
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Electromechanical Coupling in Electroactive
Polymers –

a Visual Analysis of a Third-Order Tensor Field
Chiara Hergl, Carina Witt, Baldwin Nsonga, Andreas Menzel, and Gerik Scheuermann

Abstract—Electroactive polymers are frequently used in engineering applications due to their ability to change their shape and properties
under the influence of an electric field. This process also works vice versa, such that mechanical deformation of the material induces an
electric field in the EAP device. This specific behavior makes such materials highly attractive for the construction of actuators and sensors
in various application areas. The electromechanical behaviour of electroactive polymers can be described by a third-order coupling tensor,
which represents the sensitivity of mechanical stresses concerning the electric field, i.e., it establishes a relation between a second-order
and a first-order tensor field. Due to this coupling tensor’s complexity and the lack of meaningful visualization methods for third-order
tensors in general, an interpretation of the tensor is rather difficult. Thus, the central engineering research question that this contribution
deals with is a deeper understanding of electromechanical coupling by analyzing the third-order coupling tensor with the help of specific
visualization methods. Starting with a deviatoric decomposition of the tensor, the multipoles of each deviator are visualized, which allows
a first insight into this highly complex third-order tensor. In the present contribution, four examples, including electromechanical coupling,
are simulated within a finite element framework and subsequently analyzed using the tensor visualization method.

Index Terms—tensor visualization, third-order tensor, deviatoric decomposition, electro-active polymer
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1 INTRODUCTION

E LECTROACTIVE polymers (EAP) feature remarkable proper-
ties. They change their shape and other mechanical properties

like stiffness under the influence of an electric field. If the electric
field vanishes, EAP such as dielectric polymers (DE) resume their
original shape and properties. This electromechanical coupling
also works vice versa, so changing an EAP’s shape influences the
electric field. Therefore, EAP facilitate flexible and lightweight
smart devices such as actuators and sensors, artificial muscles,
energy harvesting systems, lens cleaning, and acoustic devices [1],
[2], [3], [4], [5], [6], [7]. EAP muscles may be much stronger and
faster than biological muscles relative to their weight. Leading
companies in the USA, Germany, France, Japan, Saudi-Arabia, and
other countries have produced EAPs worth more than $4.5 billion
in 2019, according to Market Reports World [8].

Dielectric elastomers (DE) are a particular class of EAP –
in contrast to ionic polymers, which show only little electrome-
chanical coupling. Electrically activated DE maintain the induced
deformation which, however, requires high voltage levels even
close to electrical breakdown. Common DE devices are made
of silicone or are acrylic-based and allow a fast activation. A
prominent example of a dielectric EAP material is VHB produced
by 3M which may undergo large strains of more than 500 %.
Typical VHB based EAP devices include a thin elastomer layer
placed between two thin electrode layers. Upon activation, the
electrodes contract so that the elastomer increases its in-plane areal
stretch. The material behavior of VHB shows rate-dependent effects,
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such as electro-viscoelastic response, as well as temperature and
moisture dependencies. As this work proceeds, finite deformation
electroelasticity shall be considered, whereby a Gent-type model
together with material parameters identified for VHB49 are adopted
from [9]. For overviews on the mechanics of EAP, the reader is
referred to, e.g., [10], [11], whereas experimental investigations
of VHB are addressed in, e.g., [12], [13], [14]. Further model
extensions towards the simulation of electro-viscoelastic behaviour
are discussed in [9], [15], amongst others.

EAP design is a most challenging and interdisciplinary
research field in mechanics, material sciences, biotechnology,
and robotics [16]. Predictive modeling of EAPs and advanced
simulations of EAP based devices contribute to a systematic design
and optimization of related smart systems [17]. Such design and
optimization require the interpretation of the simulation results
at material and structural level. The present paper enables such
interpretation by advanced visualization techniques of higher-
order tensor fields, which represent the (local) material properties.
In particular, a third-order tensor H shall be elaborated, which
represents the sensitivity of mechanical stresses with respect to the
electric field, respectively the sensitivity of dielectric displacements
with respect to strains – in other words, the coupling between
mechanical and electrical material properties. As we shall elaborate
in the following, this field H is inhomogeneously distributed for
the boundary value problems, respectively applications considered
in this work, which is of major interest in order to understand
and illustrate electromechanical coupling as well as its distribution
present in EAP based devices. Although it can be computed by
suitable finite element formulations, there is, to the best of our
knowledge, basically no visualization method available in the
literature for electromechanical coupling.

This article intends to change this situation by giving some
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insight into the use of a glyph visualization for this third-order
tensor field. Even though the represented decomposition and
the visualization can be used for all three-dimensional tensors
of any order, the focus of this work will be the third-order
coupling tensor H and its application. To design the glyph,
the deviatoric decomposition is used. This decomposition is an
irreducible decomposition. Thus, a rotation of the tensor equals
the result of the sum of all irreducible parts after the same
rotation, and there is no further decomposition of these parts
with this property. Accordingly, glyphs that represent tensors
equaling each other in a local coordinate system are the same. By
analyzing the deviators separately, the number of coefficients to be
considered simultaneously increases linearly and not exponentially
in comparison to the order of the tensor.

We analyze four different problems to gain a first idea for
an interpretation of the third-order coupling tensor H. A radial
symmetric cylinder is an illustrative first example because its sym-
metry simplifies the problem and leads to well interpretable results.
The second example is closely related to applications in the field
of dielectric elastomer actuators (DEAs). Specifically speaking, a
bending beam, which is a component frequently used for gripper-
type applications, is analyzed by using the proposed visualization
approach. In the third example, the focus is on imperfections,
which are naturally present in every material, and their influence
on the electromechanical behavior. To this end, a spherical defect
in the centre of a cubic region is presented. Since the knowledge
on the inhomogeneous distribution of electromechanical coupling
response is rather limited, the newly gained knowledge through
the visualization approach shall allow for a better interpretation
of this example. The last example is from the field of robotics: a
bioinspired lens with an electrically tunable curvature is analyzed.
Within the scope of this work, a perfectly circular lens as well as
a lens with a geometric imperfection, a slightly elliptic shape, are
both simulated in order to compare the visualization results.

2 QUESTIONS

Electromechanically coupled problems are highly complex due to
the, in general, highly non-linear behavior under finite deformations.
However, understanding electromechanical coupling is very impor-
tant from an engineering point of view since electromechanical
actuators and sensors are the basis of a huge number of smart
devices and other applications. Through a better understanding of
the material behavior in such coupled settings, the improvement of
the design of EAP-based actuators and sensors is the general goal.

Thus, an investigation of the third-order tensor H, which
describes the coupling in electromechanical problems and con-
sequently provides information on the (local) material behavior
under load, is of considerable interest. For non-linear problems,
such material tensors are not constant but typically change under
loading. From an engineering and material science perspective,
little information regarding these tensors is currently available.
There are a few examples where the properties of the coupling
tensor are understood in more detail, but once the examples become
more complex, further analysis methods are required. A reason is
the complexity of higher-order tensors in general and the missing
techniques for visualization and analysis of higher-order, and
especially odd-order tensors.

Besides the field of electromechanical coupling, which is the
main focus of this work, there are many other coupled problems

such as magneto- and thermomechanics, which give rise to similar
questions.

The goal of our visualization is to support the understanding
of the material behavior within coupled problems by analyzing the
respective coupling tensor in detail. We also focus on finding a
connection of the higher-order tensors to related tensors of lower
order in order to simplify the tensor representations.

All in all, the main goal is to better understand and visualize
material tensors for coupled problems, in particular electromechan-
ics, as this work proceeds. The questions can be summarized as
follows

I. How does the material behave?
II. How can a third-order tensor be analyzed?

III. How can a third-order tensor be simplified?
IV. How can known knowledge from simple examples be trans-

ferred to more difficult ones?
V. How can the design of EAP-based actuators and sensors be

improved?

3 MODEL

We used four examples to analyze the electromechanical coupling in
electroactive polymers, which are introduced in the following. The
first one is well established, for the second one, some information,
as well as applications are also available, and the third one is more
complex and less information is available so far. An analysis of the
first and the second example should facilitate the analysis of the
third one. The fourth example indicates how the visualization can
be an indicator of the functionality of electromechanical devices.

3.1 Electrically activated cylinder
As a first example, a cylinder is analyzed subject to electric
loading, cf. [18]. In contrast to the VHB material used for the
following examples, a compressible material behavior represented
by µ = 1.1233× 104 Pa and κ = 2 µ is achieved together with
plane strain conditions so that the related Poisson ratio corresponds
to ν = 0.2857. At the outer radius ro = 2mm of the cylinder, an
electric potential of φo = −5kV has been applied, whereas the
potential at the inner radius ri = 1mm is φi = 5kV, cf. Figure 1.
The thickness of the cylinder is t = 0.1mm. Due to the symmetry
properties of the structure, it is sufficient to model one quarter of the
cylinder together with additional symmetry boundary conditions.
In particular, the displacement normal to the symmetry axes is
suppressed on both boundaries. In addition, the inner radius of the
cylinder is kept fixed, whereas the outer radius is allowed to change.
The mesh shown in Figure 1 consists of nel = 105 elements.

As a consequence of the potential difference ∆φ = φo−φi, the
cylinder is compressed in the radial direction. Due to the particular
boundary conditions, this leads to a reduction of the outer radius.
The deformation in the last step of the analysis is shown by the
colored region in Figure 1. In addition, in the supplementary
material, it is demonstrated how the outer cylinder radius decreases
with increasing difference in electric potential, which highlights
the overall non-linear response.

3.2 Electrically activated bending of a beam
The next example deals with the bending deformation of a
beam due to electric loading. Beam-like structures made from
electroactive polymers are frequently used in applications with
dielectric actuators. Figure 2 shows the working principle of such
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Fig. 1: Cylinder model: The initial mesh containing nel = 105 finite
elements is shown including the particular boundary conditions.
The colored region shows the deformed configuration and indicates
the electric potential φ .

an actuator under electric loading. Besides the frequent use in
the context of gripper-type devices, cf. [19], dielectric elastomer
actuators (DEAs) are also an important component in robotics, see
Figure 3.

For the beam model, a VHB material is employed. It’s (quasi)
incompressible material behavior shall be represented by µ =
1.1233×104 Pa and κ = 1.1196×106 Pa so that the related Poisson
ratio corresponds to ν = 0.495, cf. [9]. In the present contribution,
a beam with a length of l = 50mm, a height of h = 1mm, and a
width of t = 4mm is considered. The discretization of the model
contains nel = 1472 elements. As shown in Figure 4, only the
upper half of the beam is loaded by applying a difference in
electric potential. The difference is set to ∆φ = 2kV. Regarding
the mechanical boundary conditions, the right boundary is fixed
in the direction of the beam’s longitudinal axis. In the other two
spatial directions, the boundary nodes are free to move, except for
the middle node.

The electric load leads to a compression of the elastic material
in the upper half of the beam in the direction of the electric field.
In addition, an extension in the longitudinal direction of the beam
and in the direction of the width of the beam follows because a
nearly incompressible material is considered. In the lower half
of the beam, no electric field is active. As a consequence of this
particular loading condition, together with the mechanical boundary
conditions, the structure undergoes a bending deformation because
the upper half of the structure is extended, cf. Figure 4. The vertical
displacement uy as well as the horizontal displacement uz of the
tip of the beam are shown in dependence on the electric potential
differencies displayed in the supplementary material.

Fig. 2: Working principle of a dielectric elastomer actuator (DEA).
The second picture shows the actuator at rest while the activated
state is presented in the first and third picture. Reproduced from
[20] under the terms of the Creative Commons Attribution License
(CC BY).

Fig. 3: Working principle and fluorescence image of a jellyfish-
inspired and DEA-based robot. Reproduced from [21] under the
terms of the Creative Commons Attribution License (CC BY).
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Fig. 4: Beam model: The initial mesh containing nel = 1472 finite
elements is shown including the particular boundary conditions.
The colored region shows the deformed configuration and indicates
the electric potential φ .

3.3 Electrically activated cube with spherical hole

In this subsection, a material that contains defects or inclusions is
represented, whereby identical material parameters as in subsec-
tion 3.2 are chosen. In particular, an EAP cube with one single
defect in the shape of a spherical hole is modeled. Figure 5 shows
the back half part of the cube, whereas the front half part can
be generated by a reflection of the sketched domain. Due to
its symmetry properties, only one eighth of the cube with an
edge length of 2h = 2mm is considered in the simulation. The

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209328

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

z

y x

V
h

r

φ in kV
0.0 2.5 5.0

Fig. 5: Cube model: The initial mesh containing nel = 783 finite
elements is shown including the particular boundary conditions.
The colored region shows the deformed configuration and indicates
the electric potential φ .

discretization of this part is obtained with 783 elements. The radius
of the spherical hole in the center of the cube is r = 0.25mm.
Similar to the example in subsection 3.1, a potential difference of
∆φ = 10kV is employed by the application of an electric potential
of φl = 5kV on the left surface of the cube and of φr =−5kV on
the opposite surface. In the vertical symmetry plane, φ = 0kV holds
accordingly. In order to capture the symmetry in the simulation,
linear constraints are employed for the displacements on the three
symmetry surfaces. To be specific, no displacement in the normal
direction of these boundary surfaces is allowed to take place.

The deformation pattern of the cube is shown by the colored
region in Figure 5. The cube is compressed in the direction of the
electric field. As a consequence of the (quasi) incompressibility of
the material, an extension can be observed in the other spatial
directions. The respective displacement values uy and uz are
presented exemplarily for the upper left corner of the simulated
domain in the supplementary material. In accordance with the
deformation of the cube, the defect changes its shape from a sphere
to an ellipsoid.

3.4 Bioinspired tunable lens

Using the same EAP material as in subsection 3.2 and subsec-
tion 3.3, a bioinspired tunable lens is modeled. In an experimental
setting, as shown in Figure 6, a prestreched EAP material is
placed into a frame and filled with a fluid to obtain a symmetric,
biconvex lens, cf. [22]. The outer region of the lens is coated with
black electrodes. An electric activation causes the material to be
compressed in the direction of the thickness. Due to the (nearly)
incompressibility of the EAP material, the material accordingly

deforms radially towards the center, and the curvature of the lens
changes, see Figure 6. For the numerical simulation, one eighth
of the lens is modeled by exploiting its symmetry properties.
Consequently, homogeneous Dirichlet boundary conditions are
applied to the symmetry planes in order to prevent any displacement
into the normal direction of the respective surfaces. In the first part
of the simulation, a prestretch is applied in terms of inhomogeneous
Dirichlet boundary conditions to the outer edge of the domain. By
analogy with the experiment, this prestretch has the advantage of
preventing buckling modes that might occur in response to the
material compression in the simulation, and it reduces the required
electric load since the electrode distance decreases. The deformed
mesh after application of the prestretch is presented in Figure 7 and
consists of nel = 5628 finite elements. Similar to the experimental
setting in [22], the outer radius after the prestretch is 10.5mm and
the radius of the lens in the xz-plane is ≈3.8mm. The thickness
of the material is approximately 0.1mm in the prestretched state.
Since only the electromechanical behavior is of interest in the
context of the present contribution, the fluid filling is not included
in the simulation so that the lens remains rather flat before the
electric load is applied. In the second part of the simulation, the
electromechanical analysis is performed while the displacement
of the outer edge is kept fixed at the prestretched state so that the
solid frame from the experiment is replicated. Figure 8 presents
the deformed configuration of the lens after electric activation by
an electric potential difference of magnitude ∆φ ≈ 1.3kV being
applied between the top and bottom surface of the modeled region.
For reasons of numerical stability, the potential on the top surface
is increased linearly from zero to the maximum value over a small
distance. Similarly to the behavior of the lens in the experiment,
the electric activation in the simulation leads to a significant change
in curvature when comparing the two configurations in Figure 7
and Figure 8. In addition to the described simulation, in which
a perfectly circular lens is investigated, a subsequent simulation
has been performed considering a rather elliptic shape that may
result from production inaccuracies, see Figure 9. In this regard,
the visualization shall help to identify acceptable deviations from
the perfect shape and to distinguish them from deviations that
would cause a loss of functionality. Besides a deviation from the
perfectly circular shape, also different kinds of imperfections could
be analyzed, such as changes in material properties, imperfect
attachment of the electrodes, or defects within the material itself,
as discussed in detail in subsection 3.3.

3.5 Coupling Tensor
Before introducing the particular model considered, some basics of
nonlinear continuum mechanics in the context of electromechanical
coupling and mathematical fundamentals are briefly summarized.

We denote the n-dimensional Euclidean vector space as Vn. Its
scalar product is a bilinear mapping of two vectors v1,v2 to a real
number and is denoted as v1 ·v2. We assume that we are given an
orthonormal basis {e1, . . . ,en}, i.e. ei · e j = δi j with the Kronecker
delta δi j. Because no distinction between co- and contravariant
tensors is required in this work, we define an n-dimensional tensor
of order q as multilinear map of q vectors to the real numbers,

T : (Vn)
q→R . (1)

As a multilinear map, the tensor can also be described by its
coefficients with respect to a fixed orthonormal basis of Vn, i.e.

T= Ti1,...,iq ei1 ⊗ . . .⊗ eiq .
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Fig. 6: Pictures of the bioinspired tunable lens device. Reprinted
with permission from [22].

Fig. 7: Lens model: The deformed mesh containing nel = 5628
finite elements is shown after a radial effective prestretch of ≈10%
has been applied.
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Fig. 8: Lens model: The deformed mesh is shown including the
particular boundary conditions. The colored region indicates the
electric potential φ .

Therefore, a zeroth-order tensor can be represented as a scalar, the
coefficients of a first-order tensor as a vector of dimension n and
the coefficients of a second-order tensor as an n×n matrix. The
coefficients of higher-order tensors can be represented as arrays

Fig. 9: Geometrically perfect lens model (left) with r = 3.2mm
as well as geometrically imperfect lens model (right) with r1 ≈
3.657mm and r2 = 2.8mm (radii before prestretch).

of order q. For example, the coefficients of a three-dimensional
third-order tensor can be represented as a 3× 3× 3 array. With
respect to notation, the single contraction is denoted by a single ·,
whereas ⊗ represents the standard dyadic product. The main tensor
of this work is the third-order coupling tensor

H =
∂S
∂E

. (2)

It represents the sensitivity of the Piola-Kirchhoff-type stress tensor
S with respect to the electric field vector E. In other words, it
shows how stresses change with changing electric field. This work
will use the coupling tensor H defined by

H =−ε0 εr J
[

C−1⊗ [C−1 ·E ]

− C−1⊗ [C−1 ·E ]− [C−1 ·E ]⊗C−1 ], (3)

with C a (positive definite) deformation related tensor. The
subsequently elaborated electromechanically coupled and nonlinear
boundary value problems are solved within the framework of the
Finite Element Method. For further details on the finite element
implementation the reader is referred to the supplemental material
and [23], [24] as well as the references cited therein.

4 RELATED WORK

Now that the problem has been presented, it can be analyzed from
the visualizer’s point of view. As mentioned before, tensors appear
in many application areas. Thus, there are also many visualization
techniques to represent this type of data. Most tensor visualizations
are known from diffusion tensor imaging (DTI) and mechanical
engineering.

Glyphs are widely used to represent tensors. Most glyphs
represent symmetric second-order tensors. A popular example is the
superquadric glyph by Schultz and Kindlemann [25]. It represents
such tensors with both positive and negative eigenvalues. Therefore,
the tensor norm, the eigenvectors, the rotational invariant, and the
uniform scaling invariant part of the tensor are displayed.

However, there are also glyphs that describe asymmetric second-
order tensors. Gerrits et al. [26] designed a glyph representing a
general two-dimensional, second-order tensor. The glyph preserves
the invariance under isometric domain transformations, is scaling
invariant, encodes the real eigenvalues and eigenvectors, is unique,
and is continuous. A glyph representing three-dimensional tensors
was analogously designed.
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Glyph-based methods are local methods and, therefore, focus
on a detailed representation of the data points. Most glyph-
based visualization methods are not used to give an overview
of a whole field because they include too much information.
Therefore, geometric methods are used, like, for example line-
based methods. The best known line-based methods are vector
and tensor lines. Tensor lines were introduced by Dickinson [27],
[28]. To complement this work, Delmarcelle and Hesselink [29]
presented hyperstreamlines. These line-based methods are also
often used to show the tensor field topology [30], [31].

All the methods mentioned above represent tensor fields of
second-order tensors. Some works also exist with respect to higher-
order tensor visualization. Most of them deal with applications from
the DTI area. For DTI, practically all tensors are symmetric tensors
of even-order. For these tensors, Schultz and Kindlemann [32]
generalized the tensor ellipsoid and Florack et al. [33] analyzed
these tensors by a deviatoric decomposition. A generalization
of a line-based method to higher-order, totally symmetric even-
order tensors, so-called HOT-lines, were given by Hlawitschka and
Scheuermann [34]. They also used the deviatoric decomposition
and calculated the extreme values on the sphere.

Some other works deal with the tensor visualization in mechan-
ical engineering. The most visualized tensor in this application
area is the stiffness tensor. There are some glyph approaches in the
literature which represent this tensor [35], [36], [37].

To the best of our knowledge, Zobel et al. [38] have so far
presented the sole visualization-based work regarding third-order
tensors. They have presented a simplification and a visualization of
the stress gradient. In one of their visualizations, e.g., two super-
positioned distinct-colored ellipsoids present the gradient. One of
the ellipsoids represents the average change of all stress vectors,
the other one the actual stress tensor. As the considered third-order
tensor H in our work represents electromechanical coupling, the
work by Zobel et al. [38] is not applicable because their glyph
strongly relates to the idea of a spatial stress gradient.

Choosing the right colormap for each visualization is an
important point. Thus, there are many works and surveys on
this topic. A discussion on colormap guidelines is given by
Bujack et al. [39]. As the problems discussed in this work include
norm variations in different orders of magnitude, the color maps
must address this special problem. Nardini et al. [40] designed
colormaps for these types of data. They use combinations of
different continuous colormaps in a single colormap.

5 TENSOR DECOMPOSITION

A three-dimensional vector can be easily interpreted in most cases.
The interpretation of tensors of second-order, e.g. in terms of
matrices representing their coefficients, is quite a challenge. A well
known method for the analysis of a second-order tensor is the
decomposition into its eigenvalues and -vectors. These eigenvalues
and -vectors are then interpreted instead of the tensor itself, which
works straightforwardly in the case of symmetric second-order
tensors where both, eigenvalues and -vectors are real. Higher-order
tensors can (in most cases) not straightforwardly be decomposed
by an eigendecomposition (or spectral decomposition). However,
another method has been established in order to represent a tensor
of arbitrary order up to dimension three. Each of these tensors
can be described by a unique set of vectors, so-called multipoles,
and scalars. In order to compute these multipoles, the tensor must
be decomposed into deviators which can be decomposed into

multipoles and scalars. Even though a tensor of arbitrary order
in dimension three can be decomposed into these multipoles, this
work will focus on three-dimensional third-order tensors. This is
done because the EAP application focuses on the understanding of
the electromechanical coupling as described by H. The deviatoric
decomposition is also known as irreducible decomposition [41].
The rotation of these irreducible parts represents the rotation of the
overall tensor. The multipoles, on the other hand, clearly represent
the deviators as well as the rotation of the deviators. Thus, tensors
can be represented by the multipoles uniquely and independent of
the local coordinate system. The number of independent coefficients
of the deviator increases linearly and not exponentially in terms of
order. The analysis of each deviator using the multipoles reduces
the amount of values to be considered at the same time, compared
to the analysis of the original tensor without loss of information.

5.1 Deviatoric Decomposition
Hergl et al. [42] described the deviatoric decomposition and the
multipole representation based on this decomposition. Each tensor
of any order up to dimension three with or without any index
symmetry can be decomposed into traceless and totally symmetric
tensors, called deviators. The deviatoric decomposition of a third-
order three-dimensional tensor is an orthogonal decomposition, in
relation to the inner product, of the 33-dimensional space.

Every tensor of order three can be split into a totally symmetric
and an asymmetric part. Through the well known relation between
totally symmetric tensors and spherical harmonics, the totally
symmetric part can be decomposed into deviators. For the asym-
metric part, an isomorphism from the totally symmetric tensors
into the asymmetric tensors of order three exists. These totally
symmetric tensors can now, through the above named relation, also
be decomposed into deviators. This highly non-trivial procedure
is described by Backus [43] who also showed that it is a unique
decomposition. The deviatoric decomposition of a second-order
tensor is common and given by the symmetric part and a vector,
representing the antisymmetric part. Auffray [44] presented the
decomposition of a general third-order tensor H with the left
symmetry, i.e. Hi jk = H jik, into a third-order deviator D, a second-
order deviator D and two first-order deviators dsym and dasym by

Hi jk =Di jk +
1
5

[
dsym

i δ jk +dsym
j δik +dsym

k δi j

]
+

1
3
[
ε jklεlip dasym

p + εiklεl jp dasym
p
]

+
1
3
[
ε jklDli + εiklDl j

] (4)

with the permutation tensor εεε and the Kronecker delta δi j. Each
of the four summands is an irreducible part of the tensor. The
first two summands describe the symmetric part, the other two the
asymmetric part. An explicit description of all deviator coefficients
can be found in the supplementary material.

5.2 Multipoles
Higher-order tensors, including third-order tensors, generally
cannot be decomposed into eigenvectors and eigenvalues. A gener-
alization of the concept can lead to eigentensors and eigenvalues in
some cases, but the eigentensors are of an order higher than one.
Even though there are some cases where a mapping can be used to
obtain a second-order tensor and to perform an eigendecomposition,
a generalization of tensor lines by using this decomposition has
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so far not been found. Especially a generalization of eigenvalues
and eigenvectors for third-order tensors is so far unknown. There
is also no other well known third-order tensor decomposition.

Here, we use a finding by Sylvester [45] who proved that each
nth-order d-dimensional deviator D with d > 2 can be represented
by the symmetrization s(·) of a, except for a scalar, unique set of
d-dimensional vectors mi with cardinality n by

D= a s(m1⊗·· ·⊗mn) . (5)

(To be precise, the mi are unique up to an even number of sign
changes.) These vectors mi are called multipoles and can be
interpreted in a physical way. The calculation of the multipoles is
described in more detail by Zou et al. [46] and summarized in the
supplementary material.

There is a connection between these mathematical multipoles
and electrical multipoles. A single charge is called a (electrical)
monopole. An (electrical) dipole refers to two opposite charges,
where a Coulomb force FC results in a shift u1. When taking two
(electrical) dipoles and shifting these by u2 the resulting field is
called (electrical) quadropol. This can be done analogously for other
(electrical) poles, e.g. octopoles and so on. The (mathematical)
multipoles describe exactly this phenomenon. Except for the scalar
a from Equation 5, the (mathematical) multipoles describe the shift
of the charges. The term multipole generalizes all of these poles.

The multipoles can also be interpreted in terms of material
symmetries. The symmetries of the tensor equals the intersection
of the symmetries of the deviators. Furthermore, the symmetries of
the deviators can be determined from the multipoles. The material
represented by the tensor has at a point a symmetry plane, if all
material properties fulfill this symmetry. A plane is a symmetry
plane of a deviator, if all multipoles fulfill this symmetry. The
intersection of the symmetry planes of the different deviators equal
the symmetry planes of the tensor.

Further information regarding the group theoretical background
of this decomposition is, for example, given by Hergl et al. [42]
and in more detail by Hamermesh [47].

6 VISUAL ANALYSIS

Arrows, lines, and streamlines are well-known visualizations for
(steady) first-order tensors. Second-order (symmetric) tensors are
commonly visualized by using various glyphs and tensor lines
based on the eigenvector (spectral) representation. In contrast, not
much research on the visualization of higher-order tensors has so
far been made.

The analysis of third-order tensors is often limited to the
investigation of the tensor norm. In this section, we propose an
approach for the visualization and analysis of third-order tensors
in three dimensions (with left index symmetry). For this purpose,
we base our visualization technique on a unique set of lines, the
multipoles, and a few scalars at every point.

To provide an adequate structural perception, we render the
set of lines representing the multipoles as tubes with spherical
caps with a user-defined constant width and a constant length.
We achieve this by utilizing real-time GPU raycasting of the tube
primitives and spheres. In order to reduce clutter and consistently
display overlapping multipoles, we split the deviators into separate
linked multiple views [48]. In this process, we render the first-order
symmetric, the first-order asymmetric, the second-order symmetric,
and the third-order asymmetric multipoles in four separate views.
As a result, comparing deviators in terms of direction is more

straightforward. Our approach allows the user to freely assign the
glyphs to one or multiple views. This allows the user to recognize
subtle differences in terms of the direction of the multipoles. To
visualize scalar quantities associated with the deviators, we apply
color mapping of the norm to the coloring of the glyphs. The norms
of the different irreducible parts have considerable differences in
their ranges. Using a linear colormap would lead to a significant
loss of information. Thus, we use a color mapping that enables
the representation of small value ranges in different orders of
magnitude. We design suitable color maps using the CCC-Tool
introduced by Nardini et al. [40].

Each value range is mapped using a linear color map. For the
different ranges, we used base colors that can be distinguished
clearly. The combination of these color maps forms the basis of
the color map representing the irreducible part norm. The numbers
between the value ranges occurring in the data set are represented
by a neutral color. The mapping is linked with all views. This
allows a quantification of the scalars and an intuitive comparison
with scalars in other views.
The necessary steps for our glyph at each position are to

1) Compute the four deviators.
2) Compute the multipoles and the norm of the corresponding

irreducible part for each deviator.
3) Render the glyph at the given position in corresponding linked

views.
We tested the visualization for the four examples introduced in
section 3 and interpreted the results from an engineering perspective
as well. Electric loading is increased in time for all examples
considered in this work. In the first time step, all multipoles
corresponding to all deviators nearly vanish for all three examples,
which also reflects that H = 0 for E = 0, cf. Equation 3. With
increasing time, respectively increasing electrical loading, the
multipoles elongate, and the orientation may undergo small changes
– the general orientation, however, remains.

7 INSIGHTS IN USE CASES

This section presents the visual analysis of the four different
electromechanically coupled boundary value problems described
in section 3.

Figure 10 depicts the multipole visualization of the simulation
results for the cylinder model introduced in subsection 3.1. The
plots correspond to the state of maximum loading, i.e. ∆φ =
10kV. It can be observed that the norm of the irreducible parts
corresponding to the second- and third-order deviators is much
smaller than those of the two first-order deviators. The multipoles
of the first-order deviators are located planar in the x-y plane and are
radial symmetric. Regarding the second-order deviator on the other
hand, one of the corresponding multipoles is oriented tangentially
to the curvature of the cylinder, the other one is orthogonal to the
horizontal surface.

This cylinder example is of particular interest since the
electric field vector E is always aligned with a principal direction
(eigenvector) of the deformation as represented here by the tensor
C. For the particular example considered, this direction corresponds
to the radial direction in which the two first-order deviators are
also oriented. As mentioned in subsection 5.2, the multipoles can
be interpreted in terms of material symmetries. The symmetries of
the material under the influence of the electric field are represented
by single sets of multipoles. There are two deviators of first order.
Thus, there are two sets of one multipole each. A deviator that
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Fig. 10: Cylinder model: Multipole representation of the third-order tensor H using our visualization. Two different views of the following
deviators are given: first-order deviator dsym representing the symmetric part, first-order deviator dasym representing the antisymmetric
part, second-order D , third-order deviator D. The arrangement of the deviator fields of the side view (y− z plane) corresponds with these
of the top-view (x− y plane). The color map represents the norm of the respective irreducible part.

is represented by one multipole can have two different types of
symmetries. The first one is described by a multipole that vanishes.
Then, the deviator is isotropic. If the multipole does not vanish, the
deviator has one symmetry plane orthogonal to the multipole and all
planes that enclose the multipole are also symmetry planes. In this
example, there are two deviators of first order. Thus, there are five
different cases of how the material can behave under the influence
of the electric field. First, both multipoles corresponding to the
deviators of first-order vanish. Then, the symmetries are given
by the deviators of order two and three. Secondly, one multipole
vanishes. Then, the symmetries are defined by the non-vanishing
multipole. The third case is given if the multipoles equal each other.
Consequently, the symmetries of the intersection of the deviators
are the same and represent the material’s symmetry. The fourth case
is given if the multipoles are orthogonal. The material can have
three orthogonal symmetry planes at most. When both multipoles
are different and not orthogonal, as in the fifth case, the material
does not behave symmetrically to any plane. An illustration of
these five cases can be found in the supplemental material. In
this example, the two multipoles corresponding to the deviators of
first-order equal each other so that the symmetries of the material
under the influence of the electric field are given by a subset of the
plane orthogonal to the radial symmetric direction and all planes
that enclose the radial symmetric direction. The deviators of order
two and three restrict the symmetries to three orthogonal symmetry
planes that are given by the x−y-plane, the plane orthogonal to the

radial direction and the plane orthogonal to these two planes.
It is also interesting to note that the plane strain conditions con-

sidered together with strain in circumferential direction remaining
comparatively small, yield the state of deformation in the plane
perpendicular to the electrical field direction to be almost isotropic.
Conceptually speaking, the principal strains, respectively, stretches
in the plane perpendicular to E are almost identical. This yields
the norm of the second-order deviator of H to be comparatively
small, also in comparison to the norm of the third-order deviator of
H. Moreover, in the case of a perfectly isotropic deformation state
in that plane, this norm would vanish identically. Such scenarios
correspond to extremal states of energy – in other words, given
the level of electric loading, the orientation of the electric field
results in an extremal state of deformation and stiffness. Such
properties are most attractive from an optimal design perspective
of smart EAP based devices. Similar problems are established
within the design of, e.g., fibre-reinforced composites, where the
fibre orientations remain constant. In view of the electromechanical
coupling considered in the present work, the electric field can be
compared with the (transversely isotropic) fibre contribution – the
main difference is that both referential orientation and magnitude
of the electric field generally change during the loading process.
Since the electric field vector is always aligned with a principal axis
(eigenvector) of the deformation for the cylinder model – in fact E
is aligned with the eigenvector related to the minimum eigenvalue
(compression) of C – referential stresses and deformation measures

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209328

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 11: Beam model: Multipole representation of the third-order tensor H using our visualization. Top left – first-order deviator dsym

representing the symmetric part, Bottom left – first-order deviator dasym representing the antisymmetric part, Top right – second-order D ,
Bottom right – third-order deviator D. The color map represents the norm of the respective irreducible part. If the norm is smaller than
1 ·10−16, we display white spheres.

commute, i.e. C ·S = S ·C. Such states are well-established so as
to correspond to extremal states of energy within the theory of
anisotropic hyper-elasticity. A key contribution of the visualization
is that vanishing contributions of the second-order deviator of H
indicate such extremal states of energy which, from an engineering
design point of view, are most interesting and relevant for an
improved design. Moreover, the norm of the irreducible part
corresponding to the first-order deviators shown in Figure 10
both increase from the outer radius ro to the inner radius ri
– in other words, electromechanical coupling increases from ro
to ri. From an engineering perspective, such effect is intuitively
expected (and highlighted here by the visualization) since the
level of deformation also increases from ro to ri. In summary,
the particular example of the cylinder exhibits properties such
as i) radially oriented electric field, ii) coaxiality of stresses and
strains and iii) increasing electromechanical coupling from ro to
ri, which are intuitively expected on the one hand and directly
reflected by the visualization established in this work on the other.
In this regard, the example may be considered as a proof of concept
based on which more advanced examples can be investigated where
interpretations without visualization are not that intuitive.

The second example of a bending beam, as described in
subsection 3.2, is more complex but still allows for some intuitive
interpretation. The visualization results are shown in Figure 11.
Specifically speaking, a detailed view of the supported end of the

beam is presented. For the purpose of illustration, the beam is
shown in its undeformed shape. However, all quantities illustrated
correspond to the state of maximum loading, i.e. ∆φ = 2kV. Since
only the upper half of the beam (in y-direction) is electrically
activated, the lower part shows no electromechanical coupling
and all multipoles related to the deviators of H vanish identically.
Regarding the upper half of the beam, the norm of the irreducible
part corresponding to the first-order deviators is approximately
102 times larger than the respective norm corresponding to the
third- and second-order deviators. The multipoles of the first-order
deviators are aligned with the y-direction. All multipoles of the
third-order deviators lie in the y-z-plane and, in particular, one of
those is oriented in y-direction as well. The other two multipoles
have the direction of the first one as a bisecting line. In contrast to
these characteristics, the multipoles belonging to the second-order
deviator are not oriented uniformly, which we attribute to noises
resulting from the very small norm of the irreducible part of this
deviator.

These orientations of the multipoles again allow an interpreta-
tion of the material properties under the influence of the electric
field in terms of symmetries. Taking the norm of the irreducible
part into consideration, the multipoles corresponding to the deviator
of order two, do not affect the symmetries much. Thus, the bending
beam behaves under the influence of the electric field which is
nearly symmetric to the three planes that are in this undeformed
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Fig. 12: Cube model: Multipole representation of the third-order tensor H using our visualization. Top left – first-order deviator dsym

representing the symmetric part, Bottom left – first-order deviator dasym representing the antisymmetric part, Top right – second-order D ,
Bottom right – third-order deviator D. The color map represents the norm of the respective irreducible part.

representation given by the coordinate planes.

From an engineering point of view, the chosen electrical loading
of the beam induces a mode similar to pure bending (in addition to
the compressive deformation in the thickness direction of the upper
half of the beam). Such a state of deformation does not include
classic beam shear contributions. By analogy with the previous
example of the cylinder, this is reflected by the fact that the two
first-order deviators are aligned with the direction of the electric
field E which, moreover, is a principal direction (eigenvector) of
the deformation measure C. Within the finite deformation setting
considered, the beam undergoes curvature in both longitudinal
(z) direction and transverse (x) direction. One of the Bernoulli
hypotheses, namely that cross-sections of the beam remain plane
during the deformation, is typically violated – in particular for such
finite deformation setting. The second-order deviator of H yields
non-vanishing contributions in the upper half of the beam, which
indicates that the deformation state is not isotropic (equi-biaxial)
in the plane perpendicular to the direction of the electric field.
Moreover, it can clearly be seen in Figure 11 that the norm of the
irreducible part related to the deviators increases from the mid-
layer (neutral axis) of the beam towards the top surface. While the
longitudinal strain is (quasi) zero along the neutral axis, it reaches a
maximum at the top surface (tension state), which is clearly sensed
by the third-order deviator of H.

The cube, described in subsection 3.3, is a more complex
example due to the included spherical defects. The general response

is, from an engineering point of view, less intuitive compared to the
previous examples. Considering the cube as a homogeneous model
without the presence of any defects, a compression in y-direction
due to an electric field in the same direction would result in the
first-order deviators of H being oriented in y-direction as well.
This is illustrated in Figure 12 when focusing on the regions off
the spherical hole. In this part of the cube, the response of the
corresponding homogeneous setting with the first-order deviators of
H oriented in y-direction is indicated, whereas the orientation of the
deviators changes in the inhomogeneously deforming region near
the spherical defect. Regarding the third-order deviator of H, two
of the corresponding multipoles have the first-order multipoles as a
bisecting line which, moreover, also corresponds to the orientation
of the third multipole of the third-order deviator.

The norm of the irreducible part related to the first-order
deviators is approximately 1015 times larger than this related to
the third- and second-order deviators. In direct neighborhood
to the hole, the response becomes rather complex and, from an
engineering perspective, the degree of deformation inhomogeneity
significantly increases. The multipoles corresponding to the two
first-order deviators are oriented around the defect – in other words,
near the surface of the hole, the first-order deviators are parallel to
the surface. This clearly indicates the (general) orientation of the
electric field (by analogy with, e.g., a fluid flow around an obstacle).
Non-vanishing second-order deviators may indicate, as mentioned
in the previous examples, deviation from extremal energy states
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with isotropic state of deformation in the plane perpendicular to the
electric field. From an engineering point of view – the area near to
the surface of the hole and along the z-axis is practically unloaded,
whereas the area nearby the surface of the hole and along the
y-axis undergoes a state of maximum compression. It is interesting
to note that this is clearly reflected by the norm of the irreducible
parts, respectively the color of the multipoles: small values are
present in regions of low electromechanical loading, whereas
larger values are present in regions of higher electromechanical
loading. From an engineering perspective, the visualization shows
that the spherical hole i) lowers electrical and mechanical loading
in some regions and increases electrical and mechanical loading
in other regions, ii) lowers electrical coupling in some regions
and increases electromechanical coupling in other regions, iii)
influences the orientation of the electric field in a streamline
manner, and iv) induces inhomogeneous states of deformation. In
view of the design of smart EAP based devices, such information
is most valuable since the level of electromechanical coupling
influences the efficiency of the smart device on the one hand, and
maximum electrical and mechanical loading levels influence its
lifetime as well as its failure properties on the other hand.

The lens datasets described in subsection 3.4 can be used
to analyze slight deviations of the geometrically perfect model.
Such simulations can be used to define acceptable deviations of the
perfect structure and deviations that would affect the functionality.

The glyph representation of the perfect lens is pictured in
Figure 13a and the imperfect lens, the one with the greater deviation,
in Figure 13b. More figures of the two datasets can be found in the
supplemental material. Figure 13a and Figure 13b both use 1500
seed points. Using a laptop with an AMD Ryzen 5 3500u with
radeon vega mobile gfx × 8 it took 30 seconds to calculate and
visualize all four multipole glyphs of the coupling tensor.

To provide a visual spatial division, black lines have been
added to divide the lens into four equal areas. Analyzing the norm
of the irreducible parts shows that the influence of the first-order
deviators is much larger than the influence of the second- and the
third-order deviator for the perfect as well as for the imperfect
lens. For both models, all illustrations of the multipoles show a
ring around the inner part of the lens, where the orientation of
the multipoles and the norm of the irreducible parts, as well as
the norm of the tensor itself, change considerably. This can be
attributed to the simulation setting. The electric potential has been
prescribed to be linearly increasing in this region, from a value of
zero up to the maximum applied value acting on the rest of the
flat lens surface. By doing so, numerical instabilities, which might
follow from a sharp jump in the electric potential, are avoided.
Thus, the change of the multipole orientations is a side effect of
the simulation and will not be analyzed any further.

The norm of the irreducible parts describes the influence of
the corresponding deviator. For the perfect lens, the irreducible
part norms are radial symmetric. This is not the case for the
geometrically imperfect lens. For this example, the norms of the
irreducible parts change by a rotation around the y-axis. The norm
is highest around the x-axis and decreases by a rotation up to the
lowest values around the z-axis.

As described before, the multipoles can be analyzed in terms of
symmetries. Thus, the perfect lens is symmetric to the x− z-plane.
It can be seen in Figure 13a that the multipole corresponding to
the first-order deviator describing the symmetric part aligns with
the y-axis. The same applies to the multipole corresponding to the

first-order deviator describing the asymmetric part. Due to the norm
of the irreducible part corresponding to the second-order deviator,
the influence of this deviator is much smaller than the influence
of the two first-order deviators. The multipoles of the first-order
deviator describing the symmetric part have the same orientation
as those of the first-order deviator describing the asymmetric part.
Therefore, taking into account that the norms of the irreducible
parts corresponding to the deviators of order two and three is
much smaller, it can be assumed that the material state under these
conditions is nearly symmetric with respect to a rotation around
the z-axis.

From an engineering point of view, the comparison of the
visualization results corresponding to the geometrically perfect
and imperfect lens model shows some clear differences which
are relevant regarding improved design. For the perfect lens,
the irreducible part norms corresponding to the symmetric part
of the first-order deviator show a perfect radial symmetry in
the flat lens region under consideration, cf. Figure 13a. Since
the geometrically imperfect lens does not yield such a uniform
distribution, the irreducible part norm of the symmetric first-order
deviator could be used as an indicator for the quality of the shape
of the electromechanical device. Its asymmetric counterpart, on the
other hand, shows rather similar results with regard to both deviator
norms and orientations of the multipoles when comparing the
perfect and imperfect lens model. Thus, the geometric imperfection
effects mainly the symmetric part. From the visualizations of the
higher-order deviators, further conclusions can be drawn. For the
second- and third- order deviators, cf. Figure 13a, belonging to
the perfect lens model, we observe a symmetry line at an angle
of 45◦ between the x- and z-axis. In the case of a geometric
imperfection, cf. Figure 13b, this symmetry line is shifted in the
circumferential direction toward the x-axis or, in other words,
towards the side where the radius of the curved lens region
increases. From this knowledge gained from the visualizations, the
design of electromechanical devices could, in general, be improved
with regard to energy efficiency by aiming for a uniform or at
least perfectly symmetric distribution of the respective tensorial
quantities. For the particular example of the bioinspired tunable
lens, the visualizations could additionally be an indicator of the
functionality of the device since production errors such as indicated
by the imperfect lens, geometry may lead to an inaccurately
adjusted curvature of the lens.

8 LESSONS FOR VISUALIZATION RESEARCH

Overall, the visual analysis of the electromechanical coupling
represented by the third-order tensor H was a success. This
can especially be seen from the analysis of the third and the
fourth example, the cube with a defect and the two lenses. The
engineers wrote: ”such information is most valuable since the
level of electromechanical coupling influences the efficiency of
the smart device on the one hand, and maximum electrical and
mechanical loading levels influence its lifetime as well as its failure
properties” as their evaluation in the last section where, based on
our visualization, more insight could be gained. Looking back at
the original questions from section 2 posed by the engineers, it can
be seen that we were able to

I. describe the behavior of the material by visualizing informa-
tion on the electrical loading and the directional information,
including information on the electrical field and the deforma-
tion.
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(a) Geometrically perfect lens model (b) Geometrically imperfect lens model

Fig. 13: Lens model: Representation of the multipole glyphs for the different deviators. The color map represents the norm of the
respective irreducible part. The black lines highlight the angles 1/8π , 1/4π , and 3/8π .
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II. present a tensor decomposition which is so far not well known,
respectively established in the community.

III. reduce the third-order tensor of the presented examples to
a few scalars and vectors. In the presented examples the
normalized vectors regarding the two first-order deviators and
one of the vectors regarding the third-order deviator equal
each other, which reduces the number of independent vectors.
The visualization of the multipoles makes it possible to gain
information on the electromechanical coupling. This allows
the analysis of the third-order tensor H in a way that was not
possible before and which creates new insights for engineers.

IV. apply established knowledge to obtain a first idea for an
interpretation of the multipole representation and use the
gained knowledge to obtain new information. This shows how
knowledge from simple examples can be transferred to more
difficult ones. In the end, the engineers were able to obtain
quite a good understanding of the material behavior, even in
the more difficult and complex case of a cube with a spherical
defect and the lenses. The information gained from the lens
example can be used in the future to improve the design.

V. show information that may support and improve component
design in the future. Even if the visualization has not yet
immediately improved the design of EAP-based actuators and
sensors, the engineers indicate that, in view of the design of
smart EAP-based devices, such information is most valuable.
Thus, the gained information concerning the coupling and
the electrical field can be used to support the design of such
components.

Even though this work may enable just a small step towards a
complete interpretation of the third-order tensor H, the visualization
helps to answer the questions asked by the engineers and can
hopefully be used to improve the design of sensors and actuators in
the future. Therefore, we have found answers to all questions from
the engineers, even if there is more to be obtained in the future.

There are three main lessons for visualization researchers which
can be drawn from this contribution.

1) The first lesson is that the design of electroactive polymer
based smart devices and the analysis of different coupling
problems is a most challenging and highly interesting interdis-
ciplinary research field. The missing (visual) analysis methods
complicate a systematic design and the optimization of related
smart systems.

2) At the heart of the design, there is the electromechanical
coupling described by a third-order tensor. Thus, the analysis
of third-order tensors turns out to be a second task that the
visualization community should concentrate on.

3) A third lesson is based on the well-known fact that large
and complex data requires a good overview. In visualization
literature, a wide array of tools are at our disposal. By utilizing
GPU-based rendering, applying linked multiple views, and
using the recently introduced CCC-Tools, we were able to
provide a well-structured overview of the data, taking into
account different scales of ranges. Later in the research
process, the visualization design may be reworked and
specialized. Nevertheless, the straightforward visualization
using these tools was sufficient for this basic applied research
and contained a vast amount of information.

9 CONCLUSION AND FUTURE WORK

In this contribution, we present a successful visual analysis of
a simulation of an electromechanically coupled problem. The
simulation results in tensor field data sets of different (especially
third) order, which are difficult to study due to their complexity
and the missing analysis methods of third-order tensors. We
demonstrate that the multipole representation allows the reduction
of the third-order tensors of these examples to a set of two to five
vectors and two to three scalars and allows a first interpretation
of these third-order tensors, which have so far only been analyzed
by their norm. As can be seen from the insights gained by the
engineers, our visualization allows us to answer the original
questions posed by the engineers. Our tensor visualization provides
illustrative information on the coupling response of the material
– here electromechanical coupling – with information on both
the level of coupling and the directional coupling properties. So
far, there is only very little information regarding this tensor
in the literature. In contrast, the described method allows the
interpretation of its directional properties and absolute values,
which is most valuable for optimal design approaches and lifetime,
respectively failure predictions. It can be seen in the examples
that nearly identical tensors are difficult to tell apart without color
coding. In the future, the visualization of tensors that are similar
should be analyzed.

The deviatoric decomposition is a powerful algebraic tool
that may be helpful for other higher-order tensor visualization
problems as well. To give some indication, we mentioned at the
beginning of this paper that there are other coupled problems apart
from the electromechanical coupling studied here, for example,
electromagnetic couplings or diffusion problems. Analyzing these
problems raises the same questions regarding higher-order tensors.
Thus, the presented visualization may also help domain experts in
these applications. Even if the problems may differ in the kind of
coupling, the interpretation developed in this paper may be used for
these settings as well. Furthermore, the visualization can be used
for each tensor up to dimension three with any index symmetry,
which could also be analyzed in the future.
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