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Speech-Driven Personalized Gesture Synthetics:
Harnessing Automatic Fuzzy Feature Inference

Fan Zhang , Zhaohan Wang , Xin Lyu , Siyuan Zhao , Mengjian Li , Weidong Geng , Naye Ji , Hui Du ,
Fuxing Gao , Hao Wu , and Shunman Li

Abstract—Speech-driven gesture generation is an emerging field
within virtual human creation. However, a significant challenge
lies in accurately determining and processing the multitude of
input features (such as acoustic, semantic, emotional, personality,
and even subtle unknown features). Traditional approaches, re-
liant on various explicit feature inputs and complex multimodal
processing, constrain the expressiveness of resulting gestures and
limit their applicability. To address these challenges, we present
Persona-Gestor, a novel end-to-end generative model designed to
generate highly personalized 3D full-body gestures solely relying
on raw speech audio. The model combines a fuzzy feature extractor
and a non-autoregressive Adaptive Layer Normalization (AdaLN)
transformer diffusion architecture (DiTs-based). The fuzzy feature
extractor harnesses a fuzzy inference strategy that automatically
infers implicit, continuous fuzzy features. These fuzzy features,
represented as a unified latent feature, are fed into the AdaLN
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transformer. The AdaLN transformer introduces a conditional
mechanism that applies a uniform function across all tokens,
thereby effectively modeling the correlation between the fuzzy
features and the gesture sequence. This module ensures a high
level of gesture-speech synchronization while preserving natural-
ness. Finally, we employ the diffusion model to train and infer
various gestures. Extensive subjective and objective evaluations
on the Trinity, ZEGGS, and BEAT datasets confirm our model’s
superior performance to the current state-of-the-art approaches.
Persona-Gestor improves the system’s usability and generalization
capabilities, setting a new benchmark in speech-driven gesture
synthesis and broadening the horizon for virtual human technology.

Index Terms—Speech-driven, gesture synthesis, fuzzy inference,
AdaLN, diffusion, transformer, DiTs.

I. INTRODUCTION

R ECENT advancements have significantly expanded the
use of 3D virtual human technology. Its growing appeal

spans numerous applications, including animation, gaming, dig-
ital receptionists, and human-computer interaction. A major
task in this research area is to create credible, personalized
co-speech gestures. Speech-driven gesture generation through
deep learning provides a cost-effective solution, eliminating
the need for manual intervention associated with conventional
motion capture systems.

However, the primary challenge in speech-driven gesture gen-
eration is precisely identifying the vast array of input conditions
necessary for driving gesture synthesis. This complexity arises
because an extensive range of factors, including acoustics, se-
mantics, emotions, personality traits, and demographic variables
like gender, age, etc., shape co-speech gestures.

Previous approaches [1], [2], [3], [4], [5], [6], [7] have ex-
plored the use of manual labels and diverse feature inputs to
facilitate the synthesis of personalized gestures. Nonetheless,
these methods depend heavily on various unstructured feature
inputs and require complex multimodal processing. These ap-
proaches present a significant barrier to the practical application
and broader adoption of virtual human technologies.

The fuzzy inference strategy, which pertains to the concept
of fuzzy logic [8], is particularly useful in the field for dealing
with uncertain or imprecise information. The fuzzy inference
strategy is known for its effectiveness in speech-emotion recog-
nition [9] and audio classification [10]. These methods do not
necessarily require explicit classification outputs but instead
provide fuzzy feature information, which broadens the explicit
discrete space into an expansive implicit continuous fuzzy space.
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The information in fuzzy space better aligns with the actual
scenario. Relevantly, research in psychology highlights the sig-
nificance of various factors in speech [11], [12], [13], [14]. These
factors, called fuzzy features, are intricately intertwined with
co-speech gestures. These studies present novel opportunities
for synthesizing personalized gestures based solely on speech
audio, thereby simplifying the feature inputs and reducing the
complexity of multimodal processing.

Another challenge in this field is ensuring a high level of
gesture-speech synchronization while preserving naturalness.
Recent developments have focused on the application of Trans-
former and Diffusion-based models. This methodological shift
has led to substantial progress in the efficiency and flexibility
of gesture-generation technologies. Key examples of such in-
novative efforts include Taming [15], Diffuse Style Gesture [2],
Diffuse Style Gesture+[3], GestureDiffuClip [16], and LDA [4].
Yet, these approaches encounter challenges with either insuf-
ficient or excessive correlation between gesture and speech,
reducing the naturalness of the generated gestures.

The success of the Diffusion Transformers(DiTs) in text2-
image [17] and Stable Diffusion 31 and text2video generation
tasks, such as Sora,2 which incorporates AdaLN, marks a sig-
nificant advancement. This framework introduces a conditional
mechanism that applies a uniform function across all tokens,
enhancing the model’s ability to represent conditional and output
features. This conditional mechanism also holds promise for
effectively enhancing the ability to model the intricate map-
ping between speech and gestures. While the original DiTs
take discrete text prompts as conditional inputs, its adaptability
for sequence-to-sequence tasks, such as speech-driven gesture
generation, presents an area of exploration.

In this study, we propose Persona-Gestor, a novel approach
aimed at synthesizing personalized gestures solely from raw
speech audio. This model innovatively introduces a fuzzy feature
inference strategy within its condition extractor and incorpo-
rates AdaLN in a diffusion-based transformer module. Persona-
Gestor transitions from explicit conditions to a nuanced, con-
tinuous representation of fuzzy features by employing fuzzy
inference, which captures a broad spectrum of stylistic nuances
and specific audio details. These features are integrated into a
unified latent representation, synthesizing intricate 3D full-body
gestures. Adopting AdaLN significantly enhances the model’s
capability to depict the nuanced relationship between speech
and gestures. Leveraging a diffusion process, the framework
can generate diverse gesture outputs, showcasing the potential
for high fidelity in gesture synthesis as shown in Fig. 1.

For clarity, our contributions are summarized as follows:
� We pioneering introduce the fuzzy feature inference strat-

egy that enables driving a wider range of personalized
gesture synthesis from speech audio alone, removing the
need for style labels or extra inputs. This fuzzy feature ex-
tractor improves the system’s usability and generalization
capabilities. To the best of our knowledge, it is the first

1https://stability.ai/news/stable-diffusion-3
2https://openai.com/sora

Fig. 1. Each pose depicted is personalized gestures generated solely relying
on raw speech audio. Persona-Gestor offers a versatile solution that bypasses
complex multimodal processing and enhances user-friendliness.

approach that uses fuzzy features to generate co-speech
personalized gestures.

� We combined AdaLN transformer architecture within the
diffusion model to enhance the Modeling of the gesture-
speech interplay. We demonstrate that this architecture can
generate gestures that achieve an optimal balance of natural
and speech synchronization.

� Extensive subjective and objective evaluations reveal that
our model is superior to the current state-of-the-art ap-
proaches. These results show the remarkable capability of
our method in generating credible, speech-appropriateness,
and personalized gestures.

II. RELATED WORK

The present discussion offers a succinct overview of the
conditional extraction mechanism and generative models within
speech-driven gesture generation.

A. Condition Extraction Mechanism

Recent advancements in co-speech gesture generation sys-
tems have incorporated various unstructured conditional infor-
mation as input.

Selecting optimal representations for conditional input is
a crucial research challenge in creating virtual human mo-
tions [18], [19]. For accurate reflection of gestures that match
the auditory perception, prevalent research [7], [20], [21], [22]
utilizes preprocessed audio features, such as MFCCs, log am-
plitude spectrogram, etc. Li et al. [6] develop a model for di-
rect audio-to-gesture mapping. Despite these methods capturing
acoustic nuances, the quest for richer feature sets continues.
This has prompted investigations into the WavLM model, a
refined, pre-trained wav2vec framework, for enhanced speech

https://stability.ai/news/stable-diffusion-3
https://openai.com/sora
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extraction, showcasing in ReprGesture [23], QPGesture [24],
and DiffuseStyleGesture [2].

Text-based co-speech gesture synthesis has seen signifi-
cant contributions, such as Yoon et al.’s [25] recurrent neu-
ral network approach and Taras et al.’s [26] system, which
merges acoustic and semantic speech features, employing
BERT for semantic analysis [27]. Additionally, Uttaran et
al. [28] utilize GloVe embeddings [29] to surpass mod-
els of similar dimensions, like Word2Vec [30] and Fast-
Text [31]. Merging acoustic with semantic data offers a valu-
able path to enhance the relevance and context of generated
gestures. Nonetheless, these modalities’ manual alignment and
integration pose a challenge in effectively superior gesture
synthesis.

For creating style-specific gestures, ReprGesture [23] and
QPGesture [24] integrate textual data with audio features,
whereas DiffuseStyleGesture [2] employs discrete labels to in-
fluence the stylistic aspects of the gestures produced. LDA [4]
enables the system to generate style gestures with classifier-
free guidance. Additionally, recent research has explored us-
ing textual prompts to generate stylized gestures [16]. Given
that human emotions are more accurately represented on a
continuous spectrum [32], [33] and emerge from a com-
plex interplay of fuzzy factors, depending on discrete emo-
tion labels can overly simplify the gesture generation pro-
cess. This could limit the expressiveness and subtlety of the
produced gestures. To address these limitations, Ghrobani et
al. [7] introduced ZeroEGGS, a model that utilizes exam-
ple motion clips to guide the style of gestures. Although
achieving zero-shot is feasible, it still necessitates sample
animation clips.

B. Generative Approaches

DiffMotion [22], is the pioneering application of diffusion
models integrating an LSTM for synthesizing diverse gestures.
UnifiedGesture [5] presents a retargeting network to learn latent
homeomorphic graphs to homeomorphic graphs for various
gesture representations. Maximizing the transformer architec-
ture’s potential, Alexanderson et al. [4] enhanced DiffWave by
replacing dilated convolutions. Conformers [34] implementing
classifier-free guidance to improve style expression. GestureD-
iffuCLIP [16] propose a network based on the transformer and
AdaIN layers to incorporate style guidance into the diffusion
model. LivelySpeaker [35] depends on contrastive learning to
create a joint embedding space between gestures and transcripts.
DiffuseStyleGesture (DSG) [2] and DSG+[3], integrating cross-
local attention and layer normalization within transformers.
Conversely, these methodologies face difficulties in achieving
an optimal balance between gesture and speech synchronization,
resulting in gestures that may appear either underrepresented or
overly matched.

In this study, we employ a fuzzy feature inference strategy
to implicitly capture fuzzy features in speech audio, synthesiz-
ing natural, personalized co-speech gestures solely relying on
raw speech audio without additional modalities. Furthermore,
we employ an AdaLN transformer architecture to enhance the

model’s capacity to capture the intricate relationship between
speech and gestures.

III. SYSTEM OVERVIEW

Persona-Gestor, as an end-to-end architecture, processes raw
speech audio as its sole input, synthesizing personalized gestures
that adeptly balance naturalness with synchronized alignment to
speech.

A. Problem Formulation

We introduce the challenge of co-speech gesture generation
by framing it as a sequence-to-sequence problem, where the
objective is to translate a sequence of speech audio features into
a corresponding sequence of gestures. We denote the sequence
of full-body gesture features and the sequence of the audio sig-
nal as g0 = g01:T ∈ [g01 , . . ., g

0
t , . . ., g

0
T ] ∈ RT×(D+3+3) and a =

a1:T ∈ [a1, . . ., at, . . ., aT ] ∈ RT . g0t = R(D+3+3) symbolizes
the representation of 3D joint angles, along with the root posi-
tional and rotational velocity at frame t, where D denoting the
number of channels for these joints. The superscript indicates the
diffusion time step n. Here, at refers to the current subsequence
audio waveform signal at frame t, while T denotes the sequence
length. Let us define pθ(·) as the Probability Density Function
(PDF), which aims to approximate the actual distribution of
gesture data p(·) and enables easy sampling. The objective is to
generate a non-autoregressive whole pose sequence (g0) from
its conditional probability distribution given audio signal (a) as
covariate:

g0 ∼ pθ
(
g0|a) ≈ p(·) := p

(
g0|a) (1)

where thepθ(·) aims to approximatep(·) trained by the denoising
diffusion model.

B. Model Architecture

The architecture of Persona-Gestor is depicted in Fig. 2.
It comprises four primary components: (1) a Fuzzy Feature
Extractor, (2) an AdaLN Transformer, (3) a Gesture Encoder
and Decoder, and (4) a diffusion network.

1) Fuzzy Feature Extractor: This module utilizes a fuzzy
inference strategy, meaning it does not generate explicit clas-
sification outputs. Instead, it offers implicit, continuous, fuzzy
feature information, automatically learning and inferring the
global style and details directly from raw speech audio. The
module, showcased in Figs. 2(b) and 3, is a dual-component
extractor that integrates both global and local extractors. The
local extractor leverages the WavLM large-scale pre-trained
model [36] to convert the audio sequence into tokens. We chose
WavLM for its adeptness at extracting the complex features of
speech audio to capture universal audio latent representations,
denoted as za.

We observe that the local extractor alone falls short of fully
capturing the array of stylistic features and ensuring style consis-
tency across sequences. To overcome this, we integrate a global
style extractor, employing a depthwise separable convolution
1D layer [37] across the za. This global extractor is designed to
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Fig. 2. The Architecture of Persona-Gestor mainly integrates a fuzzy feature extractor and an adaptive layer normalization (AdaLN) transformer diffusion
architecture (DiTs-based). The fuzzy feature extractor comprises a dual-component framework to capture the fuzzy style and detail-oriented audio features
comprehensively. These features, as unified latent features, are subsequently fed into the AdaLN transformer to model the relationship with the accompanist
gesture, facilitating the estimation of diffusion noise for the diffusion model. (a) Overall Schematic. (b) Fuzzy Feature Extractor. (c) AdaLN Transformer Block.

Fig. 3. An overview of the fuzzy inference condition extractor.

automatically capture and embed global fuzzy style information
from za into a token zs ∈ R1×D′

. This token is then broadcasted
and combined with the universal audio latent representations
za ∈ RT ′×D′

to form a unified latent representation zl ∈ RT×D′′
.

We merge local and global insights for co-speech gesture gener-
ation to enhance the sequence’s overall representational fidelity.
Subsequently, the unified latent representation is directed to the
downsampling module for further processing.

The downsampling module is integrated into the condition
extractor to ensure alignment between each latent representation
and its corresponding sequence of encoded gestures. In our ex-
ploration, we experimented with linear alignment like DSG [2]
and DSG+[3], but noted an issue of foot-skating arising from
these methods. On the contrary, We adopt a Conv1D layer with
a kernel size of 201 for this module that maps every 201-length
target token output from WavLM to one gesture frame. Finally,
the fuzzy feature extractor outputs c1:T , representing a unified
latent representation that combines encoded audio features and
diffusion time step n. The condition extractor can be formalized
by:

za = LE(a) za ∈ RT ′×D′

zs = GE(za) zs ∈ R1×D′

zl = DS(za + zs) zl ∈ RT×D′′

n′ = DTE(n) n ∈ R, n′ ∈ R1×D′′
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c1:T = zl + n′ c1:T ∈ RT×D′′
(2)

where LE(·) and GE(·) denote the local extractor (WavLM)
and the global extractor. DS(·) represents the down sampling
process. DTE(·) signifies the diffusion time step embedding.
The final output of the fuzzy feature extractor is denoted as
c1:T . Here, T ′, D′, and D′′ refer to the WavLM output token
length, feature dimensionality of WavLM’s output token, and
the feature (h) dimensionality of the proposed model’s hidden
state, respectively. a is the input raw speech audio waveform.
Za and Zs are extracted by the local extractor(WavLM model)
and the global extractor. Zl is the unified latent representation.
n is the diffusion time step, n′ is the embedded diffusion time
step feature.

2) AdaLN Transformer: The AdaLN’s fundamental purpose
is to incorporate a conditional mechanism that uniformly applies
a specific function across all tokens, thereby significantly im-
proving the model’s capacity for representing both conditional
and output features with enhanced efficiency. It offers a more
sophisticated and nuanced approach to modeling, enabling the
system to capture and articulate the complex dynamics between
various input conditions and their corresponding outputs. Con-
sequently, this leads to an improvement in the model’s predictive
accuracy and ability to generate outputs more aligned with the
given conditions.

Diffusion Transformers (DiTs) [17] represent an advanced
transformer-based backbone for diffusion models, surpass-
ing previous U-Net models in performance. By incorporating
AdaLN within transformer blocks for text-to-image synthesis,
DiTs achieve lower Frchet Inception Distance (FID) [38] scores,
indicating superior image quality. Recently, this framework has
been used for text-conditional video generation. Despite Dif-
fusion Transformers (DiTs) success in handling discrete text
prompts conditional inputs, their effectiveness in speech-driven
gesture generation, a sequence-to-sequence task, necessitates a
thorough investigation.

Distinctively with the DiTs, our approach utilizes continuous
fuzzy features as conditional input tokens. Further, it is without
any patchy for spatial input, resulting in the output being the
latent feature of a sequence of gestures.

The module involves regressing the dimensionwise scale and
shift parameters (γ and β), which are derived from the fuzzy
feature extractor output c1:T , instead of directly learning γ and
β, as depicted in Fig. 2(c). In each AdaLN transformer, a latent
feature denoted as zn1:T,m is generated by fusing condition infor-
mation and gesture using AdaLN and causal self-attention. Here,
1 ≤ m ≤ M , where M represents the total number of AdaLN
transformer stacks. In addition, the final layer, as illustrated in
Fig. 2(b), fed the same fuzzy features but with additional scale
and shift operation.

This method facilitates the creation of detailed gesture se-
quences solely from speech audio, eliminating the requirement
for discrete style labels or supplementary inputs. Consequently,
it significantly improves the model’s capacity to generate per-
sonalized and closely aligned gestures with the context of the
speech, offering a more refined and context-sensitive gesture
synthesis capability.

3) Gesture Encoder and Decoder: The architecture of the
gesture encoder and decoder is designed to encode and decode
the gesture sequence, as illustrated in Fig. 2(a) and (b). The
gesture encoder comprises a Convolution1D with a kernel size of
3. It encodes the initial sequence of gestures g into a hidden state
h ∈ RT×D′′

. Our experimental results revealed that employing a
kernel size of 1 resulted in animation jitter. Conversely, a kernel
size of 3 is instrumental in mitigating this issue by effectively
capturing the spatial-temporal relationships inherent in gesture
sequences.

The gesture decoder reduces the feature dimension of the
output from the transformer D′′ to the original dimension D,
corresponding to the number of channels representing skeleton
joints. Result in outputting the predicted noise (εθ). We utilize
a size of 1 conv1D By convolving a 1D kernel in the input
sequence, our model can effectively extract meaningful features
and relationships between adjacent joint channels.

C. Training and Inferencing With Denoising Diffusion
Probabilistic Model

The diffusion process in this architecture aims to reconstruct
the conditional probability distribution between gestures and
fuzzy features. This entails employing a systematic approach
to sample from this restored distribution, thereby enabling the
generation of diverse gestures.

Following our previous work, Diffmotion [22], incorpo-
rating the Denoising Diffusion Probabilistic Model (DDPM)
into our approach. However, we employ a non-autoregressive
transformer to generate the entire sequence of gestures in-
stead of frame-by-frame. The form is represented by pθ :=
∫ pθ(g0:N )dg1:N , where g1, . . ., gN are latent of the same di-
mensionality as the data gn at the n-th diffusion time stage.

The model contains two processes: the diffusion process and
the generation process. At training time, the diffusion pro-
cess gradually converts the original gesture data(g0) to white
noise(gN ) by optimizing a variational bound on the data likeli-
hood. At inference time, the generation process recovers the data
by reversing this noising process through the Markov chain using
Langevin sampling [39]. The Markov chains in the diffusion
process and the generation process are:

p
(
gn|g0) = N

(
gn;

√
αng0, (1− αn) I

)
and

pθ
(
gn−1|gn, g0) = N

(
gn−1; μ̃n

(
gn, g0

)
, β̃nI

)
, (3)

whereαn := 1− βn andαn :=
∏n

i=1 α
i. As shown by [40], βn

is a increasing variance schedule β1, . . ., βN with βn ∈ (0, 1),
and β̃n := 1−αn−1

1−αn βn.
The training objective is to optimize the parameters θ that min-

imizes the Negative Log-Likelihood (NLL) via Mean Squared
Error (MSE) loss between the true noise ε ∼ N (0, I) and the
predicted noise εθ:

Eg0
1:T ,ε,n[||ε− εθ

(√
αng0 +

√
1− αnε, a1:T , n

)
||2], (4)

Here εθ is a neural network (see Fig. 2(a)), which uses input
g0t , at−1 and n that to predict the ε, and contains the similar
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Algorithm 1: Training for the Whole Sequence Gesture.

Input: data g01:T ∼ p(g0|a1:T ) and a1:T
repeat

Initialize n ∼ Uniform(1, . . ., N) and ε ∼ N (0, I)
Take the gradient step on

∇θ||ε− εθ
(√

αng
0
1:T +

√
1− αnε, a1:T , n

) ||2
until converged ;

Algorithm 2: Sampling g01:T via Annealed Langevin Dy-
namics.

Input: noise gN1:T ∼ N (0, I) and raw audio waveform a1:T
for n = N to 1 do

if n > 1 then
z ∼ N (0, I)

else
z = 0

end if
gn−1
1:T = 1√

αn (g
n
1:T − βn√

1−αn εθ(g
n
1:T , a1:T , n)) +

√
σθz

end for
Return g01:T

architecture employed in [41]. The complete training procedure
is outlined in Algorithm 1.

After training, we utilize variational inference to generate
the whole sequence of new gestures matching the original data
distribution(g0 ∼ pθ(g

0, a)). We followed the sampling proce-
dure in Algorithm 2 to obtain the whole sequence of the sample
g0. The σθ is the standard deviation of the pθ(g

n−1|gn). We
choose σθ := β̃n.

During inferencing, we send the whole sequence of the raw
audio to the condition extractor component. Then, the compo-
nent output is fed to the Diffusion Model to generate the whole
sequence of the accompanying gesture(g0).

IV. EXPERIMENTS

To validate our approach, we utilized three co-speech ges-
ture datasets (Trinity [42], ZEGGS [7], and BEAT [43]). Our
experiments concentrated on producing full 3D body gestures
(including finger motions and locomotion). This choice pre-
sented a greater challenge than merely focusing on upper body
motions due to the expanded output dimensionality and the
need to overcome visual complexities, such as foot-skating, the
naturalness of finger movements, and locomotion.

A. Dataset and Data Processing

1) Datasets: The Trinity dataset focuses on individual spon-
taneous speech, the ZEGGS dataset encompasses a wide range
of emotional expressions, and the BEAT dataset consists of per-
sonalized movements exhibited by various individuals. Further
details are elaborated in Table II found in Appendix A, available
online.

2) Speech Audio Data Process: In the Trinity dataset, the
audio was recorded at a sampling rate of 44 kHz, while 48 kHz

in ZEGGS and BEAT. However, due to the pre-training of the
WavLM large model on speech audio sampled at 16 kHz, we
uniformly resample all audio to match this frequency.

3) Gesture Data Process: We focus solely on full-body
gestures, adopting the data processing techniques outlined by
Alexanderson et al. [20]. Given the variability in data quality
and structure across motion datasets, we tailor our approach by
selecting specific joints for analysis in each dataset. We omit
hand skeleton data for the Trinity Gesture Dataset due to its
inferior quality. For the ZEGGS and BEAT datasets, our analysis
includes finger joints, which are considered to be the same set
of joints in the Trinity dataset. All data capture translational and
rotational velocities to detail the root’s trajectory and orientation.
The datasets are uniformly downsampled to a frame rate of 20
fps. To ensure accurate and continuous representation of joint
angles, we apply the exponential map technique [44]. All data
are segmented into 20-second clips for training and validation
purposes. As for the user evaluation, we segment the generated
gesture sequence into 10 seconds to improve the efficiency of
the evaluation.

B. Model Settings

Our experiments employ 12 causal attention blocks, each
comprising 16 attention heads (as depicted in Fig. 2(a)). The
encoding process transforms each frame of the gesture sequence
into hidden states h ∈ R1280. For the WavLM model, we uti-
lize the pre-trained WavLM Large model.3 To ensure temporal
translation invariance, we employ a translation-invariant self-
attention (TISA) mechanism [45].

The quaternary variance schedule of diffusion model starts
from β1 = 1× 10−4 till βN = 5× 10−5 with linear beat sched-
ule. The number of diffusion steps is N = 1000. The training
batch size is 32 per GPU.

The model was developed using the Torch Lightning frame-
work and tested on an Intel i9 processor with an A100 GPU.
Training durations were approximately 4 hours for Trinity and
ZeroEGGS and 21 hours for BEAT.

C. Visualization Results

Our system excels in creating personalized gestures that align
with the speech context, leveraging the fuzzy inference strategy
to autonomously derive fuzzy features directly from speech
audio. Furthermore, it showcases remarkable generalization and
robustness by utilizing in-the-wild speech.

Fig. 4 depicts the visual outcomes of gestures aligned with
the emotional valence conveyed by the audio. For instance, the
system produces gestures of joy in response to happy audio cues
(refer to Fig. 4(a)) and gestures of sadness for sorrowful audio
(as depicted in Fig. 4(b)). The system can also infer age-related
characteristics or other nuanced states from the speech audio (as
illustrated in Fig. 4(c) and (d)).

Fig. 5 shows the system’s ability to generate personalized
gestures Predicated upon individuals’ unique speech traits. For

3https://github.com/microsoft/unilm/tree/master/wavlm

https://github.com/microsoft/unilm/tree/master/wavlm
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Fig. 4. Samples of gestures corresponding to different emotions. The left side
of the subfigure displays ground truth gestures, while the right side showcases
gestures generated by our architecture.

Fig. 5. Samples of gestures corresponding to different personalities. The
left side of the subfigure displays ground truth gestures, while the right side
showcases gestures generated by our architecture.

example, Ayana’s gestures, with hands together and palms fac-
ing, denote reserved expressiveness. In contrast, Jaime’s ”palm
up” gestures imply openness, and Luqi’s alternating hand move-
ments add dynamic variability. These results highlight the sys-
tem’s adeptness at depicting a wide range of personality-specific
gestures.

Interestingly, as shown in Fig. 6, the system can produce
gestures with certain semantic relevance even without explicit
semantic constraints. For instance, Carla’s remark about her
mother is matched with a self-referential gesture. Likewise,
Lawrence’s reference to distance is visually enhanced by a
gesture that emphasizes the semantic essence of his speech.

Fig. 6. Samples of gestures corresponding to semantic.

Fig. 7. Sample of gesture including finger movements and locomotion.4

Fig. 8. Samples of gestures corresponding to in-the-wild speech audio col-
lected from TED Talks.

Further, finger movements and locomotion are included, as
shown in Fig. 7, highlighting the system’s proficiency in creating
realistic, character-specific animations, thereby increasing the
virtual interactions’ believability and immersion.

Fig. 8 showcases gesture outcomes generated from in-the-
wild speech audio, like TED talks, to demonstrate the sys-
tem’s ability to create lifelike and style movements directly
from unstructured real-world audio without additional prompts
or labels. This highlights the system’s robust generalization
capabilities. Testing in noisy environments with background
music, applause, and urban sounds further revealed the system’s
strong anti-interference performance, emphasizing its resilience.
This efficiency simplifies the input process, enabling effortless
generation of dynamic character animations from raw audio,
thus enhancing user experience and system accessibility.

4Due to the inherent challenges in retargeting finger motion to the avatar,
please refer to the support video for more details.
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Fig. 9. The T-SNE clustering visualization displays a variety of gestures
distinguished by color-coded styles, revealing distinct regions for gestures tied
to specific emotions or speakers, albeit with some boundary overlaps. This
highlights our approach’s capability to produce distinct style gestures through a
fuzzy feature inference strategy, relying solely on speech audio.

Finally, we represent the visualizes (Fig. 9) of the distribution
of generated gestures corresponding to different emotional states
(Fig. 9(a)) and personalities (Fig. 9(b)) using the t-SNE method.
The figure illustrates distinct separations between certain states,
while others exhibit a degree of similarity yet remain distin-
guishable. These findings demonstrate the capability of our
proposed method to generate nuanced and discernible gestures
solely from raw speech audio without relying on labels or manual
annotations.

D. Subjective and Objective Evaluation

Consistent with the prevailing practices in gesture generation
research, we conducted a series of subjective and objective
evaluations to evaluate the co-speech gestures generated by our
proposed Persona-Gestor (PG) model.

We adopted slightly varied baselines for different datasets.
For the Trinity dataset, we employed LDA [4] and Taming [15].
In addition to LDA and Taming, for the ZEGGS dataset, we also
incorporated DiffuseStyleGesture (DSG) [2] and ZeroEGGS [7]
Furthermore, for the BEAT dataset, we utilized the same baseline
models as in ZEGGS but replaced DSG with DSG+[3] and intro-
duced GestureDiffuCLIP (GDC) [16] as an additional baseline
model.

In our experiments with the ZEGGS and BEAT datasets, we
extended the original LDA, DSG, and DSG+5 models to cover
all styles within these datasets. Originally, the Taming model,
trained exclusively on the TED dataset, focused on upper-body
gestures. We have since augmented it to support full-body ges-
tures across the three datasets. Efforts to adapt LDA to include
finger motions were met with challenges, leading to unsatisfac-
tory outcomes in gesture generation. Consequently, we utilized
LDA-generated gestures, excluding finger movements, for our
analysis. For more implementation details of these baselines,
please refer to Appendix C, available online.

1) Subjective Evaluation: The goal of speech-driven gesture
generation is to produce gestures that are both natural and
convincing. However, exclusive reliance on objective metrics
may not adequately reflect human subjective quality assess-
ments [20], [46], [47]. This study prioritizes subjective eval-
uations to gauge human perception, complemented by objective
evaluations detailed in Section IV-D2.

For thorough subjective evaluations, we utilize three met-
rics: human likeness, appropriateness, and style appropriate-
ness. Human likeness gauges the naturalness and resemblance
of gestures to real human movements independent of speech.
Appropriateness examines the temporal alignment of gestures
with speech rhythm, intonation, and semantics, ensuring natural
fluidity. Style-appropriateness evaluates the similarity between
generated and original gestures.

We conducted a user study with pairwise comparisons, as
recommended by [48]. In each trial, participants were shown two
10-second video clips generated by different models (including
the Ground Truth (GT)) side by side for direct comparison.
The videos were accompanied by instructions for participants to
select their preferred clip based on their evaluations. Preferences
were quantified on a 0 to 2 scale, with the unselected clip in each
pair receiving an inverse score (e.g., a -2 score for the non-chosen
clip if the chosen one received 2). A score of zero indicated
no preference. Attention checks were included in the study to
ensure engagement. Further details are available in Appendix B,
available online.

Considering the extensive range of styles in ZEGGS (19)
and BEAT (30), individual evaluations for each style were
deemed impractical. Consequently, we utilized a random se-
lection method to assign a subset of 5 styles from ZEGGS
and 6 characters from BEAT to each participant. For the
Trinity dataset, we chose Record_008 and Record_015. The
training or validation sets include none of the selected audio
clips.

A total of thirty volunteer participants, 17 males and 13
females aged between 19 and 31, were recruited for this study.
Twenty-two participants were Chinese nationals, while the re-
maining eight were international students from the USA and
U.K. All participants in this study exhibited a high level of
English proficiency.

One-way ANOVA and post-hot Tukey multiple comparison
tests were conducted to determine if the models’ scores differed

5The authors have expanded their coverage to include all types in the BEAT
dataset, as originally presented in the project of that study.



6992 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 10, OCTOBER 2024

TABLE I
THE SUBJECT MEAN PERCEPTUAL RATING SCORE

Fig. 10. The mean rating of each metric for each approach across the three datasets in comparative experiments.

on the three evaluation aspects. The results are shown in Table I
and Fig. 10. The post-hoc analysis information is provided in
the Appendix B, available online.

The results indicate that the GT achieves the highest scores
(0.51± 1.73 and 0.95± 1.13) in the Trinity and ZEGGS
datasets, exhibiting statistically significant differences (p <
0.001) in human-likeness evaluations when compared to model-
generated gestures. The GT is characterized by a diverse yet lim-
ited array of gestures, each with distinct traits that enhance move-
ment realism. However, these gestures belong to the dataset’s
long-tail distribution, challenging the models’ learning capabil-
ities. Additionally, these unique gestures impact the appropriate-
ness and style-appropriateness scores. Conversely, while the GT
achieves higher scores (0.65± 1.16), no significant differences
were observed compared with the PG (0.56± 1.14) and GDC
(0.54± 1.12) in the BEAT dataset analysis. This suggests that

these models are more closely aligned with GT benchmarks in
this dataset.

The experiments on the Trinity dataset show our proposed
model (0.12± 1.09, 0.138± 1.12, and 0.203± 1.06) outper-
forming both LDA (−0.22± 0.98, −0.39± 1.08, and −0.18±
1.10) and Taming (−0.48± 0.96, −0.47± 1.07, and −0.23±
1.05) architectures significantly (p < 0.001) across all metrics.
This superior performance is due to the more natural and relaxed
gestures produced by our model, PG, enhancing its effectiveness
compared to the LDA and Taming models, which fall short in
accurately capturing the acoustic rhythm.

Evaluation of the ZEGGS dataset showed statistically signifi-
cant differences (p < 0.001) between our method (0.42± 1.17,
0.48± 1.29, and 0.76± 1.34) and others across all three met-
rics. However, there was no statistically significant difference
(p > 0.05) between our method and ZeroEGGS (0.38 ± 1.11) in
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terms of human likeness, though our method achieved a slightly
higher score. These findings suggest that both our proposed
model and ZeroEGGS can generate vivid gestures. Our advan-
tage lies in the ability to synthesize emotional gestures solely
through audio input, without relying on any reference example
animations or labels.

In the BEAT dataset experiments, our PG model exhib-
ited significant improvements (0.56± 1.14, 0.63± 1.10, and
0.66± 1.16) in three metrics compared to DSG+ (−0.28±
1.17, −0.49± 1.15, and −0.40± 1.24), LDA (−1.65± 0.73,
−1.59± 0.74, and −1.35± 1.05), and Taming (−0.41± 1.14,
−0.52± 1.14, and −0.32± 1.24), reflecting the degradation in
synthesis quality observed in DSG+ and LDA when incorporat-
ing all styles. While human-likeness metrics were comparable
to GDC, the appropriateness metric of PG achieved higher
scores than GDC (0.47± 1.25) despite the GDC’s ability to
better align with speech rhythm. Users reported that GDC-
generated gestures overly emphasized prosodic cues, resulting
in unnatural and frequent gestures. Furthermore, these gestures
often displayed repetitive patterns with limited stylistic diversity,
clearly indicating their origin from the GDC model and lead-
ing to a lower score (0.30± 1.27) in the style-appropriateness
metric. This finding implies that the quality of gestures
is not solely determined by accurately matching the audio
rhythm.

2) Objective Evaluation: We introduce three objective eval-
uation metrics: FrÃchet Gesture Distance (FGD) in both feature
and raw data spaces [49], and BeatAlign [50]. FGD, inspired by
the FrÃchet Inception Distance (FID) [38], assesses the quality
of generated gestures and demonstrates a moderate correla-
tion with human-likeness ratings, outperforming other objective
metrics [47]. Additionally, BeatAlign measures gesture-audio
synchrony by calculating the Chamfer Distance between audio
and gesture beats, providing insights into the temporal alignment
of generated gestures with speech rhythms.

Table I displays our results, highlighting the state-of-the-art
performance of our method in objective evaluations using FGD
and BeatAlign metrics. Our model outperforms (289.42 for Trin-
ity, 28.13 for ZEGGS, and 264.06 for BEAT) other architectures
in FGD, effectively generating gestures that align closely with
the Ground Truth (GT). It also achieves superior BeatAlign
scores (0.69 for Trinity, 0.68 for ZEGGS, and 0.68 for BEAT)
compared to other models, except for GDC (0.69 for BEAT),
demonstrating its efficacy in producing co-speech gestures that
synchronize accurately with speech rhythms. Although GDC
scores highest in BeatAlign, corroborating user feedback, its
overemphasis on prosodic cues leads to frequent high-frequency
gestures. While technically accurate, this diminishes gesture
naturalness.

E. Ablation Studies

Ablation studies were performed to evaluate the impact of key
components on our model’s efficacy, specifically targeting the
global fuzzy feature extractor and Adaptive Layer Normalization
(AdaLN).

1) Ablation of Global Fuzzy Feature Extractor: For the
global fuzzy feature extractor, we explored the outcomes of re-
moving this component (we call it: No Style Encoding, PGNSE)
and replacing it with One-hot embedding (PGOnehot) for dis-
crete feature extraction. PGOnehot was not applied to the Trinity
dataset due to its limited style variability.

Our analysis of the global fuzzy feature extractor shows
no significant differences (p > 0.05) between PG and PGNSE
on the Trinity dataset in three subjective metrics, likely due
to its limited range of styles. However, the ZEGGS dataset
reveals significant variances in three metrics between PG
(0.42± 1.17, 0.48± 1.29, and 0.76± 1.34) and PGOnehot
(0.25± 1.19, 0.33± 1.31, and 0.51± 1.28). In contrast, no
notable differences in human-likeness and appropriateness met-
rics are observed between PG and PGNSE (0.35± 1.29).
PG (0.76± 1.34) outperforms PGNSE (0.59± 1.38) in style-
appropriateness, likely because PGNSE cannot ensure a con-
sistent style throughout the sequence. Conversely, the BEAT
dataset exhibits significant differences (p < 0.001) between PG
(0.56± 1.14, 0.63± 1.10, and 0.66± 1.16) and the other meth-
ods, indicating the superior capability of the global fuzzy feature
inference mechanism in capturing stylistic nuances. Moreover,
while PGOnehot can capture various logo gesture styles, it may
compromise the naturalness of the movements.

2) Ablation of AdaLN: We integrated Cross-Attention
(PGCA), In-Context Conditions (PGICC), and Concatenation
of Features (PGCF) into our analysis to evaluate AdaLN’s ef-
fectiveness. This structured approach enabled a comprehensive
assessment of each component’s contribution to the model’s
overall performance and its role in audio-based gesture gener-
ation. The implementations of Cross-Attention and In-Context
Conditions follow the designs in [17], while Feature Concate-
nation combines gesture and encoded audio features along the
feature axis, a technique proven effective in related studies [51].
Separate user studies were conducted for each component, with
findings presented in Table I and Fig. 11.

In the ablation studies concerning AdaLN, replacing the
AdaLN module with alternative architectural frameworks pre-
cipitated a significant degradation in performance across all met-
rics. This reduction in efficacy can be ascribed to the deficiency
of alternative architectures in synchronizing speech rhythm and
capturing stylistic nuances with precision. This outcome un-
derscores the pivotal role of a uniform mechanism that applies
an identical function across all attention layers throughout the
sequence.

F. Generalization and Robustness

In addition, we test our method’s generalization capabilities.
We utilized in-the-wild speech audio collected from TED talks.
Our system adeptly generates consistent gestures from dataset
types and seamlessly produces gestures from untagged, in-the-
wild audio. It also showcases remarkable robustness against var-
ious auditory disturbances, such as background music, applause,
urban noise, and decorative sounds. This adaptability highlights
the system’s ability to handle a broad spectrum of audio inputs,
ensuring the creation of naturalistic gestures despite significant
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Fig. 11. The mean metric rating for each approach across the three datasets in ablation experiments.

noise interference. Such resilience emphasizes the system’s
suitability for real-world applications. Yet, we encountered cer-
tain inherent challenges in assessing the generalizability and
robustness of alternative models during our experimentation.
More details can be found in Appendix D, available online, and
supporting videos.

V. DISSCUSTION AND CONCLUSION

In this work, we introduce Persona-Gestor, a novel network
architecture designed to generate personality gestures, lever-
aging solely raw speech audio. At its core, Persona-Gestor
combines a fuzzy feature extractor and an AdaLN transformer
diffusion architecture.

The fuzzy feature extractor utilizes a fuzzy feature inference
strategy in the dual-component module to implicitly infer both
fuzzy stylistic features and specific details embedded within
the audio data autonomously. These elements are combined
into a unified latent representation, facilitating the generation
of speaker-aware personalized 3D full-body gestures. This ap-
proach incorporates a highly influential feature into the capa-
bility to synthesize personality gestures through automatically
inferred fuzzy features, removing the necessity for explicit
style labels or additional features. This advancement facilitates
the end-to-end generation of gestures that resonate with the
speaker’s unique characteristics, directly from raw speech au-
dio. Integrating fuzzy feature inference ensures a seamless and
intuitive creation process that enhances generalization and user
accessibility.

The AdaLN mechanism is a conditional mechanism that
uniformly applies a specific function across all sequence to-
kens. This strategic incorporation significantly augments the
model’s proficiency in accurately capturing and representing
both conditional dependencies and output characteristics more
efficiently. We demonstrate that AdaLN also facilitates a refined
understanding and processing of the complex interplay between
the continuous fuzzy features conditional input and the resultant
gesture synthesis, leading to enhanced model performance and
output fidelity. Ultimately, Persona-Gestor utilizes diffusion
mechanism for producing a diverse spectrum of gesture outputs.

Our approach presents multiple benefits: 1) It exclusively
uses raw speech audio to synthesize speaker-aware personalized
gestures, bypassing the requirement for extra inputs, which

enhances user-friendliness. 2) It achieves the full-body (includ-
ing finger motions and locomotion) gestures’ superior synchro-
nization with speech, capturing rhythm, intonation, and certain
semantics without compromising naturalness. 3) It showcases
improved generalization and robustness, adapting effectively
across varied conditions.

Our study highlights key areas for enhancement: First,
the model’s sole dependence on speech audio may limit its
effectiveness in capturing style features within segments of mini-
mal speech. Second, the lack of control over the movement path
and orientation of the digital human could lead to unintended
gestures. Third, our model may not effectively replicate certain
gestures crucial for expressing specific states. These observa-
tions underscore the necessity for improvements to broaden the
model’s ability to accurately convey a wide range of human
gestures.
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