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Provectories: Embedding-based Analysis of
Interaction Provenance Data

Conny Walchshofer, Andreas Hinterreiter, Kai Xu, Holger Stitz, and Marc Streit

Abstract—Understanding user behavior patterns and visual analysis strategies is a long-standing challenge. Existing approaches rely
largely on time-consuming manual processes such as interviews and the analysis of observational data. While it is technically possible
to capture a history of user interactions and application states, it remains difficult to extract and describe analysis strategies based on
interaction provenance. In this paper, we propose a novel visual approach to the meta-analysis of interaction provenance. We capture
single and multiple user sessions as graphs of high-dimensional application states. Our meta-analysis is based on two different types
of two-dimensional embeddings of these high-dimensional states: layouts based on (i) topology and (ii) attribute similarity. We applied
these visualization approaches to synthetic and real user provenance data captured in two user studies. From our visualizations, we
were able to extract patterns for data types and analytical reasoning strategies.

Index Terms—Visualization techniques, Information visualization, Visual analytics, Interaction Provenance, Sensemaking
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1 INTRODUCTION

UNDERSTANDING the analytical reasoning process of
users who work with interactive tools in general and

with visualization tools in particular has been an active
research topic. One way to gain more insights into how
users work with such tools is to record interaction provenance
data, which describes the lineage of data, system states,
visualizations used, and user interactions. It is typically
recorded in the form of protocols, such as audio/video
recordings [3], usage logs [18], and user notebooks [52].
In the human-computer interaction (HCI) community, these
are analyzed in an attempt to better understand user behav-
ior and intentions [31].

In recent years, the visualization community has recog-
nized the potential of insights gained from capturing [11],
[34], visualizing [6], [48], and interpreting provenance [5],
[46] from user interactions with visualization tools. Ac-
cording to the distributed cognition approach by Hollan et
al. [24], a close relationship exists between users’ activities
and their thought processes. Pohl et al. [41] argued that
visualizations of interaction provenance data can be used
to make sense of users’ reasoning processes. However, there
are few approaches that support effectively the meta-analysis
of analytic provenance as defined by Ragan et al. [43].

The primary contribution of our work is Provectories,
an approach that helps visualization researchers, designers,
and developers to better understand the behavioral patterns
and analytic strategies of users. We transform recorded
application states into feature vectors and visualize them
using two different types of layouts: (1) a topology-driven
layout based on the connectivity between states and (2) an
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attribute-driven layout based on similarity (see Figure 1).
Provectories introduces visual encodings and interactions
that enable meta-analysts to identify -– by means of in-
teractive exploration -– patterns in these layouts, which
can then be related to user actions. Provectories allows both
detailed analysis of single user sessions and identification of
similarities between multiple user sessions. It can be applied
to a broad spectrum of use cases and tools, ranging from
single interactive visualizations to feature-rich tools such as
Tableau and Microsoft Power BI.

To illustrate the effectiveness of Provectories, we describe
the visual patterns we extracted from visualizations of
synthetic user interactions and of real-world user interac-
tions from two user studies with different underlying visual
analysis tools. Based on our experience with different types
of interaction data, we elaborate on various strategies for
vectorizing the provenance data. Furthermore, we discuss
the relative strengths and weaknesses of both layouts used
in the Provectories workflow.

We structured the paper as follows. In Section 2 we
discuss existing approaches to interaction provenance rep-
resentation and analysis. In Section 3 we present application
scenarios and introduce an illustrative example. In Sec-
tion 4 we describe the Provectories workflow conceptually;
implementation details are given in Section 5. In Section 6
we present the results of applying Provectories to synthetic
and real-world interaction provenance data and discuss the
advantages of two different layouts. We then summarize the
limitations of our new visual analysis approach in Section 7.
Section 8 concludes the paper.

2 RELATED WORK

In this section, we describe how interaction provenance has
been defined in the literature and discuss why visualization
researchers might study interaction provenance. We then
discuss previous approaches to meta-analysis, in particular
those based on visualizations of provenance data.
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Fig. 1: Identifying meta-analysis patterns in interaction provenance through 1 a schematic display of the vector space generation and 2 the
influence of two layouts. a shows a single user session visualized using a topology-driven (force-directed) layout, and b represents multiple user
sessions visualized with an attribute-driven layout based on C-SNE. The circular annotations highlight 1 a loop back within the analysis process,
2 a chain of numerical value changes, 3 a selection of multiple countries, and 4 sessions alternating the assignment of attributes on the G-axis,
H-axis, and mark size. The colors of the states indicate numerical values from 1800 (○) in violet to 2015 (○) in light green.

2.1 Interaction Provenance
Ragan et al. [43] introduced an organizational framework
for different types of provenance in visualization and data
analysis. They defined interaction provenance as “the his-
tory of user actions and commands with a system” [43,
p.35]. There are various motivations for logging explicit
and observable user interactions, such as selections, clicks,
keystrokes, and mouse movement. Gotz and Zhou [19]
introduce an action taxonomy consisting of three top-level
categories that can be used to gain insights from provenance
data, namely exploration, insight, and meta-actions. Inter-
action logs can be used for the purposes of collaboration,
reproducibility, storytelling, and retrieval [21], [47]. More
closely related to our work, interaction provenance can be
analyzed to understand how users interact with a visualiza-
tion system [18] or to measure the effectiveness of a tool [9].
The process of making sense of such logs is referred to as
provenance meta-analysis.

2.2 Provenance Meta-Analysis
Ragan et al. [43] described meta-analysis as one of six
purposes for interaction provenance tracking. Xu et al. [53]
provided a spectrum of possible reasons for meta-analysis
of provenance data. Reviewing an analysis process to under-
stand the analytic strategies of users has been identified as
an important task [11], [14], [43], which can be implemented
in various ways.

Wei et al. [51], for instance, employed clickstream data to
analyze purchase patterns. The data is labeled with prede-
fined actions (e.g., selection of a category, setting a price) and

analyzed in sequential order. Heer et al. [22] described how
users interact with a visual analytics tool by evaluating ag-
gregated collections of history sessions. Pohl et al. [32] quali-
tatively analyzed interaction provenance based on thinking-
aloud protocols. They identified various strategies that users
applied to interpret and understand visualizations: compar-
ing, laddering, explaining (storytelling), summarizing, elim-
inating, and verifying. Similarly, Madanagopal et al. [30]
analyzed interaction provenance from a sociotechnical per-
spective by conducting interviews. They elaborated on how
analytical provenance can be captured and used by taking
different end-users into account. However, they pointed
out that further research into this topic is needed, as —
unlike data provenance — analytic provenance is still in its
infancy. With reVISit, Nobre et al. [35] analyzed interaction
provenance by comparing event sequences using a node-
link diagram and identified multidrag, sort and select, and
select and refine as analysis strategies. Provectories aims to
identify such user strategies as visual patterns. Thus, Provec-
tories is a visualization-based approach to the meta-analysis
of interaction provenance.

2.3 Provenance Visualization
According to a recent survey by Xu et al. [53], interaction
provenance is most commonly encoded as a temporally
ordered sequence. Visualizing interaction provenance in this
way allows step-wise retracing of the individual interac-
tions [5], [11], [14] and can thus convey the users’ thought
processes [29], [54]. However, sequential visualizations are
less suitable for discovering patterns and relationships.
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They neither preserve interesting topological structures,
such as loops or branches in a user’s interaction path,
nor convey a potential similarity between application states
visited. These issues are addressed by the topology-based and
attribute-driven visualization techniques in Provectories.

2.3.1 Topology-driven Layouts
Provenance data can be treated as a graph, with nodes
representing states of a data item or application and edges
representing actions of users that lead to transitions between
the states. Graph-based provenance visualization can reveal
patterns, such as branching, cycles, and commonly revisited
states (i.e., nodes with high connectivity).

VisTrails [7] is a graph-based visualization of workflow
provenance. GraphTrails [12] is an exploration tool for net-
work analysis that incorporates interaction provenance on
the fly. VizCept [8] is a collaborative analysis system for
textual data that allows users to keep track of each other’s
findings and relationships in a shared topological concept
map. The Knowledge-Transfer Graph by Zhao et al. [55] shows
a node-link visualization that aims to help researchers to
externalize their thought processes in collaborative analyses.
reVISit [35] assesses interaction provenance data based on
both qualitative and quantitative data by showing interac-
tion patterns and analysis strategies as event sequences.

Similarly, we use a force-directed graph layout to visu-
ally represent interaction provenance. In addition to this
topology-driven layout, we also investigate and employ
layouts in which the similarity between states determines
the positions of the nodes using so-called attribute-driven
layouts.

2.3.2 Attribute-driven Layouts
The application states in a provenance log can be viewed as
a high-dimensional time series rather than a graph. Bach et
al. [2] proposed TimeCurves as a visualization technique for
revealing similarity in high-dimensional time series. Time
curves are trajectories through a two-dimensional embed-
ding of data points, which give rise to visual patterns
such as clusters, cycles, U-turns, and oscillations. In Time-
Curves, embedding is based on multidimensional scaling
(MDS); similar visualizations can be constructed by means
of other dimensionality-reduction techniques, such as PCA,
C-SNE [50], and UMAP [33]. Time-curve-like visualizations
have been used to visualize high-dimensional time series
in a wide variety of application domains, for example,
dynamic graphs by van den Elzen et al. [49] and neural
networks by Rauber et al. [44].

In previous work [23], we used collections of time
curves to visualize decision-making processes in games and
puzzles, and described general patterns emerging in such
visualizations. In this work, we use the same approach to
visualize interaction provenance in an attribute-driven lay-
out. This makes our approach closely related to ModelSpace
by Brown et al. [6]. ModelSpace is based on the concept of
numerical analytic provenance, which consists of sequences of
vectors that describe the users’ interactions with a system
“via the proxy of changes to their underlying machine
learning models.” The authors also mention a possible ap-
plication of ModelSpace to visual analytics systems in which
the users do not interact with such models. However, from

the brief discussion of the example application—a search in-
terface for the Finding Waldo puzzle [5]—it is not clear how
the feature space in such cases relates to the insights gained
from the ModelSpace visualization. By applying our similar
approach to two visual analytics tools with fundamentally
different choices for the state representation, we aim to
strengthen this connection. Furthermore, we show that ad-
ditional visual encoding options and interaction techniques,
such as tailored single-state and summary visualizations or
a step-wise path analysis, can facilitate interpretation of the
projected provenance data.

3 REQUIREMENTS AND USAGE SCENARIO

We designed Provectories for the purpose of extracting and
understanding user behavior patterns and analysis strate-
gies from interaction provenance. Gleicher [17] enumerated
three ways of comparing sessions: comparison between two
items, between a few items, and between many items at
the same time. With Provectories, we aim to cover all three
aspects, performing meta-analysis to understand (i) a single
user’s analytical process, (ii) similar analysis processes by
single or multiple users, and (iii) similar approaches by and
between multiple users. Thus, Provectories uses two layouts
to enable comparison between unique states from a single
session, between unique states from multiple user sessions
and between contiguous states from multiple user sessions.

Single-session investigation focuses on understanding be-
havioral patterns and the overall analysis strategy of a single
user. This type of investigation aims to answer questions
such as whether a user encountered difficulties during
the analysis, or whether the user had a systematic search
strategy or performed a somewhat untargeted exploratory
analysis.

Multi-session investigation builds on the single-session
investigation, but focuses on comparing the interaction
provenance from multiple users working with the same
tool. Here, the goal is to understand the similarities and
differences in analysis behavior between the users. This type
of investigation aims to answer questions such as whether
many users encounter the same difficulties, or how effective
different analysis strategies are. Multi-session investigation
can be divided into comparing sessions in which users
perform (i) the same or similar tasks or (ii) different tasks.

3.1 Requirements

We derive the following requirements for single and mul-
tiple sessions from the existing literature [27], [37] and our
prior research experience [13], [23], [53]. To support single-
session investigation, Provectories is designed to:
S1 show the entire analysis sequence from beginning to

endin temporal order;

S2 include the user interaction and/or system state infor-
mation, such as the changes between two consecutive
steps in the analysis sequence;

S3 facilitate the analysis of data coverage during the ex-
ploratory analysis, for instance, as the data trails that
lead the user from the starting point to the final answer.
Further, we aim to identify whether a user focuses on
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Fig. 2: Interface of the Gapminder visual analytics tool [47] with the
current session history.

specific data attributes and/or on part of the dataset, or
more widely explores the entire data space;

S4 facilitate the investigation of any analysis tactics or
strategies that the user deployed. We therefore aim
to identify whether the user explores the data space
randomly or follows a particular strategy. This also in-
cludes identification of situations such as a user getting
stuck at a certain stage of their analysis, which could be
indicated by them revisiting certain visualization states.

To support multi-session investigation, Provectories aims to:

M1 provide an overview of all the analysis sessions in-
cluding which part of the dataset is investigated more
frequently and where most of the unsuccessful analyses
terminate;

M2 support comparison between analysis sessions for in-
stance, to determine whether successful analysis ses-
sions share similar exploration pathways and whether
there is any frequently occurring difference between
successful and unsuccessful sessions;

M3 facilitate the discovery of other sense-making patterns,
for instance, to determine whether more efficient analy-
sis sessions can be identified by specific visual patterns
and whether there exists any correlation between the
investigation strategy and data attributes/subspace.

3.2 Usage Scenario

We hereafter use Gapminder [45], [47] as a guiding example
to explain how Provectories works. The Gapminder tool
allows users to explore the development of countries over
time. As outlined in Figure 2, it consists of a bubble chart
in which each country is represented by a colored mark.
Users can interactively map attributes, such as GDP, life
expectancy, and child mortality, to either one of the axes or
the size of the country marks, and change the year between
1800 and 2015 with a time slider. At any time, the application
state can be fully described by the following information:
the timestamp of the interaction; the data attributes mapped
to G-axis, H-axis, mark size, and mark color; the year selected
(between 1800 and 2015); and any countries selected.

In a simple analysis of the relationship between popu-
lation and fertility among countries in 2015, the user can
perform the following steps: (1) change the year to 2015;
(2) change the data attribute for the H-axis to population;
(3) select the country Qatar; (4) add China to the country
selection; and (5) change the data attribute for the G-axis to
fertility. This analysis results in the five applications states
listed in Table 1.

1. Change Year

2. Change Y-Axis

3. Select Qatar

4. Select China

5. Change X-Axis

 First State
 Intermediate State
 Last State
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Fig. 3: Schematic illustration of the Gapminder usage scenario explain-
ing how application states are mapped in the two layout variants.

For the purpose of meta-analysis, we use the sequence
of application states visited by a user and display the
interaction provenance in two layouts, see Figure 3. In both
representations,+ and � indicate the beginning and the end
of a session, respectively. When applying a force-directed
(topology-driven) layout, a chain of five successive states is
visible. In contrast, the attribute-driven layout (calculated
using C-SNE) places the states that correspond to country
selections (states 3 and 4) closer to each other than the
other selected states. This is the result of an underlying
conceptual or analytical distance, which was defined to be
smaller between states 2 to 4 than between the others.

4 PROVECTORIES

The fundamental workflow underlying the Provectories ap-
proach consists of three steps, as illustrated in Figure 4:
1 the application states resulting from one user’s or mul-

tiple users’ interactions with a visual analytics tool are
recorded; 2 the application states are transformed into
high-dimensional feature vectors; and 3 for the purpose
of meta-analysis, the recorded analysis sessions are interac-
tively visualized as trajectories through a two-dimensional
embedding space based on various layout techniques.

4.1 Logging of Application States
As indicated in Figure 4 1 , the first step in the Provectories
workflow consists of creating user interaction logs for a
given visual analytics tool. Each user interaction (of a pre-
defined set of interactions) triggers logging of the updated
application state. The complexity of the visual analytics tool

TABLE 1
Interaction provenance for the Gapminder example. Here, x0, y0, s0,
and c0 represent the default data attributes mapped to the axes, size,

and color, respectively; Y 0 and C0 represent the default initial
selections for year and countries. Bold text indicates changes in the

application state resulting from a user interaction.

Time x-axis y -axis Size Color Year Countries

t0 x0 y0 s0 c0 Y 0 C0

t1 x0 y0 s0 c0 2015 C0

t2 x0 population s0 c0 2015 C0

t3 x0 population s0 c0 2015 Qatar
t4 x0 population s0 c0 2015 Qatar, China
t5 fertility population s0 c0 2015 Qatar, China
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Fig. 4: Provectories workflow. 1 Interaction provenance is captured from a visual analytics tool. 2 Each interaction leads to a system state which is
encoded as a feature vector such as s11 (○). 3 The sequence of provenance vectors is then visualized with a topology-driven or an attribute-driven
layout. Such a visualization can help to analyze a single session or to compare multiple sessions (such as Sessions 1 � and 2 �) concurrently.

and the goals of the subsequent meta-analysis determine the
granularity of the application state and which interactions
are to be logged. For the subsequent steps in the Provectories
workflow, it is important that each user session is stored
as a temporally ordered list (S1) of potentially unstructured
or heterogeneous data items which can be transformed into
feature vectors.

4.2 Vectorization of Application States

In the second step of the Provectories workflow, the logged
application states are transformed into numerical feature
vectors (see Figure 4 2 ). This transformation serves two
purposes: First, it provides a structured way to determine
equivalent states for the subsequent topology-driven layout
(see Section 4.3.1). Instead of performing the similarity
check directly on the complete and potentially complex
logged states, this “quantization” introduces an optional
abstraction and/or simplification step. Second, it enables
the calculation of distances between application states (see
Section 4.3.2).

In our study of related work and while applying Provec-
tories to various use cases, we came across three different
strategies of vectorizing application states:

1) Vectorization via proxy—In some applications, users’
interactions with a visual analytics system transform
an underlying object that may be readily represented
as a vector. The changes to this object can serve as a
proxy to understanding the user’s actions. This type of
vectorization is showcased in ModelSpace by Brown et
al. [6]. If the underlying object is not easily interpretable
in isolation, as is the case with black-box machine learn-
ing models, this approach may introduce an additional
layer of complexity.

2) Direct translation of interactive components—In
many visual analytics applications, each user inter-
action changes a variable of a given datatype. For
instance, radio buttons relate to categorical variables,
sliders to numerical variables, and the result of panning
in a 2D plot may be represented by a 2D vector. In such
cases, each variable of interest can be directly encoded
and used as part of a compound vector representation
that identifies the current application state.

3) Hand-crafted, semantic representations—In more
complex cases, the effects of user interactions mustbe
translated to a numerical form by introducing a rep-
resentation that conserves the semantics of the data
that the user interacts with. The exact form of this
representation depends strongly on the specific user
interface, the actions tracked, and the tasks performed
by the users.

The Gapminder usage scenario outlined in Section 3.2 lends
itself well to using a compound representation constructed
from direct translations of the interactive components. Here,
the individual encodings depend on the data type:

Cat For categorical attributes, a simple one-hot encoding
is the obvious choice.

Bool Boolean attributes can be treated as categorical at-
tributes with two options or can be represented by a single
integer that is either 0 or 1.

Num Numerical attributes require no further encoding.

Set Set attributes can be encoded by a sequence of zeros
and ones of length ;, where ; is the cardinality of the
complete set.

These encodings for categorical, Boolean, numerical, and
set attributes introduced above give rise to simple distance
metrics, as specified in Section 4.3.2. In many cases, how-
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ever, the user interactions are too complex to be directly
translated, or the tracked information is too low-level to
carry any information about the user’s mental model. In
such cases, higher-level features with better semantics must
be derived. In Section 6.3, we describe such a tailored
vector representation for the case of users interacting with a
scatterplot through brushing.

4.3 Visualization of Application States
The final step of the Provectories workflow is the visualiza-
tion of the paths that users take through the application-
state space (see Figure 4 3 ). The high-dimensional feature
vectors are embedded in two dimensions and visualized
as a scatterplot using either a topology-driven layout, which
emphasizes connectivity between identical states, or an
attribute-driven layout, which focuses on the similarity be-
tween states. In both cases, each point represents an ap-
plication state. The user paths are visualized as trajecto-
ries through these points. Data attributes or metadata can
be mapped to the visual channels of the line and point
marks. We first describe the embedding techniques and the
required pre-processing of the provenance vectors. We then
discuss the visual encoding choices and how meta-analysts
can interact with the Provectories visualization.

4.3.1 Topology-driven Layout
For the topology-driven layout, we treat the collection of
user sessions as a graph. We first determine a set of unique
nodes, where each node represents a unique application
state. Uniqueness is based on the identity of the high-
dimensional feature vectors. We treat two nodes as con-
nected if one succeeds the other in any of the user sessions
(S2). We lay out the nodes using a force-directed network
spatialization algorithm (ForceAtlas2 [25]; for implementa-
tion details, see Section 5). The nodes are then connected by
drawing a Catmull–Rom spline trajectory through them for
each session (M1; see Section 4.3.3).

In the topology-driven layout, a single user session with
no duplicate states always results in a linear “chain” of
points. Only when states are revisited or shared across
multiple sessions, do patterns, such as loops and branches,
emerge from this layout (S3, M2).

4.3.2 Attribute-driven Layout
For the attribute-driven layout, we treat the whole col-
lection of application-state vectors across all user sessions
as samples from a high-dimensional manifold. We embed
these samples based on their similarity (S3, M2, M3), using
various dimensionality reduction techniques. Specifically,
we compare the results for MDS, C-SNE, and UMAP.

As these dimensionality reduction techniques aim to
place similar points close to each other, it is important
to define a meaningful metric for calculating the mutual
distances between the high-dimensional feature vectors. For
compound representations based on simple translations of
interactive components, we suggest defining this distance
metric based on individual distance functions for each at-
tribute type. To this end, let 
8 and �8 be the vectorizations
of a single attribute with type :(8) ∈ {cat, bool, num, set} for
two different states � and �, as described in Section 4.2.

Cat For one-hot encoded categorical attributes, a reason-
able distance metric can be defined via the inner product:
3cat(�, �) = 1 − 
cat · �cat.

Bool For Boolean attributes encoded with a single number
(0 or 1), the result of an exclusive or (XOR) can be used:
3bool(�, �) = 
bool ⊕ �bool = 
bool + �bool (mod 2).
Num For one-dimensional numerical attributes in com-

pound representations, it makes sense to define the distance
as the absolute difference normalized to the total value
range (=max − =min) of the attribute: 3num(�, �) = |
num −
�num |/(=max − =min).

Set Set attributes may be compared using the Jaccard
index. Alternatively, if the encoding described in Section 4.2
is used, a normalized ?-norm of the difference between
two vectors can be used as a distance function: 3set(�, �) =
‖
set − �set‖?/B1/? , where B is the cardinality of the complete
set. See Section 6.1 for a short example and discussion of
this choice.

Total Finally, the total distance between two states � and
� in a compound representation can be calculated as the
weighted sum of all individual attribute distances:

3(�, �) =
∑
8

F8 × 3:(8)(�, �). (1)

By default, all weights are equal, i.e., F8 = 1, but they
can be chosen freely by the meta-analyst depending on the
scenario. The higher the weight of a specific attribute, the
greater the likelihood that patterns for the associated data
type will prevail in the embedding. This compound metric is
similar to a weighted version of Gower’s (dis)similarity [20].

In the case of a hand-crafted vectorization, the distance
function must be chosen/constructed such that the desired
semantics are preserved (see Section 6.3 for an example).
We use the pairwise distances as input to the MDS, C-SNE,
and UMAP techniques (Section 6.1 and 6.2). Unlike in our
previous work [23], we remove duplicate high-dimensional
vectors prior to the embedding by default. Otherwise, clus-
ters of identical points can be mistaken for specific data-
related patterns. In the case of compound representations,
this removal of duplicates takes into account whether any of
the weights have been set to zero by the user. Zero-weighted
attributes are treated as duplicates regardless of their value.
We set the perplexity hyperparameter of C-SNE to 50 by
default [50] and choose the nearest neighbor parameter for
UMAP accordingly (since perplexity can be understood as
a smooth measure of the number of nearest neighbors).
Details of the implementations used for the embedding are
given in Section 5.

4.3.3 Visual Encoding and Interactivity
As stated above, each layout technique results in a scatter-
plot of embedded application states. We visualize the user
sessions as spline trajectories through these points (S1, M1).
We chose this design over more traditional graph-drawing
techniques (e.g., tree layout) for three reasons: First, draw-
ing an individual trajectory for each session automatically
results in an effective multigraph visualization in which
parallel edges are visible as such. Second, each user session
has its own distinct path, whose visual channels can be used
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(a) Summary visualization

Changed year from
1800 to 2015

Changed y-axis attribute
from life expectancy to
population

Added Qatar to country
selection

Added China to country
selection

Start�

(b) History Graph

Fig. 5: (a) Provectories summary visualization for multiple selected
application states, encoding the relative frequency of attribute values.
(b) The history graph view for step-wise analysis of a single ses-
sion (S2).

to encode additional data. Third, in cases in which the meta-
analyst decides not to remove duplicates in the attribute-
driven layout, the same drawing algorithm can be applied.

Meta-analysts can select the visual encoding of the point
and line marks (S3). Point marks can be colored categori-
cally depending on categorical or Boolean values, or using a
sequential color scale for numerical values. An age attribute
which corresponds to the temporal index of each application
state within its session is also available. Lines can be colored
categorically by meta-attributes such as usernames and pre-
defined task labels. They can further be switched on and off
by their categorical labels and filtered by length by using
a range slider. These coloring and filtering options address
Explore Dimensions and Explore Items in Enriched Layout tasks
and as described by Nonato and Aupetit [36].

To let meta-analysts inspect the underlying high-dimen-
sional data for specific points, the Provectories visualization
features so-called summary visualizations [13] (S3, S4).
Upon hovering over a point, the summary visualization of
the corresponding single application state is shown. When
multiple points are selected (e.g., via a lasso selection), the
summary visualization is adapted to encode the distribution
of values among the application states (M2). The exact
visual encoding of the summary visualization depends on
the number and types of attributes that describe the state of
a given application.

Here, we describe the summary visualization designed
for the Gapminder example (see Figure 5a). A table lists all
categorical and Boolean attributes with their values, where
the frequency of values within the selection is encoded by
the size of the marker in each cell. A histogram shows the
distribution of year values. The distribution of set selections
is displayed as a list of country flags, with each flag’s opacity
encoding the number of states for which that country was
part of the selection. This list is ordered by frequency, with
the most frequently selected countries appearing first.

To facilitate tracing of individual user sessions even in
the presence of potential visual clutter, the history graph
with a list of user actions and the resulting application
states for an individual session can be activated (S1), see
Figure 5b. In reVISit, Nobre et al. [35] refer to the sequential

analysis of interaction states by a video-like experience us-
ing a playback feature. Selecting states in the history graph
overlays the embedding space with arrows that indicate
the position and direction of the user session. Analysts
can follow the session in a step-wise manner or via an
automated animation.

5 IMPLEMENTATION

The Provectories workflow is implemented as three indi-
vidual components which closely correspond to the three
steps of the workflow described in Figure 4: 1 a system
for tracking the interaction provenance, which must be
incorporated into the visual analytics tool that meta-analysts
want to study; 2 a module that structures, processes, and
exports the recorded provenance data; and 3 the interactive
visualization of the user sessions.

For the first user study (Gapminder), we use the Knowl-
edgePearls implementation of Gapminder [47] for prove-
nance tracking. The resulting provenance files were pro-
cessed in Python. We provide a Python module1 with classes
for application states, user sessions, and collections of ses-
sions that can be adapted to interaction data from different
visualizations. For the second user study (User Intent), we
used the experimental data Gadhave et al. [16] used to
predict user intent based on the selection of data points in
a scatterplot employing the Trrack library [10]. We again
provide a Python module2. The processed provenance data
can be exported with or without pre-calculated embedding
coordinates. We used the openTSNE implementation of C-
SNE [42], the official UMAP Python implementation [33],
the scikit-learn MDS implementation [38], and the ForceAt-
las2 implementation from the datashader module [1].

To visualize the exported interaction data, we used an
improved version of the ProjectionPathExplorer tool [23], with
online embedding functionality based on tsnejs [26], umap-
js [39] and Graphology ForceAtlas2 [40]. To increase the
comprehensiveness of pattern recognition by using both
topology- and attribute-driven layouts, we added a feature
that displays both layouts simultaneously in a multiple-
coordinated view. Additionally, as outlined in Section 4.3.3,
we used summary visualizations as suggested by Eckelt et
al. [13], for which we implemented custom visualizations for
both user studies, see Figure 5a and 9. All sessions described
in this paper can be explored online3.

6 RESULTS

In this section, we describe patterns identified within in-
teraction provenance data from synthetically generated ses-
sions and discuss detailed patterns observed in two user
studies with real interaction provenance data. The synthetic
sessions illustrate the visual patterns for data types, wh-
while othe real user sessions demonstrate the utility of
Provectories in studying actual analysis provenance. The first
user study shows the analysis of user sessions using the
socio-economical dataset in Gapminder. The second user

1. https://github.com/jku-vds-lab/sensemakingspace/
2. https://github.com/jku-vds-lab/provectories-user-intent/
3. Prototype: https://provectories.jku-vds-lab.at

https://github.com/jku-vds-lab/sensemakingspace/
https://github.com/jku-vds-lab/provectories-user-intent/
https://provectories.jku-vds-lab.at
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study examines the analysis provenance of 12 different ses-
sions from the study by Gadhave et al. [16], with six sessions
for outlier tasks (three for outliers based on clustered data
and three for outliers based on linear regression) and six
sessions for clustering tasks. The supplementary material
presents figures for all analyzed projections using differ-
ent layouts, tasks, datasets, and sessions. To interactively
explore the interaction provenance data, see our online
prototype.

6.1 Patterns for Compound Representations
The goal of the synthetically generated sessions was to
study data-type-specific patterns in embeddings based on
compound vector representations. For the synthetically gen-
erated sessions, we used the Gapminder dataset. We started
by creating sessions in which only a single data type (e.g.,
numerical or set) was changed in a predefined way. We also
created sessions in which two attributes were subjected to
random, but systematic changes. For each type, we sampled
30 sessions to check the validity of the observed patterns.
Additionally, we manually created 15 sessions with mixed
attribute changes to verify the insights gained. Further in-
formation can be retrieved from the supplemental material.
For the set attribute, we chose the 2-norm as a distance
function to make the average distance between two random
subsets is close to 0.7, but the between-typical-country se-
lections with few items is close to 0.5.

As expected, no data type-specific patterns are visible
in the topology-driven layout, while we were able to ex-
tract patterns for Boolean, categorical, numerical, and set
attributes from the attribute-driven layout (see Figure 6).
Bool Boolean attributes are distinctly separated within the

embedding space. This can be seen in Figure 6a, where the
Boolean attributes religion and continent occupy their own
separate areas in the embedding. We found that for the syn-
thetic data, a separation of the embedding into two distinct
regions almost always resulted from a Boolean attribute- if
the weighting was kept equal, see Eq. 1.

Cat Like Boolean changes, categorical attribute changes
can cause the formation of clusters for each category in
the embedding. Furthermore, certain trajectory patterns can
reveal categorical changes. In Figure 6b, for instance, a
cluster with the same value for the size attribute population is
shown. Within this cluster, categorical changes in another at-
tribute (here, G-axis) lead to substructures (fertility rate, child

mortality, or GDP) that are connected by crossing, zigzag-
ging lines. This phenomenon becomes more pronounced
when the weight of the corresponding data type is varied,
giving rise to hierarchical clustering, as explained further
below.

Num As shown in Figure 1 2 , changes in numerical at-
tributes lead to a chain of states in ascending or descending
order. With regard to interaction provenance, the states need
not be traversed by the user explicitly in this sequential
order, but the states automatically form a chain based on
the definition of the numerical distance. This chain pattern is
consistent for all three attribute-driven approaches (C-SNE,
MDS, and UMAP).

Set If only single set items are selected in each state, all
of these states have a mutual distance of 1/

√
=, where = rep-

resents the total number of countries within the embedding
space, see Figure 1 3 . The observation of accumulatively
selecting a country can be seen in Figure 6c. C-SNE, which
attempts to preserve high-dimensional distances, gives cir-
cular arrangements for single selected set attributes. Thus, a
combination of single and multiple selected countries leads
to a ring pattern, as outlined in Figure 6c A and B . Here,
A represents (1) a single selected set attribute as the inner
ring and (2) a second, added country as the outer ring before
(0) both countries are deselected again. This ring structure
arises from a distance of 1/

√
= between states with different

single-country selections and a distance of 2/
√
= between

states with two different countries selected.

Weighting. All patterns described so far were identified
for equally weighted attributes; that is F8 = 1 for all 8 in
Eq. 1. If the weight for an attribute type ) is increased (e.g.,
F8 = 10 for some 8 with :(8) = )), the patterns related to
this data type become more dominant in the attribute-driven
layout. For instance, increasing the weight of a numerical
attribute causes more states to be placed along a shared axis
representing that numerical attribute.

Hierarchical clustering. The weighting can be adjusted
to focus on a subset of data types while reducing or
completely removing the effect of the other types. For the
attribute-driven layout shown in Figure 7, the weight of
numerical and set attributes was reduced to zero (F8 = 0
for all 8 with :(8) = num or :(8) = set). This gives rise to
a hierarchical clustering based on the remaining Boolean
and categorical attribute values. Figure 7 1 shows a clear

(a) C-SNE—Boolean distinction over
multiple sessions

(b) C-SNE—Categorical changes in
multiple sessions

B

A

2
1

21

1

2

34

B

21
21

0

1
2
34

0

0

A

(c) C-SNE—Single and multiple set selections within a sin-
gle session

Fig. 6: Patterns identified from synthetically generated single and multiple sessions using an attribute-driven layout. Gapminder data showing (a) a
Boolean distinction between religion (○) and continent (○) within the embedding space; (b) categorical changes (○ ○ ○ ○ ○ the colors show
clusters for x-axis attributes); and (c) single and multiple set selections, where the number of selected states is indicated (0–4).
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Fig. 7: Hierarchical clustering for synthetic user sessions emerges in the following order: 1 Boolean, 2 categorical, 3 categorical after removing
the effect of numerical and set attributes by setting their weights to zero (wnum,set = 5). The simplified summary visualization shows the relative
frequencies of the Boolean and categorical attributes in the corresponding attribute color.

separation of the application states based on whether the
color attribute represents continent or religion; 2 within the
religion cluster, a further division is determined by the size
attribute; 3 within each cluster of equal-size value, the at-
tribute mapped to the G-axis causes a further sub-clustering.
The values of these attributes are shown in the summary
visualizations in the lower part of Figure 7. Consequently,
by adapting the weights, the ordering of attributes within
the hierarchy can be changed.

6.2 Meta-Analysis of Gapminder User Sessions

The goal of the first user study was to confirm the patterns
observed in the synthetic sessions and to discover further
analysis patterns in single and across multiple user sessions.
We conducted a user study with 32 participants (<: 17, 5 :
15). The participants were students of a master’s program
in data science, as part of which they attended an introduc-
tory course on data visualization. We asked participants to
complete four tasks following the Brehmer and Munzner
taxonomy [4] by using the Gapminder tool.

We designed T1 and T2 as directed tasks (identification
tasks), where the answers could be identified within a
small number of interactions. In contrast, T3 (comparison
task) and T4 (summarization task) were exploratory, open-
ended tasks, which typically lead to longer sequences, see
Table 2. As described in Section 5, we made use of the Vega-
Gapminder tool, which saves the interaction provenance.
We asked the participants to download the interaction
provenance after completing each task so that the starting
point for each session could be identified. We removed the
sessions that contained all tasks in one file, which reduced
the total number of sessions to 109.

Data Types. We were able to confirm the patterns ob-
served in the synthetic sessions for all four data types (see
Section 6.1). As expected, T1 did not reveal any data type-
specific patterns because accomplishing the task required
only the year to be changed once. Since task T2 involved
a Boolean change, sessions related to this task formed two
clusters — but not as distinctly as in the synthetic sessions.
Moreover, categorical changes became apparent for both

TABLE 2
Overview of the four tasks from the user experiment, with average answer correctness and average number of steps taken to accomplish a task.

Task Question ∅ Answer
Correctness

∅ Number
of Steps

T1 In 2015, select (a) the country with the highest GDP, and (b) the country with the largest population. 78.0 % ± 0.3 % 17.5 ± 14.0

T2 In 1843, select the Muslim country that has (a) the highest child mortality rate (b) the highest fertility rate. 87.0 % ± 0.3 % 18.7 ± 13.7

T3 Select the European country that had the largest relative drop in population between 1939 and 1945. 40.6 % ± 0.5 % 27.7 ± 23.8

T4 Select any country on the continent that has the highest correlation between any two attributes in 1945. 0.3 % ± 0.1 % 29.8 ± 34.0
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single and multiple sessions. The open-ended task T3 re-
quired categorical changes, numerical variations, and set
alternations, where most participants set the target attribute
to population on the G-axis or mapped it to the size. As an-
ticipated, T4 consisted mainly of categorical changes, where
participants explored the data-point distribution from the
Gapminder scatterplot for almost all possible attribute com-
binations and selected single countries at the end of the
sessions. The attribute-driven layout using C-SNE can be
seen for T4 in Figure 1, showing the interaction provenance
of all users. Overall, the data-type observations in all four
tasks match the patterns from the synthetically generated
sessions.

Analytical Strategies. T1 was answered correctly by
78.0% of the participants using an average of 17.52 ± 14.01
steps. In both layouts, it can be seen that most participants
had already found the answers to both subquestions after an
average of four steps (S3), but continued to explore the data
and the tool by using the slider for the numerical attribute
or the drop-down menu for categorical changes. As these
additional steps were not necessary to complete the task,
we call this process a random walk (S4). Additionally, super-
imposed trajectories pointing from one cluster to another
reveal that most participants chose the same analysis steps
to accomplish the task (M1, M2). States visualized by the
attribute-driven layout distinctly show two small clusters
within the embedding for both answers. In contrast, in the
topology-driven layout, no unique positions for the answers
can be identified. This can be attributed to the higher num-
ber of nonidentical states (e.g., attribute on G was placed
on the H-axis). Thus, answers relatively close to the actual
answer point towards the outer region of the embedding
if no other user selected the same application state. It is
important to note that without the summary visualization,
such sessions cannot be distinguished from random-walk
analysis strategies. For T2, half of the participants started by
changing the year, while the other half began by changing
the Boolean attribute first. This can be seen by observing
directed trajectories for single user sessions in the embed-
ding in combination of the history graph (M2). Particularly
noticeable are the variations in categorical attributes. Par-
ticipants confirmed the country selection several times by
changing the assignment of the target attribute to different
categorical positions (e.g., G-axis, H-axis, mark size). These
changes formed a zigzag pattern as shown for the synthetic
sessions in Figure 6b. About one third of the participants
(35.38%) completed the task by identifying both answers
(country with the highest child mortality and fertility rate)
in the same application state with both (T2a) child mortality
and (T2b) fertility as categorical axis options (M3).

We observed that multiple exploration paths led to the
correct answer (M2). For T3, 18 out of 22 sessions first con-
verged on one unique application state before continuing
the analysis in various ways. Participants started by chang-
ing the year to 1940 before selecting different countries and
varying categorical characteristics to determine the largest
relative drop in the population between 1939 and 1945. As
shown in Figure 8, one user, for instance, started (+) by
assessing the correlation between two attributes by selecting
all H-axis attributes (except for child mortality), and then
revisited the initial attribute (S1, S2). This sequence leads



2

3 1


(a) Force-Directed layout (b) C-SNE layout

Fig. 8: Gapminder user study: single user session with 23 steps from
T3, showing 1 alternation between y-axis items, 2 toggling between
two states and 3 a verification loop by screening for incorrect states.
The user session starts at + and ends at �.

to a visual loop in the topology-driven layout 1 . The user
continued by changing the year and alternating between
two set attributes 2 . Toggling compares the two alternatives
and verifies the final selection. Before terminating the anal-
ysis, the participant looked at four other countries 3 and
confirmed the initial selection (�). T3 also benefits from
using the attribute-driven layout to visualize the interaction
provenance , as participants selected different countries
after changing the year to 1940, and the selected states are
positioned close to each other. Hence, the topology-driven
layout treats these states as independent and unique (see
Figure 8a), and the attribute-driven approach emphasizes
the similarity of the application states for different analysis
processes (see Figure 8b). The average answer correctness
for T3 was 40.6%, and the average number of steps were
taken to accomplish the task was 27.27 ± 23.8.

The last exploration task T4 shows states and overlap-
ping trajectories within the embedding identical to those in
T3 as the same year—1945—had to be selected to accomplish
the task. In general, both open-ended tasks cover a large
area within the embedding space. T4 showed an average re-
sponse accuracy of 0%, while the number of steps to accom-
plish the task was higher (29.8 ± 34.0) than for the directed
tasks (T1 and T2). Overall, participants tried to find the
highest correlation between any two attributes by varying
all attribute combinations for any categorical combinations
for T4. Furthermore, the attribute-driven layout for T4 shows
a zigzag pattern, which means that G- and size attributes are
contained within clusters of H-attributes, which confirms the
hierarchical structure described in Section 6.2.

Layout Applicability. Based on the insights gained from
synthetically generated sessions and real user interaction
provenance, Table 3 summarizes the patterns identified. De-
pending on the layout and the visual pattern, we introduce
an indicator that describes the readability and validity of
each pattern. The former indicates whether it is possible to
identify this pattern within the embedding space, and the
latter signifies the reliability of the pattern.

Data type-specific patterns emerge only in an attribute-
driven layout. Each Boolean item occupies its own area
within the embedding space, which leads to two distinct
areas for all three techniques (C-SNE, MDS, and UMAP);
this can be accentuated by putting a higher weight on
the data type. When only a single session is embedded
by itself, categorical changes are difficult to extract due to
the low number of states within the embedding space. In
contrast, when multiple sessions are embedded at the same
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TABLE 3
Visual and data patterns extracted from various techniques, with

indicators for the levels of readability (X low, Y medium, Y high) and
validity (Å low, � medium, � high).

Patterns Topology-
driven

C-SNE MDS UMAP

Bool

Cat

Num

Set

Comparison
B8 � B8+1

Looping
B8 = B8+:

Similar
selection
B8 ≈ B 9

Attribute-driven

YÅ Y�

Y�

XÅ Y�

Y�Y� XÅXÅ XÅ

Y� Y�

Y� Y�

XÅ Y�

time, additional states provide enough context that clusters
for each attribute can emerge. However, the high number
of trajectories can result in visual clutter. In these cases,
making use of adaptations in the visual encodings with
the Projection Space Explorer supports the identification
of categorical changes by filtering and therefore visually
removing non-relevant user sessions or applying a color en-
coding based on a specific attribute. Further, tracing single
sessions using the history feature highlights the session of
interest by outlining differences between two consecutive
states. In contrast, a chain of states emerging from numerical
value changes has high validity within all three algorithms;
cumulatively selected set items also exhibit this behavior. In
addition, single selected set attributes form a circular state
pattern for C-SNE. MDS and UMAP do not yield a clear
pattern, since many data points converge to almost a single
position in the embedding space. Although C-SNE is known
for preserving local structures better, while UMAP is said
to preserve global structures better, the only clear difference
we could identify between the two approaches was in the
attribution of set patterns. We also observed—as expected—
that with increasing perplexity values the C-SNE scatterplots
tended to resemble those constructed with UMAP.

To trace users’ analysis steps, both topology-driven and
attribute-driven layouts can be applied to identify steps

revisited in single and multiple sessions based on the re-
moval of duplicates (and, similarly, for loops containing
intermediate states). However, readability and validity are
higher in topology-driven layouts. Thus, confirmation or
verification tasks can be observed for single user sessions.
Due to overlapping and intersecting trajectories, edenti-
fying an analytical reasoning process for a single session
becomes more difficult with increasing number of sessions.
We address this shortcoming with the history graph (see
Figure 5b), which allows meta-analysts to detect and under-
stand patterns of single user sessions in multiple simulta-
neously displayed sessions by highlighting the session of
interest. Near-identical data points can only be identified in
an attribute-driven layout, where they are positioned closer
to each other. Consequently, overlapping trajectories signify
application states that were also visited by other users in
the same analytical sequence. In MDS and UMAP, however,
data points of set attributes almost overlap in the embed-
ding space, whereas the chain pattern of numerical values
results in a small distance between similar data points. For
UMAP, this may be improved by choosing a different setting
of the mindist parameter.

Further, individual analysis steps or steps of a random
walk represent unique data points. Particularly for MDS
and UMAP, Boolean and categorical changes give rise to
visually distant data points. Based on the entropy of the
embedding space, individual data points or even sessions
become distinctive. Moreover, sessions that end at a unique
state composition are positioned at the outer part of the
embedding in the topology-driven layout.

6.3 Meta-Analysis of User Intent Sessions

We demonstrate the general applicability of Provectories us-
ing interaction provenance data from the users’ intent study
by Gadhave et al. [16]. They conducted a crowdsourcing
user study with 130 participants, where each participant
performed five different tasks. In tasks, participants were
asked to select outliers or data points that belonged to a
cluster in a scatterplot. They analyzed two conditions: In the
first, they were supported computationally in selecting, for
instance, their desired outliers by an auto-complete feature,
which became apparent after they had selected the first data
point. In the second condition, users had to accomplish the
tasks manually without any computational assistance. In
total, 12 different datasets were used for outlier tasks (clus-
ter and linear) and six for cluster tasks, each with three
difficulty levels (easy, medium, hard).

To analyze the user behavior, we extracted the set of
selected data points after each interaction. Unlike in the
Gapminder example, we chose not to use this information
as a simple set attribute, but instead calculated a more
meaningful feature vector that concisely describes both the
number and the positions of all selected points. We first nor-
malized the coordinates of all data points from the different
datasets that users interacted with. We then constructed a
10-by-10 grid and counted the number of selected points
within each grid cell. The resulting 2D histogram was flat-
tened into a vector and the vectors were compared using the
cosine similarity. This encoding ensures that point selections
in similar regions of the scatterplots are close together even
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Fig. 9: Far left: summary visualization of all interaction provenance states within the embedding for the dataset outlier (linear) easy 1. 1 — 5 show
the summary visualizations using the storytelling feature (playback features as in Nobre et al. [35]) for analyzing a single user session. Outliers
were first selected at the top of the scatterplot, then at the bottom finally at the top again.

if the sets of selected points do not match exactly. This
encoding is an example of point (3) in Section 4.2, which
enables a meaningful comparison of user selections across
different datasets. For the summary visualizations, we sim-
ply show scatterplots of the selected points, with opacity
encoding the number of analyzed states in which a given
point is part of the selection.

We additionally enrich the Provectories visualization with
meta-attributes to understand the embeddings in more de-
tail, following a tailored summary visualization to under-
stand the data point selection for each dataset and the
high-dimensional data summary visualization from Eckelt
et al. [13]. The meta-attributes in this user study were the
user ID, the task ID, the accuracy per task at the user
level, the task difficulty level, the Boolean attribute of auto-
complete used, and the selected rank of the prediction used
by a user.

Analytical Strategies. We can confirm the observed select
and refine analysis strategy identified by Nobre et al. [35], for
single user sessions by means of the playback function in
the history graph. Further, when performing single-session
investigations of the outlier tasks, a top-to-bottom approach
becomes visible (S3 and S4)Participants primarily started
to select the outliers at the top of the scatterplot before se-
lecting outliers towards the center or bottom (see summary
visualizations in Figure 9 S1). This analysis strategy can also
be observed for multiple users, where outlier selections form
distinct clusters within the embedding (M3, see cluster A–
H in Figure 10). In contrast, Cluster I is located away from
these clusters. Here, the summary visualization reveals that
the most prominent of all outliers, the data point in the
upper left corner of the scatterplot, was not selected. Hence,
the summary visualization for all states in the embedding
is almost identical to the original scatterplot of the dataset,
while the summary visualization of only the visually iden-
tifiable clusters in the embedding , provides information
about the outlier coordinates/positions. In addition, from
both the transparency of trajectories and the direction in
which the trajectories are pointing, it can be seen that the
selection of outliers was performed by multiple users in the
same/a similar sequence (M2).

Dataset Complexity . Further, in line with the perfor-
mance measures from Gadhave et al. [16], Provectories shows
different patterns in the embeddings for the different levels
of dataset complexity. Easy tasks exhibit numerous super-
imposed trajectories pointing from one state to another,

indicating states with the same data point selections (see
dataset cluster easy 1 in Figure 11a). In contrast, hard tasks
show a higher number of unique states in the embedding
and hardly any overlapping trajectories (see dataset cluster
hard 1 in Figure 11b) (M1). Also, as outlined in Figure 11, the
orange ground truth state was identified exactly for the easy
task, while no participant reached 100% answer correctness
for the cluster hard 1 dataset. Gadhave et al. also assumed
a confidence interval of 95% to analyze answer correctness.
When looking at clusters close to the ground truth state,
we can visually determine distinct cluster positions in the
embedding for the easy tasks, whereas the auto-complete
prediction in the user intent study for hard tasks does not
exhibit any distinct clusters (see supplementary material).
We deem this observation useful for developing an ap-
proach to system for usability testing by not only assessing
the number of click events a user needs to accomplish a task,
but additionally checking whether multiple users follow the
same path to navigate through a tool. This could help meta-
analysts to identify aspects of the tool that might distract the
user.

Prediction. After consultation with the authors, it re-
mained unclear, whether the computational auto-complete
suggestion led the users directly to the final answer or
whether they continued their analysis process. Thus, we
investigated the supported condition in more detail. Using
color and shape encodings in addition to the summary
visualizations, we observed that 38.7% of the participants
who used the prediction feature for outlier tasks ended
their sessions at the ground truth state—52.5% in the outlier
(cluster) and 25.5% in the outlier (linear) task. The descriptive
values were extracted from the summary visualization. In
the cluster tasks, only 21.8% of the users selected the correct
one of three suggested predictions and therefore terminated
their session at the ground truth state. Hardly any partici-
pant performing a task on one of the hard datasets (outlier
and cluster) reached the ground truth state–except in the
case of the outlier (cluster) hard 2 dataset. Further, Provec-
tories enabled the identification of sessions in which users
selected incorrect predictions and consequently refined the
data point selection for the scatterplot (M2).

Analysis of the interaction provenance of the second user
study revealed analysis strategies such as top-to-bottomand
select and refine, and also identification of dead ends, which
were resolved by the auto-complete feature, was observed.
Again, dead ends or looping behaviors were best observed in
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Fig. 10: Cluster-based analysis using C-SNE on the example of the outlier (cluster) medium 2 dataset, performing a multiple-user investigation.
Distinct clusters (Cluster A–H) can be observed for outlier selections and superimposed trajectories, which indicates that data points wereselected
performed in the same/a similar sequence by multiple users. The ground truth is indicated in orange (+).

(a) Cluster Easy 1 (b) Cluster Hard 1

Fig. 11: Projections for an easy and a hard cluster task. Easy tasks
show superimposed trajectories and few states. The hard task shows
numerous unique states and trajectories pointing in all directions. The
ground truth is indicated in orange (+).

the topology-driven layout. By comparing multiple users
performing the same task on a dataset, it was possible
to identify clusters in the attribute-driven layouts which
indicate the same or similar state constitutions. Taking su-
perimposed trajectories and the direction of the trajectories
into account allows solution strategies to be observed and
determined.

7 DISCUSSION

Vector Representations. In a few visual analytics applica-
tions, users manipulate an object for which a vector repre-
sentation is readily available (e.g., an underlying machine
learning model). We thus see the compound representa-
tion explained in Section 4.2—and showcased with the

Gapminder user sessions—as a potential starting point for
provenance meta-analysis. For many applications, it may be
possible to encode each interactive visual component based
on the data type of its underlying variable. We have shown
that the resulting compound representations lead to certain
type-specific patterns in the Provectories visualization, which
may be accentuated by weighting. However, care must be
taken to correctly interpret patterns under the influence of
hierarchical clustering (see Section 6.2). In our meta-analysis
of the user intent study data [16] presented in Section 6.3, we
have shown the potential of a semantic state representation
that is not directly based on low-level variables. However,
it is difficult to make general statements about such repre-
sentations, as they need to be constructed on a case-by-case
basis, with careful consideration of the artifacts manipulated
by the users and the tasks performed.

One aspect that is not considered in the layout
calculation—aside from the sequential order for drawing the
lines—is the time users took between states. We refrained
from adding timestamps or time differences to the state rep-
resentations, as this would introduce differences between
otherwise equivalent states, which could, in turn, obfuscate
the patterns we identified. However, it would be interesting
to explore the information contained in the time data. We
see two potential ways to proceed: (1) adding additional
encoding options for line segments, which could be used
to identify slow and fast stages of the user sessions; and
(2) incorporating the dimension of time separately, similarly
to how we process connectivity information in our hybrid
layout approach proposed below.
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We found it especially challenging to find suitable state
representations in cases where users can create unlimited
visual components themselves (e.g., new views in dash-
boards). We hypothesize that for such tools a representation
similar to Fock states in quantum mechanics [15] could
be used to describe the components in the infinitely large
configuration space. In such a representation, rather than
listing all views with their attributes, the possible attribute
combinations are listed along with associated “counts” of
views that share these attributes.

Motifs. With our novel visual analysis approach, we
extracted patterns based on the connectivity and similar-
ity of application states. To increase the knowledge about
analysis sequences and to reduce visual complexity, we
suggest using a motif-based aggregation for both layout
approaches [48]. The detection of motifs allows us to aggre-
gate the provenance graph or parts thereof while preserving
the high-level structure. This adds the potential to “chunk”
interaction sequences for a more compact display. Further-
more, identified patterns could be rendered as a sequence of
actions and compared across multiple sessions. In line with
the idea of using a motif-based approach, edge bundling
could be applied to reduce visual clutter. This could be of
particular benefit when visualizing multiple user sessions
in the same embedding space, as clutter emerges due to
overlapping trajectories.

Hybrid Layout Approach. To combine the advantages of
both the topology and the attribute-driven layouts, we have
started to develop a hybrid layout approach. In the purely
attribute-driven layout used in our work, the distance ma-
trix for C-SNE or UMAP is calculated directly from the
attribute values (see Section 4.2), while the topology-driven
layout is based on the connectivity of states. Our hybrid
approach builds on tsNET [28], which creates a topology-
driven layout by transforming the adjacency matrix of a
graph into a distance matrix which is then used for C-
SNE. We combine this topology-driven distance matrix with
the attribute-driven one and use their weighted sum for a
hybrid embedding. For the sessions from the user intent
data, we found that a hybrid embedding with low weight on
the attribute-based distances reveals similar patterns as the
purely attribute-driven one while avoiding the shortcoming
of degenerate distances for empty selections. We believe that
the applicability of such hybrid layouts exceeds the scope of
Provectories, and we plan to further refine and study this
technique as part of future work.

8 CONCLUSION

In this paper, we have presented a novel visual analysis
approach to extracting patterns from interaction provenance
data. Our Provectories approach consists of three steps:
(1) the acquisition of interaction provenance data in the
form of logged application states, (2) the construction of
feature vectors representing these states, and (3) the visual-
ization of provenance using topology- and attribute-driven
layouts. By interactively exploring such visualizations for
compound representations and real user sessions, patterns
based on data types and analytical reasoning processes can
be revealed. We have demonstrated our approach in two
user studies, and were able, using Provectories, to increase

the comprehension of interaction logs. However, interaction
provenance from other applications, in particular, feature-
rich tools such as Tableau and Power BI remain to be
explored. We strongly believe that Provectories can fill a gap
in the field of provenance and sense-making to improve
the understanding of similarities between analysis processes
and user-specific behaviors.
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