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Stress Assessment for Augmented Reality
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Abstract—Augmented reality is one of the enabling technologies
of the upcoming future. Its usage in working and learning scenarios
may lead to a better quality of work and training by helping the
operators during the most crucial stages of processes. Therefore,
the automatic detection of stress during augmented reality experi-
ences can be a valuable support to prevent consequences on people’s
health and foster the spreading of this technology. In this work, we
present the design of a non-invasive stress assessment approach.
The proposed system is based on the analysis of the head movements
of people wearing a Head Mounted Display while performing
stress-inducing tasks. First, we designed a subjective experiment
consisting of two stress-related tests for data acquisition. Then,
a statistical analysis of head movements has been performed to
determine which features are representative of the presence of
stress. Finally, a stress classifier based on a combination of Support
Vector Machines has been designed and trained. The proposed
approach achieved promising performances thus paving the way
for further studies in this research direction.

Index Terms—Augmented reality, stress detection, machine
learning classifier.

I. INTRODUCTION

IN RECENT years, the success of immersive technologies
has steadily increased [1] and nowadays Augmented Reality

(AR) and Virtual Reality (VR) are used in a wide range of
applications. While VR is often employed for entertainment [2]
(e.g., gaming or streaming applications), AR systems are ex-
pected to become a key element in future work and learning
scenarios (e.g., professional training, medical studies) [3], [4].
Under these circumstances, the onset of stress while using an
AR application may impair the completion of the required tasks.
Therefore, the detection of stress conditions while using Head
Mounted Displays (HMDs) is a relevant aspect to be investigated
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to fully exploit the potentiality of these new technologies. In
fact, physiological and psychological consequences of stress
can interact with each other causing dangerous changes in the
components of the physiological systems of the human body and,
at the same time, causing changes in a person’s behavior, thus
leading to an unhealthy status [5]. In addition, being a technology
still under development, the HMD itself can contribute to the
occurrence of a stress condition (e.g., heaviness, blurred vision,
uncomfortable fit), thus precluding the adoption of HMDs.

The onset of a stress condition can be identified and measured
as the human body reacts to stress with a defense mechanism,
represented by physiological variations [6]. These reactions
cause changes in different biosignals, such as the Electroen-
cephalogram (EEG) or the Electrocardiogram (ECG) signals [7].
Although in the literature several studies have been proposed
for the automatic detection of stress or workload levels [8],
the design of non-invasive systems is still an open problem.
Therefore, in this work, we present a stress assessment system
in an AR scenario, focusing on an AR static task (e.g., reading),
which exploits the information on head movement data recorded
by the HMD. In this way, the sensors embedded into the HMD
can be directly employed for stress analysis thus offering con-
siderable benefits with respect to physiological measurements.
Differently from the approaches based on physiological param-
eters, the proposed solution allows to employ the same device
used during working/learning activities for detecting the onset
of stress without the need for other hardware than the AR HMD.

The main contributions of this research are the following:
� The design and implementation of a subjective experiment

involving two stress-inducing tests in an AR scenario. The
acquired data are available to the research community and
can be found at https://muse.uniroma3.it/headdataset.

� The demonstration of the relation between head move-
ments and the presence of stress through the recording and
analysis of head movements acquired during the subjective
tests.

� The design and test of a stress classifier based on the ac-
quired data. The usage of two stress-inducing tests allowed
to verify the generalization capabilities of the proposed
classifier.

The paper is structured as follows. In Section II, an overview
of the related works is presented. In Section III, the proposed
method for stress assessment is described. More specifically, the
stress-inducing tests, the experimental protocol, and the head
movement features extracted through the HMD are presented.
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Moreover, the architecture of the proposed stress classifier is
detailed. In Section IV, the results obtained from the statistical
analysis and the classification performances are presented. Fi-
nally, in Section V the limitations of the current study and the
future research directions are sketched, and in Section VI the
conclusions are drawn.

II. RELATED WORKS

In this section, a brief summary of the most widely adopted
stress-inducing tasks is provided and the stress detection ap-
proaches presented in the literature are described.

A. Stress Inducing Tasks

Due to the complex mechanisms behind the onset of stress, it is
necessary to evaluate the body response to a stressor in controlled
environments before testing the designed systems in real-life
scenarios. In the literature several methods have been proposed
to induce stress in a laboratory environment. Among them, one
of the most used is the Stroop Color Word Test (SCWT) [9] since
its capability to induce stress is well-established [7], [10]. In [11]
heart rate, frequency of skin conductance responses, and self-
reported anxiety have been recorded while performing a SCWT
for demonstrating its correlation with stress. The performed
analysis proved that the SCWT may act as an efficient laboratory
stressor. Similarly, in [12], the stress induced by the SCWT was
measured using electrocardiographic and heart rate variability
signals. The results of this study highlight the presence of a
significant variation in these signals between the stressed and
the normal conditions. The SCWT presents to the user different
color names in two conditions. In the first condition, i.e., the
congruous condition, the words are all written in black and the
user is asked to read the words aloud. In the second condition,
i.e., the incongruous condition, the color of the words and their
meaning are not coherent (e.g., the word yellow may be written
in red). In this case, the user is asked to pronounce the color in
which the word is represented and not the word’s meaning. This
creates a conflict between the automatic reading process and the
task of naming the color in which the word is written [13]. Vari-
ations of the SCWT have also been proposed, either combining
the visual stimulus with an auditive stimulus [14] or introducing
time limitations [11]. In addition, some authors have added a
second congruous condition in which the word colors match
their meaning, thus realizing an intermediate step between the
original congruous and incongruous phases [10], [15].

Another class of stress-inducing tests, which also requires
a high level of cognitive engagement from the users, is repre-
sented by Mental Arithmetic (MA) tasks. The task of mental
arithmetic involves performing calculations and solving math-
ematical problems only through mental processes, without the
use of external aids or tools. It requires the ability to manipulate
numbers, apply mathematical operations, and accurately derive
results in one’s mind. Different implementations of the MA
test have been proposed in the literature [16], [17], [18]. The
Pased Auditory Serial Addition Test (PASAT) presents to the
user a series of single-digit numbers. Each time a new number
is presented, the user is asked to sum it to the immediately

preceding one [19]. This test is also used in the Mannheim
Multi Component Stress Test (MMST), which incorporates five
distinct stressors presented in combination to the users. The first
stressor is represented by the PASAT, during which 44 pictures
depicting negative feelings are presented in the background,
serving as the second stressor. Moreover, acoustic (i.e., white and
random explosion noise) and motivational stressors are included.
Finally, considering the category of stress-inducing tasks related
to MA, the Montereal Imaging Stress Task (MIST) requires the
user to solve mathematical problems in a limited amount of time,
which varies depending on the cognitive capability of the user
himself [20].

Exploiting sensory cues to elicit stress has been proposed
in other stress-inducing tests. The unpleasant pictures in the
International Affective Picture System (IAPS) database can be
used to induce a stress response [21]. In [22], [23], the onset of
stress is caused by a horn sound played randomly during the test.
In the Cold Pressor Test [24], participants are asked to immerse
a hand or foot in cold water.

Another category of stress-inducing tests exploits social pres-
sure. In the Trier Social Stress Test (TSST) [25], participants are
asked to prepare in a limited amount of time a presentation to be
performed in front of an audience that does not give any positive
feedback. In addition, participants are asked to perform a MA
test without previous notice. Moreover, the Maastricht Acute
Stress Test (MAST) combines the TSST, the cold pressor, and
the MA tests [26].

Other stress-inducing tests are based on a gamification ap-
proach [27], [28]. As an example, during the Wisconsin Card
Sorting Test [29], users are asked to match the cards of a deck
without knowing the sorting rule, which must be discovered dur-
ing the test itself. Lastly, other stress-inducing tasks are related
to specific target scenarios, e.g., stress induced during driving
tasks [30], [31], [32] or during university examinations [33].

In this work, the SCWT and the MA have been chosen as
stress-inducing tasks. In fact, these tests are widely accepted
as highly reliable for the onset of stress in participants as
highlighted in [7], [34]. They are also more similar to the target
scenario of this study, i.e., a system for detecting stress in
workers/students performing static activities.

B. Stress Detection Techniques

In the literature several authors have analyzed the effects of
stress on people, focusing on automatic stress detection [35],
[36]. One of the most accurate methods exploits the processing
of biological signals, whose variation can be related to the onset
of stress [7].

Among the biosignals, EEG is widely used for stress as-
sessment [37], [38]. Although it can be analyzed in both time
and frequency, different levels of cognitive engagement are
often accurately differentiated through the analysis of the EEG
power spectral density [39]. The ECG, which represents the
heart electrical activity during contraction and relaxation, is
also commonly used [40], [41]. Although different features of
this signal can be exploited in order to detect the presence of
stress, Heart Rate (HR), Heart Rate Variability (HRV), and blood
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pressure, are the most widely adopted [42]. A possible subsitute
of HRV is the Pulse Rate Variability (PRV), that has been em-
ployed for stress detection in [43]. In addition, the Galvanic Skin
Response (GSR), which measures human skin conductivity, can
be employed for stress detection [44]. For instance, in [45], a
multimodal system that exploits both the ECG and the GSR for
stress assessment is presented. Another multimodal approach
involving ECG, GSR and an accelerometer has been presented
in [46]. Other biosignals that can be exploited to detect the
presence of stress are strictly related to the muscular activity
of the human body. In particular, eye gaze, eye blink, and
pupil dilation are often tracked or measured for stress assess-
ment applications. In [47], these features have been measured
through a specific device for eye activity tracking. Moreover,
electrodermal activity has been analyzed for comparison. The
results highlighted that the variation of the pupil diameter is
more discriminative than electrodermal activity features.

Depending on the target application, some biosignals may
be more suitable than others. The key factors for performing
this choice are the type of sensor adopted for signal acquisition
and the requirements in terms of detection accuracy. It is useful
to notice that most of the described signals require devices
that are typically not available to the consumer market, such
as the electroencephalograph and the devices to measure the
GSR. In addition, these devices can be difficult to operate for
non-professional users. The EEG signal, for example, requires
a complex setup for its acquisition. Moreover, although some
consumer-grade devices have been proposed [48], they require
the user to wear additional equipment for signal acquisition
purposes, thus representing a burden in the performance of
specific tasks.

The analysis of signals like voice, whose acquisition requires
only a microphone, partially addresses this problem. In [49], for
instance, a VR application aimed at detecting the presence of
stress from the user’s voice has been designed. Voice recording
was implemented directly in the VR application. However, the
voice might not be actively used during certain working and
learning activities, in particular those heavily reliant on written
communication or where reading is the predominant task to
perform. Also, the use of voice in very noisy environments can
lead to unreliable results. Therefore, other cues must be exploited
to gauge the emotional state of an employee/student.

In the past years, several works have demonstrated that posture
and head movements are related to the presence of stress in
non-AR scenarios. In [50], the time variation of head motion, in
the presence and absence of stress, has been studied. In addition,
the influence of speech on head motion and its variation due to
the presence of stress have been considered. Head motion has
been analyzed through video recordings of different user activi-
ties. From the videos, the head position has been estimated and
analyzed through its (x, y, z) components as well as the rotation
angles around the three axes. In addition to these features, head
velocity has been evaluated. The obtained results highlighted an
overall head mobility increase, which is not related to the act
of speaking. Thus, although language cognitive processes are
strongly linked to head movements, the mobility increase can
be attributed to a stress factor. Other studies have shown that

body posture and postural sway vary with the presence of stress.
In [10] and [15], these variations have been analyzed by placing
pressure sensors on a commercial office chair so that a person
could not sense their presence while sitting. The proposed ex-
perimental setup considered a standard 2D monitor, on which a
SCWT was presented to induce stress in the participants. In [10],
the authors showed that when a higher cognitive engagement
level was required, participants tended to change their posture,
moving closer or further away from the screen. In [15], the
posture variation has been further analyzed by considering the
variation of postural sway. One of the most interesting results
concerns the speed of movement, which decreased when the
cognitive engagement was larger, due to an increased difficulty
in maintaining the balance.

Finally, in [51], stress assessment for AR or VR applications
has been performed. The study was based on the analysis of the
ballistic forces generated by the human heart (also referred to as
ballistocardiography). More specifically, since the heart activity
causes involuntary movements, these can be analyzed in order
to extract heart rate information, which in turn leads to stress
assessment.

In this work we investigate the applicability of head
movement-based stress detection to the AR scenario. More
specifically, the users’ head movement is recorded to detect the
presence of stress during a static task such as reading, using the
data extracted from the HMD. The proposed method has the
following advantages with respect to the approaches based on
biosignals:
� it is easy to use - as no specific setup is required;
� it is non-invasive - as the AR HMD is employed for

monitoring the user’s behavior while the user is performing
a task, thus avoiding skin and/or bulky sensors;

� it does not require additional equipment - the HMD is
employed by the user for other AR applications and stress
detection is performed without adding burdens.

To the best of our knowledge, this work represents the first
attempt to directly link head movements and stress in AR
applications. In particular, we analyze whether the relation be-
tween head movements and stress, which other works already
investigated in different scenarios, still holds when using an
AR application. Moreover, we designed a classifier to detect
stress automatically from the analysis of the head movements,
thus realizing a non-invasive and easy-to-use stress assessment
approach.

III. PROPOSED METHOD

This work focuses on analyzing the relationship between
stress and head movements while using an AR application. Due
to the foreseen spreading of AR solutions for working [52] and
learning activities [53], we considered a static task (e.g., reading,
informative training, tutorial watching, data analysis [54]) and
analyzed several head movement features to determine whether
they show a significant difference during a stress situation. The
most significant features have been used to define a Machine
Learning (ML) classifier able to detect the presence of stress. To
this end, as will be detailed in Section III-A, two stress-inducing
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Fig. 1. Virtual screen for providing the stress-inducing test to the participants.

tests have been used: the SCWT and the Mental Arithmetic (MA)
test.

For each test, a Microsoft Hololens 2 application consisting
in a virtual screen displaying the test content has been designed.
An example is shown in Fig. 1. The dimensions of the virtual
screen were chosen by taking into account the size of 40 inches
commercial monitors and its distance was set according to
the ITU-R BT.500-14 recommendation for HD 16:9 resolu-
tions [55]. During the tests, the position of the AR HMD was
recorded in order to analyze the users’ head movements.

A. Design of the Stress-Inducing Tests

1) Stroop Color Word Test: The first test we considered is
the SCWT [9]. For its design we selected the SCWT version
used in [10], [15]. The test consists of presenting a set of slides
containing different color names to the user and is composed
of three phases, with an increasing level of difficulty. During
the first phase, the words are all colored in black, while in the
second phase, each word color matches its meaning (congruous
conditions). In these two phases, the user is asked to read the
words as quickly as possible. During the third phase, the color
of the words and their meaning are not coherent (incongruous
condition) and the user must pronounce the color in which the
word is written. The third phase induces the stress condition.
During the test, the number of words presented in each slide and
the duration of each slide varied. These two parameters have
been set in accordance with [10], [15], to allow a fair comparison
of the achieved results. In the third phase, the difficulty of the
task is increased both through the mismatch between the word
color and its meaning and by reducing the amount of time
provided to complete the task. The overall test has a duration of
approximately 2 minutes. The details of the test are represented
in Table I, which shows the number of words per slide and the
amount of time scheduled to complete the task. In Fig. 2, an
example of a slide is provided. In Fig. 2(a)–(c), a sample slide
for each phase is presented, while Fig. 2(d) shows the maximum
number of words presented to the users during the third phase.

During the test, only head movements have been recorded,
disregarding the correctness of the answers provided by the
users. In fact, this work aims to analyze the relation between
the presence of stress and head movement features, thus making
the correctness of the answers not relevant to our purposes.

2) Mental Arithmetic Test: The second stress-inducing test is
based on MA. The designed test comprises two phases. During

TABLE I
SCWT STRUCTURE

the first phase, which is 1 minute long, the participants are asked
to close their eyes and relax. During the second one, which lasts
for approximately 3 minutes, the participants are asked to solve
19 mathematical operations. The complexity of each calculation
is mixed so that a person would not be discouraged by the fact
that he or she could not solve one of the previous problems [56].
Each operation is presented to the participant for a different
time interval depending on the difficulty of the operation: 5 s for
easy tasks (e.g., compute 5× 2), 10 s for medium tasks (e.g.,
compute 15 + 28), and 15 s for complex tasks (e.g., compute
32× 17). To increase the level of stress perceived by the user,
the time left for solving each operation was displayed on the
screen through a filling bar and audio feedback was provided to
inform the participant whether the given answer was correct or
not.

B. Experimental Protocol

The designed experimental protocol consists of three sessions
involving three independent groups of participants as detailed in
Section IV-A:
� Session #1: participants performed the SCWT; the acquired

data were used for analyzing the head movements and
selecting the features. The selected features have been used
as the training set for the proposed stress classifier.

� Session #2: participants performed the SCWT; the acquired
data have been used as validation set for the proposed stress
classifier.

� Session #3: the participants performed both the SCWT
and the MA test; the acquired data have been used as the
test set for the proposed stress classifier and to verify its
generalization capabilities.

The stress-inducing tests were performed in a controlled
environment. The virtual screen was superimposed on a white
background in a quiet room so that external stimuli would not
interfere with the execution of the different tasks.

For Session #1 and Session #2 the experimental protocol
consisted of three steps: i) participant screening procedure, ii)
AR test, and iii) final questionnaire. The screening comprises
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Fig. 2. Example of words presented to the users during the SCWT: (a) first phase; (b) second phase; (c) third phase; and (d) third phase, with the maximum
number of displayed words.

Fig. 3. Reference system used by Microsoft Hololens 2.

a Snellen Test [57] and a test for color blindness [58]. The
participants were asked to wear any vision-correcting devices
(glasses or contacts) that they normally wear. Before the test, the
eye gaze calibration procedure for the headset was performed.
During Sessions #1 and #2, after performing the SCWT, the
participants were asked to answer the Simulator Sickness Ques-
tionnaire (SSQ) [59] to evaluate the presence of cybersickness
due to the use of the HMD. The SSQ allows the participant to
rate 16 cybersickness-related symptoms on a four-level scale:
none, slight, moderate, and severe. Session #3 had a different
structure. More specifically it was organized as follows:
� participant screening procedure;
� SCWT;
� NASA-TLX questionnaire;
� 5 minutes break;
� MA test;
� NASA-TLX questionnaire;
� SSQ.
The screening procedure and the SCWT were performed in

the same way as during the previous sessions. The NASA-TLX
(National Aeronautics and Space Administration Task Load
Index) questionnaire [60], was introduced in the 80’s to measure
the perceived workload and mental effort. It consists of a series
of questions that aim to capture six dimensions of task load (i.e.,
mental demand, physical demand, temporal demand, perfor-
mance, effort, and frustration). Since the SCWT is a well-known
and standardized stress induction procedure, while the MA tests
have not reached the same level of maturity, the NASA-TLX
questionnaire has been employed to verify the similarity of stress
levels induced by the two tests.

C. Feature Extraction and Statistical Analysis

The HMD used for the experiments, Microsoft Hololens 2,
allows to track the head movements and to extract the variation
in time of the x, y, z coordinates, according to the coordinate
space presented in Fig. 3.

From the acquired data, different head movement features
were computed and used as observations for the statistical
analysis. First of all, the movements along the three axes were
extracted to analyze the users’ movement trends. Then, the abso-
lute value of the difference between adjacent temporal samples
was evaluated. This feature, referred to as entity of displacement,
allowed us to verify if there was a privileged axis for the
head movement. In addition, the sign of the difference between
adjacent temporal samples, referred to as sign of displacement,
was computed. This feature has been considered to verify if
there was, along a specific axis, a privileged direction of motion.
Moreover, the total displacement has been evaluated to analyze
the overall head movement. This feature has been computed
as the norm of the vector with components x, y, and z. As
further analysis, the head velocity along the three axes and the
total velocity, evaluated as the norm of the velocity vector, were
computed.

Since further insights could be gained by combining the
information coming from different axes, we included the time
variation of the angles between two axes ((x, y), (x, z), (y, z))
and their respective angular velocities. Also in this case,
the entity and sign of the angular displacement were
evaluated.

Finally, since an oscillatory movement trend was noticed, we
performed a Short-Time Fourier Transform (STFT) analysis to
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investigate it. Both the module and phase of the STFT coeffi-
cients were analyzed in order to evaluate their frequency content.
To deal with the inherent discontinuity of phase coefficients, a
phase unwrapping operation was performed. Moreover, in order
to obtain a frequency representation of the signals independent
from the length of the time sequence, a cumulative sum of the
STFT coefficients belonging to the same frequency bin was
performed.

In order to determine whether the described features were
significantly different among the three SCWT phases, two statis-
tical tests were considered. An Analysis of Variance (ANOVA)
test [61] was performed using the three phases of the test
as levels of the independent variable. Before performing the
ANOVA test, the normality of the population of interest and
the homoscedasticity between the samples related to different
levels of the independent variable have been verified. Normality
was checked for each feature through a Kolmogorov-Smirnov
test [62]. Homoscedasticity was assumed to be respected if the
highest variance was not larger than twice the smallest one.
The null hypothesis was defined as the absence of a significant
change in the analyzed feature in the three phases. If the results
of the ANOVA test on a feature allowed to reject the null
hypothesis, a Tukey Honestly Significant Difference (HSD) [61]
test was also performed, to evaluate between which phases such
significant difference held.

When the assumptions for the ANOVA were not respected
by the feature under analysis, a Welch’s ANOVA test [63] was
performed. This test is the corresponding non-parametric test
of the ANOVA for the within-groups design. Similarly to the
previous case, if the results of Welch’s ANOVA test on a feature
allowed to reject the null hypothesis, a Games-Howell [64] post-
hoc test was performed.

D. Proposed Stress Classifier

The features that showed a significant difference between the
third phase and at least one of the other two phases have been
selected as possible input features for the proposed stress clas-
sifier. In fact, these features were assumed to be more effective
in discriminating between the presence and absence of stress.
Since all time variations along the three axes showed a significant
difference among the three phases, as it will be shown in Sec-
tion IV-C, the total displacement was used as a comprehensive
feature. The selected features are total displacement, total speed,
and the three angular displacements. All these features repre-
sent a combination of the information collected from different
axes.

For all test sessions, the input data were divided into two
classes: presence and absence of stress. The labeling of the
input data was carried out considering the different phases of
the stress-inducing tests. In particular, for the SCWT, the first
two phases were labeled as non-stress, while the third one was
labeled as stress. For the MA, the first phase was labeled as
non-stress, while the second one was labeled as stress. In fact,
the third phase of the SCWT and the second phase of the MA test
require a higher level of cognitive engagement and are designed
to increase the perceived level of stress.

The proposed architecture for the stress classifier is presented
in Fig. 4. The computed features undergo the STFT analysis
described in the previous section. This choice is motivated by a
variation of the frequency content of the signal during the three
phases, as will be detailed in Section IV-C. More specifically, the
unwrapped phase of the STFT coefficients is chosen as the input
feature for the stress classifier. In fact, the STFT phase carries
more information than its module and can be more representative
of the head movement signal [65]. The cumulative sum of the
phase coefficients allows a representation which is independent
from the length of the analyzed sequence. This is fundamental
since ML algorithms, such as Support Vector Machines (SVMs),
do not take into account the temporal variations of the input data
but rely on the variations of a limited number of predictors [66].

To account for the different characteristics of the selected
features, a SVM classifier is trained for each of them. In order
to obtain a more robust design, we propose to combine the
outputs of the classifiers at two different stages. First, the clas-
sification decisions of the three angular displacement classifiers
are combined through a majority voter. Then, the decisions
concerning the total displacement, d1, the total speed, d2, and
the angular displacement, d3, are combined through a weighted
sum. This approach allows on one hand to fit each classifier to
the peculiarities of each feature, and on the other to overcome
the flaws of the single SVM by relying on multiple features.

The outputs of the individual classifier, di (i = 1, 2, 3), are
set to −1 if the input is classified as a non-stress observation,
and to 1 otherwise. The weights, w1, w2, and w3, have been
defined based on the accuracy of the different classifiers on the
validation set, composed of the data acquired during Session #2.
Indicating the accuracy values as a1, a2, a3, and setting

am = min {a1, a2, a3}, (1)

the weights are computed as follows:

wi =
ai/am∑3
i=1 ai/am

, i = 1, . . . , 3. (2)

The weighted sum is obtained as

d =
3∑

i=1

widi. (3)

Since the sum of the weights is equal to 1, the value of the
weighted sum can vary in the interval [−1, 1].

The final decision is taken by comparing the weighted sum
with a threshold. In Section IV, this threshold is set to 0, to
evaluate the accuracy of the proposed classifier.

IV. RESULTS

A. Test Sample

During the three acquisition sessions, a total of 100 users
participated in the AR tests. All participants were Italian speak-
ers, and the words presented during the SCWT were in Italian.
Before performing the tests, all participants were asked to sign
a privacy agreement for data collection.
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Fig. 4. Proposed stress classifier architecture.

TABLE II
AVERAGE NUMBER OF SAMPLES PER USER

During Session #1, the SCWT was performed by a group of 60
subjects, 32 men and 28 women, whose ages varied between 19
and 47 years (25.6± 4.5). Session #2 comprised a group of 20
participants, 10 men and 10 women, whose age varied between
22 and 47 years (28.8± 6.2). Also in this case the SCWT has
been submitted to the participants. Finally, during Session #3, the
SCWT and MA test were performed by a group of 20 subjects,
12 men and 8 women, whose age was in the range between 21
and 31 years (24.4± 3.3).

B. Pre-Processing

The collected data were first divided based on the duration
of each phase of the stress-inducing tests as reported in Sec-
tion III-A. In order to filter out possible noise, we considered
a windowed mean of the samples. To this aim, we employed a
window with a fixed length instead of setting the window equal to
a predefined time interval. In fact, since the sampling interval of
Microsoft Hololens 2 is not constant, the same time interval may
contain a slightly variable number of samples. A fixed window
length allows to filter noise while preserving the original signal
variance. This aspect is important for the performed statistical
analysis, since a variation in the signal variance may prevent
from meeting the assumptions required from the ANOVA test.
The window length has been set to 5 samples based on the
average number of samples included in a temporal window of
0.1 seconds. In fact, considering the limits for head speed during
reading tasks [67], the head displacement during this time inter-
val can be deemed not significant. In Table II, the average number
of samples per user along with the corresponding standard
deviation is reported for both SCWT and MA, before and after
pre-processing.

TABLE III
RESULTS OF THE ANOVA TESTS FOR THE TIME-DOMAIN REPRESENTATION OF

THE HEAD MOVEMENT FEATURES

C. Statistical Analysis

In Table III, the ANOVA and HSD tests results for the different
head movement features in the time domain are presented, while
in Table IV the Welch’s ANOVA and Games-Howell results
for the frequency-domain representation of the head movement
features are illustrated. The absence of changes in the features in
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TABLE IV
RESULTS OF THE WELCH’S ANOVA TESTS FOR THE FREQUENCY-DOMAIN REPRESENTATION OF THE HEAD MOVEMENT FEATURES

Fig. 5. Example of head movement along the three axes of the (a) first, (b) second, and (c) third phases of the SCWT for one participant.

Fig. 6. Results of the HSD test obtained for (a) total displacement and (b) total speed. The filled dots represent the mean value for each phase, while the line and
the associated shaded area represent the comparison interval corresponding to the 0.05 significance level. Different colors are used to indicate the phases which
are significantly different.

presence and absence of stress was used as the null hypothesis.
In particular, three outcomes are possible:
� the null hypothesis is not rejected (-);
� the null hypothesis is rejected and the analyzed feature

increases during the stress-related phase (↑);
� the null hypothesis is rejected and the analyzed feature

decreases during the stress-related phase (↓).
It is useful to highlight that in the SCWT Phase 1 and Phase

2 represent the congruous non-stress conditions, while Phase
3 represents the incongrous and stress-related condition. For
this reason, we expect the stress-discriminant features to be
significantly different when comparing Phases 1 and 3 and
Phases 2 and 3.

In Fig. 5, an example of the variation of the head movement of
one participant along the three axes is presented. The temporal
variation of the displacement along the axes and the total dis-
placement have shown a significant difference among the three

phases, demonstrating that the head movements vary when the
complexity of the required task changes. In particular, except
for the z-coordinate, the head movement decreased during the
third phase. On the other hand, the total displacement has shown
an increase during the third phase. Since the total displacement
allows to aggregate the information provided by the movements
along the single axes, it has been selected as input for the
classifiers. The results of the Tukey HSD test are represented
in Fig. 6(a).

Concerning the entity of the displacement, although a signif-
icant difference between the three phases has been detected,
the magnitude of the feature during the different phases is
comparable, thus indicating that there is not a privileged axis
of movement. A similar consideration can be made for the
sign of the head movement. In this case, an oscillatory move-
ment was observed, rather than a movement in a specific
direction.



6978 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 10, OCTOBER 2024

Fig. 7. Results of the HSD test concerning the angular displacement obtained for the (a) (x, y), (b) (x, z), and (c) (y, z) angles. The filled dots represent the
mean value for each phase, while the line and the associated shaded area represent the comparison interval corresponding to the 0.05 significance level. Different
colors are used to indicate the phases which are significantly different.

As for the statistical analysis performed on the head speed,
the speed along a specific axis was not significantly different
during the three phases. On the other hand, it is interesting to
note that the total speed, which represents a combination of the
other three speed features, is significantly higher during the third
phase (Fig. 6(b)).

Regarding the angular displacement, this feature is signif-
icantly different during the third phase. The only exception is
represented by the (x, y) angle which has not shown a significant
difference between the first and third phases. However, the
decrease of the angular displacement between the second and
third phases indicates a variation of this feature with the task
complexity. The results are represented in Fig. 7. The outcomes
for the entity of the angular displacement, and for the sign of the
angular displacement have confirmed that the head movement
was not characterized by a privileged direction and it was mainly
oscillatory. The angular speed was not significantly different
during the three phases.

A second set of statistical tests has been performed for the
STFT coefficients of the selected features: total displacement,
total speed, and the three angular displacements. These coef-
ficients were evaluated considering a flat top window of 16
samples and 50% overlap. This operation resulted in 16× 33,
16× 56, and 16× 73 complex coefficients for the first, second,
and third phases of the SCWT, where the first number indicates
the frequency bins whereas the second represents the temporal
bins. After extracting the phase and module of the coefficients,
and performing the phase unwrapping procedure, a cumulative
sum along the temporal dimension has been computed thus ob-
taining 16 coefficients for each user and phase of the test. While
the other features respected the assumptions for the ANOVA

test, the module and phase of the STFT coefficients were not
homoscedastic. Therefore, the Welch’s ANOVA test was per-
formed. The corresponding results are provided in Table IV. For
both module and phase, a significant difference among the three
phases was detected, thus demonstrating the oscillatory nature
of the head movement. These results show that the frequency
content of the oscillatory movement changes during the different
test phases, thus motivating the choice of performing a STFT
analysis of the signal before providing it as input to the classifier.

To summarize, the following insights can be gained from the
performed analysis:
� the results indicate that the head motion is affected by

stress;
� the results concerning the entity and sign of both the

singular coordinates and the angular displacements show
that there is neither a preferred axis nor a preferred direction
of motion;

� the features that aggregate information concerning differ-
ent axes (i.e., total displacement, total speed and angular
displacement) are representative of the presence of stress;

� the results concerning the analysis in the frequency domain
suggest that oscillatory head movements are triggered dur-
ing a stressful event.

D. Classification Results

The performances of the proposed classifier for validation and
test sets are presented in Table V. More specifically, the results
are reported in terms of classification accuracy

Accuracy =
TP + TN

TP + FP + TN + FN
, (4)
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TABLE V
CLASSIFICATION ACCURACIES

where TP (True Positives) indicates number of times a stress-
related sample is correctly classified,FP (False Positives) repre-
sents the number of misclassified stress observations, TN (True
Negatives) is number of times a non-stress sample is correctly
classified, andFN (False Negatives) corresponds to the number
of non-stress observations classified as stress-related.

Since the MA test has a different time length compared to the
SCWT, the acquired time series have been segmented to obtain
sub-sequences whose length is comparable to that of the SCWT.
More specifically, the data obtained during the first phase of the
test were partitioned into two sub-sequences with an average
sample count of 449.2± 1.3 that is comparable to the second
phase of the SCWT. Similarly, the data collected in the second
phase were segmented into three sub-sequences, with an average
sample count of 645.8± 6.7 that is comparable to the samples
in the third phase of the SCWT. For each participant, in order
to obtain a single observation for the two classes, the mean of
the features evaluated for each sub-sequence was performed.
The obtained sequences underwent the same STFT analysis
performed for the SCWT.

Table V reports the results obtained using the analyzed fea-
tures independently and the performance achieved through their
combination, as represented in Fig. 4. The combination weights
have been computed as described in Section III-D based on
the classification performance on the data recorded during the
validation session (Session #2). As can be noticed in the first
column of Table V, the performances of the three classifiers
are comparable, thus resulting in similar weights for the three
classifiers. More specifically, the weights obtained for the SVM
of the total displacement, total speed and angular displacement
are w1 = 0.34, w2 = 0.33, and w3 = 0.33, respectively.

Concerning the test session (Session #3), Table V shows
that the Combined Classifier has not the highest accuracy for
the SCWT. In fact, based on the computed weights, a wrong
classification occurs when two out of three classifiers make a
wrong decision on the input observation. Despite this, we believe
it represents a more robust solution due to the aggregation of the
information provided by different features. In fact, the lower
accuracy for the SCWT is due to a mismatch in the performance
of the different SVMs for the validation and the test sessions.
This phenomenon could be overcome through a more extensive
validation procedure.

E. SSQ Results and NASA-TLX

In Table VI, the SSQ answers obtained during all the acqui-
sition sessions are summarized. In most cases, the participants

TABLE VI
SSQ ANSWERS REPORTING THE % OF PARTICIPANTS SHOWING EACH

SYMPTOM

Fig. 8. Boxplot of the NASA-TLX scores obtained during the test acquisition
session. The red line in the boxes indicates the median value.

did not present any discomfort related to the use of the HMD.
In fact, for all the symptoms, most users reported no perception.
The slightly more frequent symptoms were fatigue, eye strain,
and difficulty in concentrating. This may be due to the cognitive
engagement required to perform the different tasks. In general,
it can be safely stated that the HMD and the stress-inducing tests
did not cause in most cases unpleasant feelings to the users.

In order to determine whether there was a significant dif-
ference between the NASA-TLX scores for the SCWT and
MA test, both a two-tailed and a one-tailed paired samples
t-tests [61] were performed. In the first case, the null hypothesis
assumed the means of the scores obtained for the SCWT and
the MA test to be equal. The test rejected the null hypothesis
at a 5% significance level, with a p-value of 0.017. The second
test allowed to reject the null hypothesis, according to which
the mean of the SCWT scores is larger than the mean of the
MA scores, at a 5% significance level. These results show that
the MA test was perceived as more stressful than the SCWT,
thus achieving the desired goal. In Fig. 8, the boxplots of the
scores of the two tests are represented. It is possible to notice
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART APPROACHES FOR NON-INVASIVE STRESS DETECTION

that the mean of the MA scores is slightly larger than the
SCWT one. Although there is not a standardized thresholding
system for the NASA-TLX score and the score interpretation
is task-dependent [68], it is possible to gain interesting insights
from Fig. 8. In [68] the authors analyzed the use of NASA-TLX
in the literature showing the variation of the scores for different
tasks. Among these, the ones which more resemble the scenario
considered in this paper are: cognitive tasks (scores between
13.8 and 64.90 with a median of 46) and computer activities
(scores between 7.46 and 78 with a median of 54). Moreover,
they reported that the smallest and highest scores are 6.21 and
88.5, respectively, and that daily activities range between 7.20
and 37.50 with a median of 18.30. Considering daily activities as
baseline, Fig. 8 shows that both SCWT and the MA test achieve
scores that are remarkably higher. Moreover, for both tasks the
median and maximum values are higher with respect to cognitive
and computer activities. Therefore, we can conclude that both
tasks were demanding in terms of workload and mental effort.

F. Comparison With State-of-the-Art Approaches

The state-of-the-art review presented in Section II highlighted
a wide variety of methodologies and types of test for stress
detection. For this reason it is not possible to perform a di-
rect comparison with our approach. However, we compare the
statistical analysis results with [10] and [15], where the same
experimental protocol for the SCWT has been adopted, and the
performance of the proposed stress classifier with [49] and [51],
where immersive technologies are employed. To further investi-
gate the achievements of the proposed approach, we compare our
results with the ones of the methods based on physiological data
that selected the SCWT and/or MA test as stress inductors [37],
[40], [41], [43], [46], [47].

In [10], [15], a variation in users’ movements due to the
increasing level of cognitive engagement has emerged. More
specifically, an increase in the overall distance covered be-
tween the first and third phases was detected. These results
are consistent with what has been discussed in Section IV-C,
where an increase in the total displacement and in the entity of
displacement along all three axes has been identified. In [15], a
significant decrease in the mean speed was also highlighted.
In this study, an opposite behavior was observed, since the
statistical analysis highlighted an increase of the total speed.
This difference can be attributed to the chosen experimental
protocols. In [15], the participants performed the test sitting on
an office chair, while in our case they were in a standing position.
Moreover, the difference test modality (i.e., PC and AR screen)
could have influenced the participants’ behavior.

Moreover, we provide in Table VII the comparison with
state-of-the-art approaches in terms of classification accuracy.
We reported the best results presented in [49], [51]. As can be

noticed, the proposed approach definitely outperforms previous
research concerning non-invasive stress assessment in AR/VR.

As for the approaches using physiological measures, in [47]
a stress detection method exploiting eye tracking data and elec-
trodermal activity has been presented. The authors performed a
binary classification between a “stress” and a “relaxation” phase
using the SCWT and a three-level stress classification for the
MA test. They achieved an accuracy of 88.43% for the former
scenario, and an accuracy of 91.10% for the latter. Another
multimodal stress detection system involving ECG, GSR and
an accelerometer has been proposed in [46]. They employed
both the SCWT and the MA test in a single experiment. They
trained a binary classifier achieving a classification accuracy
of 92.4%. The ECG in combination with the SCWT has been
employed also in [40]. Stress detection has been modeled as a
binary classification problem achieving an accuracy of 96.41%.
In [41] ECG has been used to detect stress based on a MA task
to differentiate between “stress” and “rest” phases achieving
an accuracy of 82.7%. Also in [43] a MA task and the SCWT
have been employed to realize a stress classifier using photo-
plethysmogram signals. The MA test was designed to include
up to five different levels of stress, while the SCWT has been
employed following a three-level classification approach. The
authors achieved 86% accuracy for the SCWT, and designed
different detection models for the MA task corresponding to
a number of classes from two to five. The presented method
achieved an accuracy of 97.77% for two classes, 94.11% for
three classes, 94.4% for four classes, and 94.33% for five classes.
Finally, in [37] EEG has been employed to detect stress using
the SCWT and MA test. The authors realized a binary classifier
reaching an accuracy of 88% and 96% for SCWT and MA, re-
spectively. Moreover, they presented a three-level classification
approach considering three separate classes for rest, SCWT, and
MA, under the assumption that SCWT induces milder stress than
MA. In this case, they achieved an accuracy of 75%.

Based on these results, the proposed head motion-based
method allows to achieve better or comparable performance with
respect to the physiology-based counterparts.

V. LIMITATIONS AND FUTURE DIRECTIONS

In this section we report the limitations of the proposed
approach which open new interesting research paths for the
design of non-invasive AR stress detection systems.

One limitation of this study lies in the procedure adopted for
calculating the weights assigned to the outputs of the individual
classifiers. According to the performed analysis, the choice of
weights based on the validation set did not allow the generaliza-
tion to new test samples for the SCWT. The main mitigation for
this problem is to increase the number of subjects in the valida-
tion phase so that the weights of the different classifiers can be



FERRAROTTI et al.: STRESS ASSESSMENT FOR AUGMENTED REALITY APPLICATIONS 6981

more representative of their capabilities. Another aspect which
could be improved is related to the usage of a hard threshold to
differentiate between the stress and the non-stress conditions.
Future developments could include the design of a more flexible
system with a soft thresholding based on three-decision regions.
In this case, two thresholds can be defined, one for negative and
one for positive values of the weighted sum. In this scenario,
the external negative range represents the non-stress region,
while the external positive range represents the stress region.
The central region may represent a transition phase, which could
be used to alert the user of an upcoming stress condition. The
two threshold values should be based on the specific application
scenario. In addition, the current system allows to perform only
post-processing stress detection, while a relevant improvement
could be the realization of a real-time stress detection system.

Finally, in this work, we have considered a static task (e.g.,
reading, informative training, tutorial watching). Future devel-
opments may include the extension of the proposed approach
to dynamic and interactive activities. In this direction, improved
classification results could be obtained by including additional
information such as eye-tracking data. The usage of a multi-
modal system could be beneficial for addressing data acquisi-
tion artifacts, and for isolating stress-related and task-related
movements.

VI. CONCLUSION

The analysis of the effects of stress on the human body is a
widely investigated research topic. The solutions proposed in
the literature mainly rely on invasive systems and infrequently
focus on AR/VR applications. To fill this gap, this work in-
vestigates whether the head movements of a user wearing an
AR HMD vary due to the presence of a stress factor while
performing static tasks. In order to induce stress, the SCWT
has been used. From the statistical analysis, it has emerged
that several head movement features vary when a stressful
situation is presented to the user. More specifically, head dis-
placement, head velocity, and angular displacement have shown
to vary during all the different phases of the stress-inducing
test. Therefore, they have been selected as stress-discriminating
features. The phase of the STFT coefficients of these fea-
tures has been used to define a stress classifier, based on a
combination of SVMs optimized for each feature. In order to
test the generalization capabilities of the classifier, both the
SCWT and a MA test have been employed. Therefore, the main
contributions of this work concern the thorough description
of how head movements vary due to a stress state in an AR
scenario and the definition and realization of a stress classifier,
which has shown excellent performances on both tests. More-
over, the proposed system is completely non-invasive and easy
to use.
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