on Yu et al. [141],
each pixel is first divided into two triangles by connecting
the lowest cost diagonal. For each convex polygon composed
of adjacent triangles, a look-ahead step is performed to swap
polygon edges if necessary. The triangulation is further opti-
mized by minimizing a cost function iteratively. SVGWave [7]
performs a wavelet transformation hierarchically. In each
level, the triangulation can be computed with the wavelet

coefficient and is refined iteratively. Swaminarayan and
Prasad [123] first used an edge detector to extract edge pixel
chains and performed a constrained Delaunay triangulation
such that the edges of the triangles align with the extracted
edges. Each triangle is assigned a constant color by sampling
several points within the triangle, which constitutes a so-
called trixel. Neighboring trixels are grouped together to
form polygons with respect to their proximity and continuity.
Triangulation may also be used as an intermediate step to
accelerate vectorization. Lecot and Lévy [77] developed a
vectorization technique to compute closed regions bounded
by cubic splines. The algorithm partitions the domain into
a Voronoi diagram. In every region, the color is estimated
with a quadratic polynomial. In a basic setup, the algorithm
can be performed at pixel-level. Each pixel grows into a
region in a greedy way and the polynomial coefficients are
updated iteratively. In order to accelerate the vectorization
process, instead of applying the algorithm on each pixel, an
intermediate triangulated structure of trixels is constructed.
Yang et al. [139] proposed a method to vectorize clipart
images into Bézigons. A Bézigon is a closed Bézier curve with
a color function defined in the interior. The initial Bézigons
can be extracted automatically using image segmentation [39]
and a curve fitting method [113], or they can be created by
hand. In addition to the reconstruction error, the optimization
seeks to minimize failure cases, such as self-intersection and
angle-variation. He et al. [50] introduced a perception-aware
vectorization for quantized raster images.

4 CURVE-BASED METHODS

In their seminal work, Elder et al. [34] used edges with
attributes (intensity, blur scale, and gradient direction) to
encode images, which has spurred further research as dis-
cussed throughout this section. A comprehensive overview
based on the taxonomy in Section 1.1 is presented in Table 2.

4.1

First, we concentrate on the representations that have been
developed to describe images by means of curves. An
overview of the evolution is provided in Fig. 8.

Representation

4.1.1 Basic Formulation

Inspired from Elder et al. [34], Orzan et al. [101] proposed
a new vector graphics primitive called diffusion curves,
which uses Bézier curves as geometric primitives with colors
defined on the left and right sides of the curves. The final
image is constructed by diffusing the colors from both
sides of the curves, which allows for the modeling of color
discontinuities. The diffusion process may be followed by a
blurring step to obtain smooth edges. Fig. 9 illustrates the
three components of a diffusion curve, as defined below:

A cubic Bézier spline: The geometric curves are
specified as splines, formed from cubic Bézier curves
x(t) : R — R?, see Eq. (1).

Color control points: On each side of the curve x(t),
a color is specified by the user, formally denoted using
functions ¢;(t) and c,(t). The colors are piecewise linearly
interpolated from a set of color control points, placed along

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3220575

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X X 9
TABLE 2: An overview of the existing curve-based methods.
Type ‘ Method ‘ Representation ‘ Creation ‘ Rendering Vectorization
[69] - Variable-stencil -
[70] - Variable-stencil -
Mesh rendering
(102] ) with MVC )
[119] Multi-touch interface Multi-grid -
[71] Texture, stippling, hatching Variable-stencil Color estimation
[121] - Green'’s functions -
[26] vZu(x) =0 - Random walk Superpixel boundaries
Harmonic [120] u@loq = g(x) Se?mle?s clorjung/ Fast multipole -
diffusion points
[143] - FEM Shape optimization
[94] Object editing Variable-stencil Depth enhancement
[4] Scribble-based interface Variable-stencil -
[93] Global deformation Variable-stencil -
[82] - Variable-stencil Edge e)ftrac.tlo.n,
propagation in time
[68] uGx) = w; (x) - u1 () + (1 = wi(x)) - uz(x) Click & drag Variable-stencil Color and blur estimation
u (¥)]oe = 81(X),  uz(x)|sn = g2(x)
[41] Feature curves and points | Direct and iterative -
) ) [15] Viu(x) = 0 Feature curves and po@ts FEM
Biharmonic [64] Sharp and smooth profiles BEM
uG)loo = &(x) Edge extraction
[138] Hierarchical editing Green'’s functions L. .
in bilaplacian space
Zooming, panning, S .
[101] blur ewitch Multi-grid Edge extraction
Diffusion barrier,
[11] Vzu(x) = wg (%) + wy (x) strength constraints Direct solver -
u(x)|gn = g(x) direction constraints
[56] - Multi-grid -
[89] Mobile device interface Multi-grid -
[60] Laplacian constraints Harmonic B-spline -
Poisson [61] v2u(x) = £(x) Seamless cloning Harmonic B-spline -
[46] u(x)|gn = g(x) - Harmonic B-spline -
[45] f(x) is piecewise constant - Harmonic B-spline -
[44] Contrast & highlight Harmonic B-spline -
ou(x,t) _ 2 . .
[88] at = V7u(x) - ¢(x) + Vu(x) - Ve(x) + g(x) Diffusion coefficients Iteration -
u(x,0) = g(x)
Io(x,1) _ 2 i
[83] at = c(x) - V7o (x, 1) Plff?rent stroke.s, Fourier transform -
¢(x,0) = g(x) Diffusion constraints
Curve-domain 2D ray tracing on
[14] ; -
shaders, transparency regular grid
— (2w . . - B
) u(x) = [§7" L(x;(x, 0))w(x;(x, 0))do 'Curve doma}n shaders, 2D ray tracing on
Ray tracing [104] image-domain shaders, . ! -
N A triangular grid
multi-layering, instancing
u(x) = i [27 L(x;(x,0))w(x;(x, 0))do+ i
[85] () L N(x) 7;[0 (¢ ( ))w(x; ) (Local) diffusion points 2D‘ray tracmg'on B
i Sy Cei)wlx, PV (x, pi) triangular grid
Shading curve [87] Surface reconstruction Shading profiles Mesh generatlfm, -
surface rendering

the curve. Each set contains at least two colors to define the
color at the start (t = 0) and end (t = 1) of the curve.

Blur control points: As an additional degree of freedom,
Orzan et al. [101] introduced a smoothness parameter o(t)
along the curve, which controls the filter size of a Gaussian
smoothing carried out in a post-process. As with the colors,
the function o () is piecewise linearly interpolated from a set
of blur control points. The final image u(x) is then defined
as the smoothest image that meets both the color gradient
w(x) along the diffusion curves as well as specific colors
along the image boundary, formally solved for via:

V2u(x):avg;x)+avg(yx), x€Q\0Q (@)
u(x)|on = g(x) ®)

Eq. (7) requires the z- and y-partial derivatives of the color

field a‘ng : R? — R? and ngigx) : R? — R? that are zero
everywhere, except along the curves x(t):
ow(x)
Aia = t) —c.(t)) - ng(t 9
N CTOR O RO RN
ow(x
W) e e @) om0
Y x=x(t)

which requires the curve normal components n,(t) and
ny(t), cf. Eq. (2). Note that in regions away from the diffusion
ow(x) _ ow(x) __ .
curves, we have .- =5, =0to achieve smoothness.
Egs. (7)-(8) were solved on a discrete image. To place the
colors on the left and right of the diffusion curves, Orzan
et al. [101] moved the color sources with an offset of a few
pixels away from the curve geometry. It is worth noting
that smooth color transitions across diffusion curves are
difficult to represent directly. Hence a blurring post-process
is essential for this model. Later, several variations have
been proposed to enrich the modeling abilities of diffusion
curves. Based on how the diffusion process is formulated,
we categorize these models into the following types.

4.1.2 Harmonic Equation

Jeschke et al. [69] generalized the formulation of Orzan et
al. [101] by treating diffusion curves as domain boundary
curves with colors ¢;(t) and ¢, (t), such that there is no need
to define the gradient fields Bv(;i;x) and a‘giéx) as in Eq. (7)
anymore. The diffusion process can then be formulated as a

Laplacian equation, which is also called a harmonic equation:
Vu(x) =0, xecQ\oN (11)
u(x)|on = g(x) (12)
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> H > LTS Poisson
PDE ~ ; -
V2u(x) =0 uGa) = wi) - wx) Poisson 0ED _ o Vi
+(1 = wi(x)) - uy(x) or
V2u(x) = f(x)
I—) Biharmonic Piece-wise constant
Viux) =0 Poisson
20 -
] il : Vo) - Ve + 20
S Ray > Ray Tracing > Ray Tracing
- Tracing on
V2u(x) = w,(x) + W,(x) ux) = L L(x(x, 0))w(x(x,0))d6 ux) = WI L, 0)w(x,(x, 0))d0
_ N( P ZC(p w(x.p)V(x. )
| Shading Curves
Surface
Rendering | ¢ ¢ reconstruction

Fig. 8: Evolution of mathematical formulations in curve-based methods.

L r

(a) A cubic (b) Color control (c) Blur control ~ (d) Rendered
Bézier spline points points result

Fig. 9: Components of a diffusion curve: (a) A cubic Bézier
curve x(t) defined by 4 control points (marked by blue dots).
(b) The left and right color sources ¢;(t) and ¢, (t) defined on
both sides of the curve, with color control points indicated
by the colored dots. (c) The blur source function o(t) is
linearly interpolated from control points. (d) The final image
is constructed by diffusion and subsequent blurring.

(a) harmonic formulation b) biharmonic formulation

Fig. 10: The harmonic equation only enforces smoothness
away from the curves’ constraints, therefore artifacts may
occur near the curves. Images adapted from [6].

In this formulation, the final image is smooth everywhere
except at the boundaries, which now includes not only the
rectangular image boundaries but also the diffusion curves.
As in Eq. (8), Dirichlet boundary conditions are used in
Eq. (12). This formulation has become the most popular
one for rendering methods [69], [102], [120], vectorization
techniques [94], [143] and editing tools [71], [93].

One problem of the harmonic formulation is the lack of
control over the color gradients. The formulation currently
seeks smoothness inside the domain but not across diffusion
curves, as illustrated in Fig. 10. This may generate tent-
like artifacts around the curves. Jeschke [68] addressed the
problem by using a linear combination of harmonic functions:

u(x) = wi(x) - wi (%) + (1 — wi(x)) - ua(x)

uy(x)]an = g1(x), u2(x)|sn = g2(x)

(13)
(14)
where u; (x) and uy(x) are the solutions to two individual

Laplacian equations defined according to Eq. (11) on the
same Bézier curve boundary with different color functions g;

and g for the Dirichlet boundary conditions. Thereby, w;(x)
is an interpolation function that spatially blends between
u; (x) and uz(x). The function w;(x) is computed by a Pois-
son equation and a parameter [ controls the blending speed
between u; (x) and ug(x). Likewise, the subsequent blurring
is adapted and optimized. When u; = uy, this reduces to
Eq. (7). Both the harmonic model and the composition model
require a subsequent blurring step, though in cases when the
shape geometry and color control points are optimized, this
process can sometimes be omitted [143].

4.1.3 Biharmonic Equation

The basic harmonic formulation lacks control over smooth-
ness and direction of color gradients. In addition, with each
added curve the derivative continuity is broken [41]. One
way to address this problem is to specify constraints on
higher-order derivatives. Finch et al. [41] proposed a bi-
harmonic formulation based on thin plate splines, which
seeks solutions that are harmonic in their Laplacian domain:

Viu(x) =0,
u(x)[on = g(x)

x €Q\ 00 15)

(16)

Here, g(x) is a Cauchy boundary condition function, which
can be considered as a combination of Dirichlet and Neu-
mann boundary conditions. The boundary curves are con-
strained in both value and gradient of color. Later, Illbery et
al. [64] generalized the formulation of biharmonic equations,
such that harmonic diffusion curves can be considered as a
special case of the biharmonic formulation.

Since directional color derivatives can be controlled
directly for biharmonic diffusion curves, there is no need
for a subsequent blurring process. However, the biharmonic
formulation may bring other artifacts. One problem is that
extrapolation can create new extrema at unconstrained
positions, especially at colinear control points [15], [41].
This can be solved by manually adjusting the control point
locations [41] or by applying a non-linear optimization [66].
Another problem is that when the curve geometry is scaled,
the diffused color range will scale with the geometry, which
may result in color oversaturation [68]. Later methods use
other formulations such as a composition of Laplacian
equations (Eq. 13) [68] or a combination of Laplacian and
Poisson equations (Eq. 17) [61] to avoid this artifact.
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4.1.4 Poisson Equation

Orzan's representation [101] and the harmonic equation in
Eq. (11) can be further generalized to a Poisson equation:

Viu(x) = f(x), x€Q\oN 17)
u(x)[oe = g(x) (18)

Therefore, when f(x) = 0, Eq. (17) is reduced to the har-
monic model specified in Eq. (11). The initial representation
in Eq. (7) can also be considered a special case of Eq. (17)
when setting f(x(t)) = (ci(t) — ¢, (t)) - (nx(t) + ny(t)) on
the curves and f(x) = 0 elsewhere.

By manipulating the expression of f(x) and g(x), more
control over the diffusion process can be achieved. Bezerra et
al. [11] solved Eq. (17) linearly, adding additional diffusion
constraints to the system, such that the strength and direction
of the diffusion process could be controlled. Later, Hou
et al. [61] set f(x) as a piecewise constant function in
order to control color gradients locally and globally. They
used harmonic diffusion curves to depict color variants in
an image, and added Poisson curves or Poisson regions
controlled by f(x) for controlling shading details. Same as
with the harmonic equations, g(x) is used to specify Dirichlet
boundary conditions for the curve colors.

If f(x) = aw, Eq. (17) is a standard heat equation,
with time ¢ and thermal diffusivity ¢, i.e., the rate of heat
transfer. By introducing a time ¢, the result image is extended
to u(x,t) : R? x R — R3. Lin et al. [88] modified the heat
equation to control diffusion strength and direction via a
scalar-valued diffusion coefficient c(x) : R? — [0, 1]:

W = V3u(x) - ¢(x) + Vu(x) - Ve(x) + g(x)  (19)
B 82u+82u . 8u80+8u80
(Gt 58) < Gags * Gy

u(x,0) = g(x) (20)

Eq. (20) is similar to previous methods in that g(x) is zero
everywhere except along the boundary curves where it
denotes the Dirichlet boundary condition. At time ¢t = 0,
the initial state of the image u(x,0) contains the undiffused
colored curves. We can reorganize Eq. (19) to a Poisson
equation when ¢(x) # 0:

ubet) _ Yu(x) - Ve(x) — g(x)
e(x)

In this case, the function f(x) in Eq. (17) is simply the right
hand side of Eq. (21). The multi-layer method contains at
least one color layer defined by the boundary curves g(x).
The function ¢(x) is used to model the strength and direction
layers that control the diffusion process.

Instead of diffusing to an equilibrium, Li et al. [83] used
the heat equation to only diffuse for a fixed time interval.
Here, the scalar-valued opacity ¢ : RZxR — [0, 1] is diffused:

Vu(x,t) = (21)

w = ¢(x) - V2p(x, t) (22)
$(x,0) = g(x) (23)

As before, ¢(x) is the diffusion coefficient and controls the

diffusion width. Eq. (22) can be reorganized similarly to

Eq. (21) to form a Poisson equation f(x,t) = W . C(lx)

when ¢(x) # 0. The scalar-valued opacity ¢ can be further
modified to model different stroke effects like watercoloring
and oil painting. The opacity distribution is combined with
the curve colors to determine the final image u(x).

By extending the formulation from Laplacian equations
to Poisson equations, a significantly larger solution space is
introduced, providing more control over the curves [60]. An
additional post-processing step is not needed for the Poisson
models as it can be added directly in the diffusion process
by manipulating the diffusion coefficients [88].

4.1.5 Ray Tracing

The diffusion can be approximated by 2D ray tracing, similar
to the final gathering concept in global illumination. The
colored curves can be considered as virtual light sources [14]:
2m
ui) = [ Lixx0) wix(x0) do @4
0

where the pixel color u(x) is determined by the weighted
radiance integral over all directions. For a ray starting from a
2D point x in direction 6, the closest intersection point of the
ray with a diffusion curve is x;(x, ), and L(x;(x, §)) is its
radiance. The normalized weight w = w, - wy is determined
by a curve importance w, that models diffusion barriers [11],
[14], and a distance weighting wq(x;,x) = ||x; —x| ~P. When
no blur is taking place and the rays are not occluded, the ray
tracing formulation is equivalent to mean value interpolation,
which is a solution to the Laplacian equation [14], [42], [72].
This formulation utilizes shaders for flexible color control
and avoids the rasterization problems [14] of the original
representation [101]. It was later adopted by Prévost et
al. [104] and further extended by Lieng [87] to diffusion
points.

4.1.6 Shading Curves

Shading curves [87] are an alternative for the modeling of
shading and lighting effects. A shading curve is composed
of a B-spline curve geometry and shading profiles at the left
and right sides of the curve. During creation, users manually
draw areas with the curves in constant tone, and each area
is filled with constant color, resulting in a piecewise flat
image. The shading effects are then added using shading
profiles attached to the left and right sides of the curves,
which are rendered as meshes rather than curves, making
this a combination of curve-based and mesh-based methods.

4.2 Creation

Research on methods to enhance artistic control can be
roughly divided into two directions. The first stream studies
how users can better interact with existing features, such that
they can create or edit primitives more easily. The second
stream seeks to enrich the feature set of a certain model to
create more expressive results. The fundamental functionality
in diffusion curve frameworks is the manipulation of curve
control points. Users can manipulate the curve geometry,
as well as add, delete, duplicate, or change the values of
attributes. In this section, we discuss methods and techniques
that further improve artistic control on top of the basic
editing functionality for different curve-based models, and
we additionally group them into contributions to user
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Fig. 11: Images created with different curve-based frameworks, along with visualizations of input curves and control points.

interaction or feature enhancement wherever applicable.
Figure 11 displays results of different frameworks.

4.2.1 Harmonic Equation

User Interaction. Sun et al. [119] proposed a multi-
touch sketching interface for creating and editing diffusion
curves. Jeschke et al. [68], [71] adopted a “click and drag”
interaction. Sun et al. [120] enabled seamless cloning, where
users can copy-paste control curves within a region. Lu et
al. [94] used depth information to group curves semantically
into objects, which are edited collectively. Later, they enabled
users to add arbitrary handles to diffusion curves, which
achieves global shape manipulation through linear blending
deformation [93]. Bao and Fu [4] developed a scribble-based
interface for editing diffusion curves, where users draw
scribbles and colors are automatically assigned to curve
points such that the rendered result aligns with the input.

Feature Enhancement. As diffusion always strives for
smooth regions, Jeschke et al. [71] proposed to add texture
parameters in a procedural way for creating finer details
using Gabor noise. The noise parameters were automatically
estimated to fit an input image with associated diffusion
curves. This led to the application of stippling and hatching
processes. Sun et al. [120] used Gaussian radial basis func-
tions as diffusion points in their fast multipole representation
of the harmonic equation. This enabled users to add non-
harmonic color fields to the image.

4.2.2 Biharmonic Equation

User Interaction. The biharmonic formulation enables
users to change not only the color values, but also the color
derivatives in the curve normal direction. Finch et al. [41]
allowed users to sketch curves freely and let them add color
constraints at different points. Curves from vectorization are
often too complicated to be edited directly. Xie et al. [138]
improved this with their hierarchically extracted curves.
Users can view the multi-scale curves in order to manipulate
curves in different resolutions.

Feature Enhancement. Finch et al.’s [41] representation
enables user to add point values, critical points and five curve
types, including value curves, tear and crease curves, and
contour and slope curves, which specify different boundary
conditions. Boyé et al. [15] generalized the formulation from
Finch et al. [41] and support diffusion, barrier, tear, crease,
crease-value, value, value-slope, and slope curves, as well as
nil curves. Ilbery et al. [64] used sharp-profiles and smooth-
profiles to control colors at boundaries and in the interior.

4.2.3 Poisson Equation

User Interaction. Orzan et al. [101] let users create diffu-
sion curves manually by sketching. Zooming and panning
is interactive when only diffusing at low resolution in the
visible viewport. Lin et al. [89] provided an implementation
for mobile devices. In order to make the selection of curves
easier, Lin et al. [88] labeled the diffusion curves during the
rasterization process, such that when any pixel that belongs
to a curve is selected, the entire curve can be immediately
chosen. To achieve seamless cloning, Hou et al. [61] added
Laplacian constraints to the places where the curves intersect
with each other, such that users do not have to manually
break diffusion curves into short disjoint segments.

Feature Enhancement. Bezerra et al. [11] added fur-
ther constraints, including barrier curves that do not emit
colors but block colors from other curves, they supported
anisotropic diffusion, and smoothly blended between regions
via soft constraints. Lin et al. [88] achieved this similarly
by solving the diffusion process with diffusion coefficients.
Further, they blended multiple layers and added diffusion
point sources. Hou et al. [61] introduced Poisson curves
and Poisson regions, which enable effects like core shadows,
specular highlights, halos, and translucency. They separated
hues and tones explicitly so that users could edit hue or tone
locally, giving the possibility of editing specular highlights.
Li et al. [83] focused on generating stylized images like
watercolor or oil paint by introducing different strokes styles.

4.2.4 Ray Tracing

User Interaction. Lieng et al. [85] control how colors are
propagated locally around a diffusion point by drawing line
constraints for the triangulation near the point.

Feature Enhancement. Using shaders, Bowers et al. [14]
added gradient fill and texture to diffusion curve images, and
provided parameters for the influence w. and the distance-
weighting wq in Eq. (24). Prévost et al. [104] have both
curve-domain shaders (attached along the curves, similar to
Bowers et al. [14]) and image-domain shaders (defined in the
whole image domain) to avoid undersampling due to sparse
interpolation. A multi-layer scheme is implemented in the
framework, such that users can add local curves (for example
to create specular highlights) and clone objects in the scene.
Similar to Prévost et al. [104], Lieng et al. [85] added local
diffusion points in a particular image layer.
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4.3 Rasterization

Curve-based vector graphics are frequently formulated
as solutions to partial differential equations. Hence, two
components are essential in the rasterization process. The
discretization of the curves and the domain determines the
rendering quality. Especially for diffusion curves, a small
discretization error may result in large shifts after the
diffusion process [69]. The solving scheme determines the
speed of the rendering result. In this section, we discuss the
contributions made to both components.

4.3.1 Harmonic Equation: Discretization

Based on the type of grid that the solvers are applied on, we
divide the discretization step into the following types.

Regular grid. Jeschke et al. [69] proposed a robust raster-
ization scheme. The curves are first discretized into smaller
line segments, and a Voronoi diagram is constructed [57].
The color of each pixel is determined by its closest point on
the curves, which sets the initial condition. The initial guess
and a distance map are used for the diffusion. By diffusing
from an entire image (the initial condition) instead of from
discrete curves, the discretization error is reduced. Although
at pixels near curves, strobing artifacts may still occur [69].

Triangular grid. Pang et al. [102] rendered diffusion
curve images on a triangulated domain. They first discretized
diffusion curves and the image boundaries into line segments,
then they triangulated the domain using a constrained
Delaunay triangulation. Instead of solving at each pixel,
they solved for every vertex. The triangulated space was
also used as intermediate representation in FEM solvers [15].
Boyé et al. [15] applied a constrained Delaunay triangulation,
and used quadratic Lagrange polynomials as basis functions.
Zhao et al. [143] used a similar triangulation method from the
Triangle package [115] with second-order basis functions.

Irregular grid. Dai et al. [26] used image segmentation
to avoid the discretization of individual curves. Their curves
are extracted from a set of superpixels of an input image.
The left and right pixels adjacent to a superpixel boundary
are considered as the left and right color sources of a curve.
Therefore, overlapping of color sources would not occur
during the diffusion process.

4.3.2 Harmonic Equation: Solving Scheme

Closed-form. Sun et al. [121] derived a closed-form solution
for closed diffusion curves using Green’s functions:

u(x) = 72 ) (u()G(x.x') - du(x')

on(x’)
with x’ € 02 and where

G(x, x’))dx' (25)

0G(x,x")
on(x’)

and where the curve normal n points outwards the domain,
G(x,x’) is Green’s function, and G, (x,x’) is its normal
derivative. In this formulation, every point in the image
can be evaluated directly as boundary integral in Eq. (26).
In practice, Eq. (25) is evaluated with boundary element
methods (BEM) by sampling points on each diffusion curve.
Adaptive sampling methods select a random position on

Glx,x') = % n([jx = x'[}), Gn(x,x') = 26)

the curve, and iteratively add more samples such that the
approximation error is below a threshold. Sun et al. [120]
reformulated Eq. (25) to a fast multipole representation.
Using a hierarchical lattice on the image domain, they
calculated boundary integrals hierarchically only on curves
in adjacent lattice cells to speed up the computation.

Iterative scheme. The harmonic equation can be solved
iteratively using Jacobi relaxations. In each iteration £, the
discrete pixel colors u; ; of pixel (7, j) are updated:

gi,j
ukH = { k]

P k k k
2,] ui—l,j+ui+1,j+ui‘j—1+ui‘j+1
4

i, J) on curve
(4,7) @)

otherwise

Solving this for every pixel is slow when the required
resolution is large. Hence, Orzan et al. [101] used a multi-grid
solver, see later in Section 4.3.5. Jeschke et al. [69] designed a
GPU-based variable stencil size solver such that a bigger step
size can be used. After rasterization, a closest point map and
an initial guess of the final image are generated and fed into
the solver. In this setup, the Laplacian is not computed as an
average of its 4 neighboring pixels, but can be treated as an
average of its surrounding circle according to the mean value
theorem [42], [69]. The circle radius can be increased as long
as boundary curves are not crossed, which is determined by
the closest point map. Alternatively, Dai et al. [26] formulated
the diffusion process as a random walk process.

Direct solvers. Pang et al. [102] solved the diffusion
process by directly evaluating the colors on a triangulated
domain. For curve nodes, colors are defined on the curve. For
other triangle vertices, colors are interpolated using mean
value coordinates (MVC) [42] from the colored curve nodes.
MVC algorithms assume that nodes are surrounded by a
closed polygon. Therefore, an additional visibility test is
performed to select the nearest curve nodes around each
non-curve node before evaluating the MVC. Colors inside
each triangle can then be computed simply using barycentric
interpolation. Alternatively, Boyé et al. [15] and Zhao et
al. [143] used the finite-element method to solve the harmonic
equation linearly in the weak formulation.

4.3.3 Biharmonic Equation: Discretization

In addition to curve geometry and colors, other attributes
used in biharmonic formulations also need to be discretized.
The primitives can be rasterized onto a uniform grid or they
can be discretized onto different elements, using for example
finite elements (FEM) or boundary elements (BEM).

Regular grid. The formulation of Finch et al. [41]
contains a set of critical points and feature curves. They
rasterize each critical point with respect to the bilinear
weights of its four neighbor pixels. The curves are rasterized
by computing the intersections of the curves and the edges of
the pixels. Since the feature curves are used to control local
gradients, these constraints are added at the intersections.

Triangular grid. Boyé et al. [15] discretized the domain
into non-overlapping quadratic triangular patches for both
the harmonic and biharmonic formulation. However, two
additional conditions need to be fulfilled for biharmonic
equations. First, the weak formulation of biharmonic equa-
tions requires C! continuity across conforming elements.
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Therefore, unlike the harmonic formulation, quadratic La-
grange patches with C continuity cannot be directly used
as FEM elements. Boyé et al. [15] use a third-order non-
conforming element (Fraeijs de Veubeke (FV)) [28] such
that C'! continuity is not needed for convergence. Second,
biharmonic equations enable gradient constraints, which can
be attached or interpolated at the vertices and edges when
using FV as FEM elements.

Irregular grid. Ilbery et al. [64] discretized curves into
line segments through recursive subdivision with a threshold
on curve straightness. The constraints on color values and
color derivatives in normal direction are computed by
interpolation for each line segment and are fed into a BEM
solver for line by line evaluation.

4.3.4 Biharmonic Equation: Solving Scheme

Closed-form. Weber et al. [129] and Ilbery et al. [64]
derived a closed-form solution using Green’s functions:

Ou(x’) GH (x,x")dx’

= u(x\GH (x, x)dx' —
u<x>—fm ()G (x,x')d

o0 8H(X/)
) @)
2 /
+ V2u(x)GE (x,x")dx’ — 729 agn(l;(/);)GB(x x")dx'
©)

(28)
where x’ € 9 is a boundary point. The Green’s function G*
and its normal derivative G are the fundamental solutions
to a harmonic equation and are the same as in Eq. (26). The
Green’s function GP and G2 for biharmonic equations are:

/ 1 / 2 /
G (x,x') = o (lx = X[ (In(llx = x'[)) + 1)

0GB (x,x")
on(x’)

In order to improve computation efficiency, a curve-aware
upsampling scheme may be used. As the line segment field
becomes smoother when the distance between a point and
a line segment increases, its value can be approximated
through interpolation. In a multi-level formulation, most
computation is done on a coarse grid.

(29)
GB(x,x') =

Iterative scheme. Finch et al. [41] solved on a smaller
grid and upsampled the result using a hierarchical strat-
egy [13]. When solving on a coarse domain, they adopt a
direct solver (see below). This solution is then upsampled to
a finer level, and Gauss-Seidel iterations are performed to
refine the solution at that level.

Direct solvers. Finch et al. [41] used a direct solver for
small images. They structured their biharmonic formulation
as a linear system Ax = b. The final image is solved by calcu-
lating the banded-diagonal Cholesky decomposition (CD) of
the matrix A. In the cases when not sufficiently many value
constraints are added, such that A is positive definite rather
than positive semi-definite, a small regularization weight is
added to obtain a unique solution. Boyé et al. [15] used the
weak formulation for biharmonic equations from Lascaux
and Lessant [75]. The final image can be approximated as a
linear system, which is solved directly.

4.3.5 Poisson Equation: Discretization

Regular grid. The original diffusion curve formula-
tion [101] requires to rasterize the color sources, the color
derivatives across the curves, and an additional blur source,
see Fig. 12. The color curves are rasterized with an offset in
the normal direction to avoid overlapping in the rasterized
results. However, overlaps can still occur, especially at high
curvatures, thin structures, and intersections [101].

Triangular grid. Zhao et al. [143] used a finite element
method to solve the harmonic equation for their diffusion
curves. In addition, their method requires solving a Pois-
son equation during the vectorization process for the cost
function. They discretized the domain similarly as described
for the harmonic formulation, and the velocity attribute (for
vectorization) is discretized along polylines.

Irregular grid. Hou et al. [60] first decomposed the
image domain into disjoint sub-regions, such that each sub-
domain is bounded by a closed diffusion curve. For each
sub-domain, they discretized the primitives and constraints
on a quad-tree, which was used for their closed-form solver.

4.3.6 Poisson Equation: Solving Scheme

The solving process of the general Poisson formulation in
Eq. (17) varies for different definitions of f(x) and g(x).

Closed-form. Like for harmonic and biharmonic func-
tions, Green’s identities can be used to derive a closed-form
solution to Poisson equations. Hou et al. [60] used Green’s
third identities to structure the solution to their formulation:

u(x) ://Q G(x,x")V2u(x')dx’ +

@
/ no_ Bu(x') x. xVdx'
§ue)G ) - G

@

(30)

When VZu(x') = 0, integral () vanishes, and the equation is
reduced to Eq. (25): the closed-form solution to a harmonic
equation. The definition of G and G, are the same as in
Eq. (26). Intuitively, Eq. (30) can be directly evaluated as was
done for the harmonic formulation. However, integral (D is
defined on the entire domain, which is expensive to compute.
Hou et al. [60] discretized the domain onto a quad-tree and
derived an approximation for each cell. Li et al. [83] used a
Fourier transform to solve their heat equation formulation
in Egs. (22)—(23). Therefore, for any 2D point x = (z,y), the
scalar-valued opacity ¢ at time ¢ can be evaluated as:

1 +oo _(@—z')? (y—y")?
b(x,t) = / B(x,0) - e Tet . e ret dx/

drt - c(x) J_oo -

The closed-form solution provides a direct result for any
time ¢ in the diffusion process. The calculated result is then
rasterized as a whole with respect to the desired resolution.
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Fig. 12: Rendering pipeline of a diffusion curve image by Orzan et al. [101].

Iterative Scheme. Similar to Eq. (27), the original
formulation from Orzan et al. [101] can be solved with Jacobi
relaxations where for iteration k, the image u**! is:

0 uz‘fl,j+ui+1,j+ui,jfl+ui,j+l7dlv(vw)i,j

k41 {gld on curve

otherwise

The divergence of the gradient field div(Vw) is

_ DeWir1j = OaWio1j | OyWijp1 — OyWij

diV(VW)iJ' = B

(32)

To achieve interactivity, they used a multi-grid approach [17],
[48] and recursively decreased the domain resolution to
solve on coarser domains, and upsampled until the original
resolution is reached. Similarly, Lin et al. [88] solved their
Poisson formulation in Eq. (21) for each color layer iteratively.

Direct Solvers. Bezerra et al. [11] reformulated the
Poisson equation in Eq. (7) as a constrained optimization to
add more control over the diffusion. Due to the existence of
non-local constraints (e.g., two closed areas can be linked
to enable diffusion between them), the multi-grid solver
generates unsatisfying results and can be inefficient. They
used a global linear solver instead. Alternatively, finite
element methods can be used to solve harmonic equations by
solving a linear system iteratively or directly, cf. Section 4.3.1.
Zhao et al. [143] used a second-order basis to solve the weak
form of a Poisson equation linearly.

4.3.7 Ray Tracing: Discretization

Currently, two domains have been studied for ray tracing;:
a regular grid or a triangulated domain. For regular grids,
the ray starts from each point in the domain, while the ray
originates from each triangle vertex in a triangulated domain.

Regular grid. Bowers et al. [14] subdivided the curves
into a set of line segments for their ray tracing algorithm.
They built a uniform acceleration grid with a grid size 2/n x
2y/n for n line segments, such that an increase in the number
of curves would not cause a drastic decrease in performance.

Triangular grid. Prévost et al. [104] solved the ray
tracing process on a triangulated domain. Similarly, they
discretized curves into line segments, and triangulated the
image domain with a constrained Delaunay triangulation.
Lieng [85] used the same concept for the diffusion points
extension. For every triangle, evaluation points are sampled
to compute the final result. For pixels close to a diffusion
point, evaluation points receive the diffusion point color.

4.3.8 Ray Tracing: Solving Scheme

The ray tracing formulation is solved stochastically. Bowers
et al. [14] performed parallel ray tracing on the GPU for each
pixel. The angles of the rays are determined through stratified
sampling. Simple adaptive sampling can also be applied for
acceleration. This can be done by first dividing the image
into a set of blocks and performing ray tracing with fewer
rays. During this process, the shortest intersection distance is
stored for each block. If this distance is above a threshold, ray
tracing is further applied to avoid undersampling. Prévost et
al. [104] performed ray tracing on each triangle vertex. Unlike
Pang et al. [102] who used barycentric interpolation, cubic
interpolation is performed to avoid mach banding effects.
Lieng et al. [85] performed ray tracing similar to Prévost et
al. [104]. To add local diffusion points, they render a Catmull-
Clark subdivision surface [98]. The final result is composed
by blending the local and global results linearly. Recently,
novel mesh-less stochastic PDE solvers [110] have been
introduced for vector graphics [106] to avoid discretization.

4.3.9 Anti-aliasing

Anti-aliasing techniques have been added in some of the
methods to reduce aliasing artifacts. Bowers et al. [14] used
a classic technique in their ray tracing formulation, such that
the origin of each ray is set as a 2 x 2 jittered pattern. Pang et
al. [102] performed aliasing reduction on curve boundaries
by using an accumulation buffer. Sun et al. [121] proposed
a random access solver that treats the image plane as a
continuous domain. They evaluate the integral over a small
rectangular region instead of at each individual point. This
formulation, however, may cause a performance drop for
the fast multipole formulation [120]. Instead, Sun et al. [120]
used supersampling with 9 samples per pixel.

4.4 Vectorization

Current research on the extraction of curve-based representa-
tions from images is mainly focused on diffusion curves, es-
pecially the original, harmonic and biharmonic formulations.
Since the original formulation and the harmonic formulation
extract the same attributes, we cover them together.

4.4.1 Basic Formulation and Harmonic Equation

The simplest harmonic formulation comprises curve geome-
try, color control points, and usually blur control points.

Geometry. Diffusion curves are based on the idea that
edges can represent the majority of color variations in an
image [73], [97], [101]. Therefore, edge detection often serves
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in the initialization. Orzan et al. [101] used a Canny detector
in the Gaussian scale space (the collection of Gaussian
blurred images) on the input image, which captures local
maxima in the gradient domain for different scales. A scale-
space analysis [34], [90] is performed to select the best scale
for each edge. This approach was used by several follow-up
works [82], [94], [143] as starting point, too. However, as
discussed by Orzan et al. [101], it is hard to detect edges in
smooth regions, and these areas are often extracted as several
smaller edges, which necessitates a smoothing post-process
to represent smooth regions.

Instead of using a Canny detector, Dai et al. [26] seg-
mented the input image into several superpixels, which were
then merged into a single superpixel map with k-labeled
regions through bipartite graph partitioning. The curves were
later extracted as superpixel boundaries. Smooth regions
were segmented into several superpixels, and hence the
reblurring process was unnecessary. Zhao et al. [143] used iso-
contours of the difference between the reconstructed image
and the original image as the initial curves in an optimization
step. The curves were iteratively refined through gradient
descent until the reconstruction error is small enough. In
addition to pixel images, the approach can also be used
to generate diffusion curve representations for other color
fields such as 3D renderings and gradient meshes, where
the initial reconstruction is created using object contours or
triangle edges. Lu et al. [94] used an additional depth image
to improve the object contour detection. A Canny detector
is used on the multi-scale color image, while an enhanced
cartoon edge detector [24] is applied on the depth map. The
edges of both images are combined to generate diffusion
curves, where coarse edges in depth maps represent object
contours and edges in the color map represent color details.
Li et al. [82] extended the vectorization process from images
to videos. In each frame, a Canny detector is used and curves
are classified as salient and non-salient curves based on the
average gradient along the curves. Non-salient curves have
a smaller average gradient and are the ones that cause the
flickering artifacts in videos. By assuming that each curve
is a rigid body, non-salient curves are propagated from one
frame to another frame using optical flow. The curves are
eventually transformed to Bézier curves.

Color. Given a curve geometry, the color control points
are computed next, e.g., by sampling color points on the left
and right sides of the curves in the original image [143]. After
uniformly sampling color points, Orzan et al. [101] simplified
the piecewise linear color curves using Douglas-Peucker [31]
with color differences measured in the perceptually uniform
CIE L*a*b color space. Jeschke et al. [71] first computed a
dense set of color control points using a geometric heuristic
and removed outliers similar to Orzan et al. [101]. A fitting
process is then expressed as a linear system Ax = b, where
x are the color points, b are the image colors, and A is
the influence of control points onto the input image. The
influence matrix A is computed during a single diffusion
process and the optimal color points are calculated using
linear least squares. Later, Jeschke et al. [68] further optimized
the computation of the influence matrix, leading to an easier
implementation and a more accurate reconstruction. The
new scheme keeps a fixed set of the most influential color

control points for each pixel. To achieve temporal coherence
in videos, Li et al. [82] sampled colors on the left and right
side of salient curves as an initial guess, and iteratively
refined color points by minimizing a color energy.

Blur. Harmonic equations often require a smoothing
step to achieve smooth edges, cf. Section. 4.1.2. Thus, blur
control points have to be extracted during the inverse process.
Orzan et al. [101] computed Gaussian blurred images of the
input image and selected the best scale to represent the edges
through a scale-space analysis. This ideal scale is used as
blur value for the edge pixels. The blur control points are
then sampled in a way similar to the color control points.
Jeschke et al. [68] first estimated blur values locally at each
piecewise linear curve segment. The blur values are then fit
to blur control points using a least squares optimization.

Noise. In addition to blur control points, Jeschke et
al. [71] estimated a Gaussian distribution of Gabor noise
parameters to mimic textures in an input image.

4.4.2 Biharmonic Equation

The inverse problem for biharmonic equations is harder than
for harmonic equations, as more constraints are required. So
far, only Xie et al. [138] proposed a vectorization method.

Geometry. Xie et al. [138] have shown that color
variations in the Laplacian domain cannot be properly
described by edges extracted in the gradient domain. To
solve this, they applied a Canny detector on the Laplacian
and bi-Laplacian domain of the input image hierarchically.
This multi-scale representation avoids the smoothing process
and extends the application to biharmonic diffusion curves.
As derived by Ilbery et al. [64], Laplacian curves can be
considered a special case of bi-Laplacian curves. Therefore,
a naive approach is to directly solve for all curves in the bi-
Laplacian domain. However, it is faster to solve for Laplacian
curves than for bi-Laplacian curves. Therefore, Xie et al. [138]
first extracted curves in the Laplacian domain, and used a
voting method to determine if a curve is a Laplacian curve.
Then, they extracted curves in the bi-Laplacian domain and
subtracted the unclassified curves extracted in the Laplacian
domain. The subtracted bi-Laplacian curves and the classified
Laplacian curves are the output diffusion curves.

Attributes.  Since Green’s formulation from Sun et
al. [121] and Ilbery et al. [64] is adopted, the curve color,
the normal derivative of color, the Laplacian along curves,
and the normal derivative of the Laplacian are solved with a
direct linear system. Xie et al. [138] reduced the size of the
system matrix by linearly interpolating most of the weights,
using a variable stencil size similar to Jeschke et al. [69],
solving for both Laplacian and bi-Laplacian together, and by
using Bézier splines to share control points.

5 CONCLUSION AND OUTLOOK

We provided a comprehensive overview of state-of-art
methods for the representation, creation, rasterization, and
vectorization of mesh-based and curve-based vector graphics.
Although mesh- and curve-based methods have conceptual
differences in their underlying mathematical representations,
there are potential synergies in their rasterization and vec-
torization processes, as well as in the interaction techniques
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that enable artistic control. Next, we point out a number of
opportunities for future work.

3D Vector Graphics. This survey concentrated on
mesh-based and curve-based methods for smooth 2D vector
graphics. It is mentioned in several works [11], [14], [26], [69],
[70] that their representations may be extended to 3D (2D
animation or 3D image) or even 4D (3D + time). Compared
to 3D images, 2D animations or vector videos have been
studied more intensively. One popular commercial tool for
creating and editing vector graphics animations is Adobe
Flash, which enables users to manipulate with simple shapes
and gradients. Video vectorization algorithms have also been
proposed for both curve-based [82] and mesh-based [128]
representations. On the other hand, the inverse processes,
such as the creation and rasterization of vector videos, are
less researched. Takayama et al. [124] extended diffusion
curves in 2D to diffusion surfaces in 3D. Similarly, Lu et
al. [65] proposed a tool to create 2D paths that can be joined
to form meshes. However, current results are still much less
expressive compared to the achievements in 2D images, and
so far the concept of 4D vector graphics remains untouched
to our best knowledge.

Vectorization. The vectorization process is a popular
research topic in mesh-based and curve-based methods. Both
representations use similar steps. For many mesh-based and
all the curve-based representations, current algorithms follow
a two-step scheme. The first step extracts the geometry from
an input raster image, where edge and corner detection
methods are usually adopted to obtain the image features.
Mesh-based methods will then perform a patch fitting or
triangulation process to locate the patch vertices, while curve-
based methods usually fit a parametric curve or spline to
the detected features. It is also common that the geometry
may be further optimized through a remeshing or shape
optimization process to reduce the construction error [84],
[144]. The second step is then to extract the attributes of
the geometry. Both representations sample colors from the
input image. At present, there is only one method designed
for biharmonic curves, while all the other methods focused
on the original or harmonic representations. Further, there
is no vectorization method for the Poisson representation
yet. Contrarily, to solve for more attributes, the gradient
mesh representation computes both the geometry and the
attributes in one optimization step.

Artistic Degrees of Freedom. At present, users may
freely edit and control color and shape through control
points, which is a rather fine-grained user control. In raster
graphics, plenty of research went into the artistic editing of
appearance, lighting and materials [111]. It is well imaginable
that similarly more such high-level editing tools will be
developed for vector art. Especially in stylized images, where
the shading might not be physically plausible, relighting and
appearance editing are challenging tasks.

Sketch-based Systems. Currently, mainly curve-based
methods support free-hand drawing of the curve geometry.
The input and adjustment of attributes are more restricted to
a select-and-change format for both curve- and mesh-based
representations. It would be interesting to extend sketch-
based input for all formulations, such that attributes can
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be added in a more intuitive way. In addition, the ideas
from sketch-based systems and applications may also be
transferred to vector graphics [62], [133].

Data-driven Methods. So far, data-driven methods have
been intensively studied for generating new vector-based
images or vectorizing a given image, mainly for simple mesh-
based representations, especially in the SVG format. For
example, DeepSVG [20] presented a hierarchical transformer-
based network to generate a set of drawing commands
that can be rendered into SVG images. SVG-VAE [92]
generated similar drawing instructions through a variational
autoencoder. Later, Reddy et al. [107] proposed a generative
model that does not require direct supervision through a
differentiable rasterizer [80]. So far, the training data are
often restricted to stylized images [107], [108]. Although this
has been extended to photorealistic images [95] recently, the
more complex vector representations like diffusion curves
and gradient meshes are still not covered. One reason is
the lack of data, as these representations are less available
to artists and automatic vectorization results often lead
to too many primitives. It is then not easy to generate
sufficient ground truth data that has a good balance between
image expressiveness and low number of primitives. Another
reason might be the richness of the attributes in these
representations, as more parameters need to be properly
learned to generate convincing results, which also adds
complexity in the training model.

Standardization. The SVG format has become industry
standard for the representation of basic vector graphics
primitives. For the many curve-based and mesh-based
formulations, no such default format is available yet. Stan-
dardization will be an important step on the road to a wider
adoption, because content creation tools and rendering APIs
will need a common basis for communication.

Synergies. = Curve-based and mesh-based methods
have both their individual strengths and weaknesses. While
editing tools are more advanced for curve-based methods,
vectorization is more matured for mesh-based techniques.
First hybrid techniques have already been proposed. Lieung
et al. [87] introduced the idea of shading curves with which
users can draw lines on flat images, while the shading effects
are rendered as Catmull-Clark surfaces along the curves.
Chen et al. [23] embedded image features into parametric
patches and solved for the color through thin plate spline
interpolation to enable real-time vectorization. In the future,
it will be rewarding to develop new mathematical models
that unify curve-based and mesh-based methods to leverage
the benefits of both formulations.

Applications. Vector graphics have been adapted in
other areas in visual computing, such as for textures [70],
[121] or height fields [56]. The compactness of diffusion curve
representations can also be used as an intermediate repre-
sentation for image compression in data-driven methods.
For example Poisson vector graphics has been used in the
color transfer for faces and portraits [44], [45]. With more
advances in the representation, creation, rasterization, and
image vectorization in the future, we look forward to more
exciting applications of vector graphics in other domains.
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