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Abstract—The combination of optical microresonators and the
emerging microwave photonic (MWP) sensing has recently drawn
great attention, whereas its multi-parameter sensing capability
mainly relies on adopting multiple resonance modes. By incor-
porating deep learning (DL) into MWP sensing, we propose a
new sensing paradigm, which has the simplified design, reduced
fabrication requirement, and the capability of sensing more than
one parameter. The MWP interrogation transforms the spectral
response of a single optical resonance (SOR) that can be at arbitrary
coupling conditions into the variations of the zero-transmission
profile of microwave signals, providing improved interrogation res-
olution regardless of the resonance parameters. A DL unit is used
to exploit the raw interrogation output to simultaneously estimate
the target measurands. As the proof-of-concept demonstration,
simultaneous temperature and humidity sensing using a SOR is
conducted, where the convolutional neural tangent kernel (CNTK)
is used as the DL model to reduce the demand for experimental data.
The established CNTK-DL model consistently outperforms the
support vector regression model that relies on handcrafted features
and demonstrates an over 2-fold higher estimation accuracy with
the laser drift interference and a lower mean absolute error in the
presence of strong noise, showing the power of DL for boosting
MWP sensing.

Index Terms—Deep learning, machine learning, microwave
photonics, optical resonators, optical signal processing, sensors.

I. INTRODUCTION

O PTICAL microresonators, such as microrings, mi-
crodisks, and microspheres, can strongly enhance the

light-matter interaction by confining the resonant light at specific
wavelengths through total internal reflection along the sidewalls
of a microscale cavity. Optical microresonator based sensors
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have been attracting great attention [1], [2]. Their remark-
able properties, including the label-free detection and real-time
monitoring capabilities and the exceptional sensitivity to any
environmental perturbation that can influence the optical mode
distribution, coupled with their diverse fabrication platforms and
compatibility with the existing chip-based technologies, have led
to a broad range of applications [3], [4], [5], [6], [7], [8].

Conventionally, the interrogation of resonant mode changes
relies on directly measuring the optical transmission using an
optical spectrum analyzer. This is simple but of limited speed,
especially when high resolution is needed, and the perfor-
mance largely depends on the fabrication accuracy of optical
microresonator devices [9], [10], [11], [12], [13], [14]. In the
pursuit of achieving high speed and high resolution to meet
the ever-increasing demand in modern sensor networks, the
Internet of Things, and the frontiers in medical and biochemical
fields, microwave photonics (MWP), which has been bringing
together and benefiting the two worlds of microwave engineering
and photonics [15], [16], [17], [18], [19], has been applied
into optical sensing in recent years [20], [21]. Different MWP
interrogation schemes have been proposed for optical microres-
onators. The basic idea is to transfer the resonant wavelength
shift of optical microresonators in the optical domain into the
frequency changes in the microwave domain, where fast and
precise measurements are easier to conduct [9], [10], [11],
[12]. With the recent advances in photonic integration, which
have propelled MWP to a new height by allowing enriched
functionality in a dramatically reduced footprint [22], the MWP
sensors using integrated devices are promised to be a preferred
solution in various high-demanding sensing scenarios. However,
the related research effort on the on-chip MWP sensing mainly
centers on single-parameter sensing, while the achievement of
sensing more than one parameter, which is often required or
even indispensable in real-life applications, is still challenging.
Along with the variations of the measurands of interests, the un-
desired perturbations can also be encoded in the optical resonant
mode changes, affecting the sensing selectivity. The ability to
effectively distinguish different factors is thus vital to achieving
accurate and reliable sensing with no ambiguity. Conventional
approaches to realizing optical multi-parameter sensing rely on
the usage of multiple resonator devices or resonance modes with
different sensitivities [9], [23], which increases the complexity
of the design, implementation, and interrogation of the sen-
sors. This challenge becomes increasingly pronounced as the
required number of resonance modes multiplies. It is, therefore,
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Fig. 1. Proposed new MWP sensing scheme consists of (a) the high-resolution MWP interrogation system for the optical microresonator sensors, which uses a
DDMZM to map the single optical resonance responses, including the resonance wavelength shift and the variations of ER and FWHM, in the optical transmission
of a MRR into the zero-transmission profile of the SFS, where H and H’ are the optical transmissions before and after the measurands change and T and T’ are the
corresponding SFS transmissions, respectively, and (b) the DL processing of the raw interrogation output, where the DL model automatically extracts the optimal
feature representations and is capable of generating the accurate estimation the measurands of interest (M1’ and M2’) after being sufficiently trained.

necessary to find a new way to enable the MWP sensors to
simultaneously detect more than one measurand. Recently, deep
learning (DL) has gained ever-increasing attention, as it allows
computational models consisting of multiple processing layers
to learn to automatically extract optimal feature representations
from the raw input for making accurate decisions, even for highly
complex problems [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33]. It has shown great promises to directly decouple the
combined response to different measurands [26], [27], [28], [29],
[30]. In comparison with the traditional machine learning (ML)
approaches which require handcrafted input [34], [35], [36], the
excellent capabilities of DL make it a promising tool to process
the interrogation results by automatically recognizing and learn-
ing the optimal informative feature representations, rather than
solely relying on handcrafting features, for complex mapping
[37], [38], [39]. To date, however, to our best knowledge, the
DL has not been applied in emerging MWP sensing.

In this article, by combining MWP sensing with DL for the
first time, we propose a new MWP sensing paradigm using a
single optical resonance (SOR), which has the minimum require-
ment for the design and fabrication of the optical microresonator
sensor and the capability of simultaneously sensing more than
one measurand of interest. Through the MWP sideband pro-
cessing, the spectral response of the SOR to the measurands of
interest can be transformed into the zero-transmission profile of
the interrogation microwave signals with high resolution. The
interrogation output is then directly used as the input for DL pro-
cessing, where multiple processing layers automatically extract
optimal feature representations and achieve accurate simultane-
ous prediction of the measurands of interest through supervised
training. As a proof-of-concept, we experimentally demonstrate
the achievement of simultaneous sensing of temperature and

relative humidity (RH) via DL of the MWP interrogation output
of a SOR of a generic silicon-on-insulator (SOI) microring
resonator (MRR) top-coated with the hygroscopic polymethyl
methacrylate (PMMA). The convolutional neural tangent kernel
(CNTK) that approximates a convolutional neural network with
infinite layer width and is amiable to small datasets is adopted to
establish the DL model to reduce the demand for a large amount
of experimental data. In comparison with the ML model based
on support vector regression (SVR) and two handcraft features
extracted from the interrogation output, the DL-assisted MWP
sensor consistently shows superior performance, demonstrating
a nearly 2-fold and 3-fold higher estimation accuracy with and
without the interference of laser drift, respectively, and remains
a lower mean absolute error (MAE) in a high noise level. These
results demonstrate the superiority of MWP sensing assisted by
DL and boost the microresonator for multi-parameter sensing.

II. PRINCIPLES AND METHODS

A. Principle of Operation

Fig. 1(a) depicts the schematic diagram of the high-resolution
MWP interrogation system for the optical microresonator sen-
sors in our proposed new sensing approach using only a SOR.
The proposed scheme is compatible with any optical microres-
onator. Here, a standard all-pass MRR, which consists of simply
a cavity waveguide and a bus waveguide, is used as an example.
The optical transmission profile of a SOR of the MRR at arbitrary
coupling conditions is continuously interrogated with high speed
and high resolution by using a swept-frequency signal (SFS)
modulated onto the excitation light in a dual-drive Mach Zehnder
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modulator (DDMZM) via an electrical 90-degree hybrid cou-
pler. By conducting the MWP sideband processing of the mod-
ulated light, the transmitted SFS constantly exhibits an ultradeep
spectral notch with a sharp tip, indicating the SOR responses to
the measurand changes with greatly enhanced resolution. The
raw SFS transmission is later used as the direct input for DL
processing which enables the simultaneous prediction of more
than one measurand of interest.

For the MRR with a self-coupling coefficient of r and a cavity
length of L, its optical field transmission, H , with respect to the
wavelength of λ and the effective index ofneff can be expressed
as [40]

H =
a− re−iθ

1− raeiθ
ei(π+θ) (1)

where a is the single-pass amplitude transmission that reflects
the transmission loss in the cavity, and θ is defined as θ =
2π
λ
neffL. Each resonance mode thus corresponds to an optical

power transmission dip at the resonance wavelength, λres, with
the notch depth or extinction ratio (ER) equal to

ER =
(a+ r)2(1− ar)2

(a− r)2(1 + ar)2
(2)

The full width at haft maximum (FWHM) of notch width is
given by

FWHM =
(1− ra) λ2

res

πngL
√
ra

(3)

where ng is the group index. When the laser wavelength, λC , is
placed close to the selected SOR for sensing at the longer wave-
length side, as the SFS-modulated optical field, Em, transmits
in the MRR, the optical notch of the SOR will then be scanned
by the upper or lower sideband (USB or LSB), consequently
resulting in a transmission dip of the SFS. Fig. 1(a) shows an
example of using the USB in MWP interrogation. The instan-
taneous intensity of the transmitted SFS after the photodetector
(PD) can be expressed as [9]

I2 =
1

2
R2PC

{
PLSB + P ′

USB + 2
√

PLSBP ′
USB cosΔϕ

}

(4)
where R is the responsivity of the PD, PC , and PLSB are the
initial optical power of the optical carrier and LSB, respectively.
P ′
USB representsPUSB |H(λUSB)|2, which is the instantaneous

USB power, PUSB , being filtered by the SOR power transmis-
sion dip at the wavelength position of λUSB . Δϕ is the phase
difference between the two photocurrent terms resulting from
the carrier beating with USB and LSB, respectively, which is
dependent on the phase transmission of the SOR and adjustable
by the DC bias of DDMZM. The changes of different measur-
ands of interest can lead to a combined variation in the spectral
line shapes of the SOR. Through the MWP sideband processing
by tailoring the optical power and phase profiles of the optical
components in (4) via tuning the DC bias voltage of the mod-
ulator, the superposed responses of the SOR, which can have
arbitrary coupling states and parameters, can be transformed
into the variations of an ultra-deep notch in the SFS transmission
spectrum with high resolution.

Fig. 2. (a) Simulated cross-section view of the optical field distribution of light
transmitted in a standard SOI waveguide shows the strong evanescent waves on
the waveguide surface that intimately interact with the top claddings; (b) The
variation of the refractive index of top cladding (Δn) results in the change
of effective index (Δneff) and group index (Δng) and hence the distinct shift
of resonance wavelength (Δλres); (c) The simulated change of self-coupling
coefficient (Δr) of a straight directional coupler as the cladding refractive index
varies.

The output of the MWP interrogation is used as the input of
the DL for learning and estimation, as shown in Fig. 1(b). The
SFS transmission spectrum is measured at various measurand
conditions in the target sensing area to establish the DL-based
estimation model. The acquired raw spectra labeled with the
ground-truth measurand values then comprise the dataset to train
the DL model, where the raw spectrum composed of a length of
point transmission directly functions as the input layer without
experiencing any pretreatment. In the supervised training, the
DL neural network containing multiple hidden layers automat-
ically extracts high-level features from the raw spectrum and
compares the resulting estimated measurand values in the output
layer against the ground truth. Errors are then used to adjust the
network coefficients and hyperparameters in the direction of
achieving better estimation accuracy. This process occurs over
and over through the training dataset until the model has been
fitted appropriately with the optimal parameters. Once the DL
model is established, the different target measurands of interest
can be accurately and simultaneously estimated with the MWP
interrogation output of the SOR. In this way, the high-sensitivity
and high-resolution MWP sensing of more than one parameter
is achieved, which has the minimum requirement on the design
and fabrication of the optical microresonator sensor probe.

Fig. 2(a) presents the simulated optical mode field distribution
in the cross-section of the SOI waveguide. A finite-difference
eigenmode (FDE) solver (Ansys Lumerical) was adopted to
numerically calculate the TE mode optical electric field distribu-
tion within cross-section area of the waveguide. The simulation
was conducted at a wavelength of 1550 nm, with the silicon
waveguide dimensions set to 450 nm in width and 220 nm in
height, and the refractive index of the top cladding layer fixed
at 1.485. As the results indicate, the optical mode field of the
transmitted light distributes throughout both the waveguide core
and the cladding layers. Thus, any environmental changes that
can perturb the optical mode field, especially those as evanescent
waves along the waveguide surface, will cause the optical mode
indices to vary. Fig. 2(b) shows the changes of neff and ng

of the simulated optical mode at 1550 nm and the consequent
resonance wavelength shift, when the refractive index of the top
cladding, ncladding , undergoes a variation. Therefore, by using
the MRR as the sensor, a tiny index change can be transformed
into a distinct resonance wavelength shift. In the meantime,
as shown by the simulation results of the self-coupling coef-
ficient of a straight directional coupler which uses the same SOI
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Fig. 3. Optical sideband processing via the DC bias voltage. The simulated
power and phase transmission of (a) over-coupled and (b) under-coupled reso-
nant modes show the integer number of π rad phase changes at the resonance
wavelength. The simulated power ratio between the USB filtered by the SOR
(P

′
USB) and the LSB (PLSB) and the concurrent Δϕ at different DC bias

conditions show that there is always a DC bias voltage in the first and second
Vπ range for the (c) over-coupled and (d) under-coupled SOR, respectively,
to create the zero transmission. The insets show the instantaneous sideband
power ratio and Δϕ as the USB sweeps through the resonance wavelength at
the corresponding optimal DC bias condition.

waveguide geometry and has a coupling length of 15 um and
a gap distance of 300 nm in Fig. 2(c), r in (1) is also varying
with the optical index of the cladding. Given that the optical
indices are wavelength dependent [41], along with the resonance
wavelength shift, the overall resonance line shape, therefore,
also responds with altered characteristics, such as the ER and
FWHM, as indicated by (2) and (3).

Fig. 3 shows the simulated power ratio between P ′
USB and

PLSB and the concurrent Δϕ at different DC bias voltages,
when the USB sweeps through the resonance wavelength of an
over-coupled (Fig. 3(a)) and under-coupled (Fig. 3(b)) resonance
mode, respectively. Since the optical phase transmission at the
resonance wavelength is always equal to the integer number of
π rad, as shown in Fig. 3(c) and (d), there always exists one
DC bias point in the first and second Vπ (half-wave voltage)
range to allow the transmitted SFS in (4) for the over-coupled
and under-coupled SOR, respectively, to satisfy the following
conditions

PLSB = P ′
USB (5a)

cosΔϕ = −1 (5b)

Therefore, a zero transmission of the SFS ( I2 = 0) can
always be created regardless of the coupling state of SOR, via
automatically controlling the DC bias voltage of the DDMZM
[42]. The zero transmission is manifested as the ultradeep dip
in the SFS transmission spectrum, where the dip location and
spectral line shape are subject to the concurrent resonance wave-
length and the original optical resonance line shape. Overall,
based on the MWP sideband processing technique, the wave-
length position of the selected SOR, which can be at arbitrary
coupling states, can be continuously interrogated by locating the
zero-transmission point of the SFS. The spectral profile at the

output of MWP interrogation output, which contains the sharp
tip of the ultradeep spectral notch enabling the high interrogation
resolution, is used as the input of the DL model for measurand
prediction.

B. Deep Learning Model

As a proof-of-concept, the proposed DL-assisted MWP sens-
ing scheme using a SOR is validated in the case of simultaneous
sensing of temperature and humidity by using a SOI MRR,
top-coated with hygroscopic PMMA, as the on-chip sensor
probe. Due to the high thermal-optic coefficient of silicon [43]
and the humidity-sensitive refractive index of PMMA [44],
the transmitted optical resonance modes in the MRR are thus
sensitive to the environmental temperature and RH level. The
MWP interrogation of the selected SOR of the MRR was carried
out at a series of different temperature and humidity conditions
to obtain sufficient transmission spectra to comprise the dataset
for DL processing and model testing. To reduce the high demand
for training data, CNTK [45], [46], [47], which approximates a
convolutional neural network with infinite layer width and has
been demonstrated to be suitable for small dataset problems
[45], is adopted to build the DL model. CNTK is a kind of
kernel method that works by transforming input from the original
dimension space into a higher dimensional space and searching
for an optimal linear function, which may be a highly nonlinear
function in the original space, to make the prediction. Therefore,
the CNTK allows the DL of transmission spectra with a much
lower number of parameters.

The approximation of infinite-width neural networks as ker-
nels depends on three conditions: over-parameterization, proper
initialization of parameters, and a sufficiently small learning
rate [46]. Given these conditions, as the neural network model
becomes over-parameterized, the weight changes are observed
to decrease proportionally. The weights will hence remain static
during the gradient descent optimization process, even if each
layer is built with infinite neurons. This unique feature thus
allows the infinite-width neural network to be approximated as
its Taylor’s expansion around the initialized weights,w0, as [48]

f (x,w) ≈ f (x,w0) + 〈∇wf (x,w0) , w −w0〉 (6)

where f(x,w) refers to the neural network function, w repre-
sents weights, x stands for the input, and ∇wf(x,w0) is the
gradient vector at initialization. As the weights are completely
static when the network is highly over-parameterized, w0 can
be considered a constant. (6) is thus simply a linear model of the
weights w. As proved in [46], [49], training such infinite-width
neural network by gradient descent is equivalent to conducting
kernel regression expressed as

f (x) = K (x,D) ·K(D,D)−1 · y (D) (7)

where x stands for the test data as the input, which can be
assigned with a transmission spectrum acquired from the MWP
interrogation during the sensing process,D = [x̂1, . . . , x̂N ]′ , is
the training dataset with a size of N, which is implemented with
a collection of the transmission spectra acquired by the MWP
interrogation of the SOR at N different known conditions of
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Fig. 4. Experimental CNTK-DL model approximates a convolutional neural
network with one input layer of raw transmission spectrum, N infinite-width
convolutional layers, and one flattening layer connected to the output estimations
of temperature (T) and RH. Each convolutional filter has a size of J, and all the
weights and biases are initialized by using the normal distribution.

the measurands of interest throughout the target sensing range,
y(D) corresponds to the ground-truth values, i.e., the N known
conditions of the measurands of interest, K(x, x′) is the kernel
function that computes the similarity between two samples, x
and x′, by

K (x, x′) = 〈∇w f (x,w0) ,∇w f (x′,w0)〉 (8)

where the gradient vector works as the feature map that trans-
forms the input to higher-dimensional space. The CNTK-DL
model thus can be established simply by incorporating the
gradient vector function of the convolutional neural network
[47], which can be numerically calculated in practical implemen-
tations, into (7) and determining the hyperparameters, including
only the filter size and the number of layers, through the grid
search. As for the weights and biases in each infinite layer, the
normal distributions with the variance of 1 and 0 are used, respec-
tively, for the initialization, following an identical configuration
in [50]. Fig. 4 depicts the equivalent network structure of the
experimental CNTK-DL model. Compared with the deep neural
network model, the CNTK-DL model uses multiple layers with
infinite width to learn the features of the input, but only has a
few parameters to optimize, which, therefore, makes it a more
efficient choice for implementing the proposed DL scheme in
experiments.

III. EXPERIMENTAL SECTION

A. Device Fabrication and Characterization

The experimental SORs are contributed from SOI MRRs
fabricated in the same racetrack shape, as shown in Fig. 5(a),
using standard electron-beam lithography technology on a SOI
wafer where the silicon waveguides are 220 nm thick and sit
on top of a 2 um buried oxide layer above a 725 um thick
silicon substrate. The bending radius of the curved waveguides is
around 27 um, and the length of the straight waveguides is about
20 um. The light coupling between the on-chip MRR device
and fibers is realized via vertical grating couplers at the end
of the bus waveguides. Once fabricated, the SOI MRRs were
then spin-coated with the hygroscopic PMMA layer to make

Fig. 5. (a) Scanning electron microscope image shows the racetrack shape of
the fabricated SOI MRRs for experiments; Measured optical power transmis-
sions of the MRRs with the waveguide width of (b) 420 nm and (c) 450 nm,
respectively.

Fig. 6. Schematic of the experimental setup of the proposed SOI based MWP
sensor using ML and DL for the simultaneous measurement of temperature
and humidity. The PMMA coated SOI MRR sits close to a thermistor on a
Peltier, which is connected to a temperature controller and is enclosed in a
homemade chamber where the RH level is monitored by a reference hygrometer
and adjustable via controlling the wet and dry air flows.

the waveguide cladding index sensitive to the environmental
humidity, where the thickness of the PMMA cladding was
made to be around 450 nm to envelop the evanescent waves
surrounding the MRR waveguides completely. Fig. 5(b) and (c)
present the optical transmission of the experimental SORs of
PMMA-coated MRR with a 420 nm and a 450 nm waveguide
width, respectively, which were measured at room temperature
and humidity conditions. Both resonances exhibit a small ER
and a wide tip, indicating a limited resolution performance. The
420 nm-SOR has a Q factor of around 23600, while the 450
nm-SOR shows a relatively larger Q factor of around 38700.

B. Experimental Setup

The experimental setup of the simultaneous measurement of
temperature and humidity with the proposed DL-assisted MWP
sensing scheme using a SOR is illustrated in Fig. 6. The on-chip
PMMA-coated SOI MRR, working as the sensor probe, sits
close to a thermistor on a Peltier cooler and is enclosed in a
homemade chamber made with an inlet and an outlet and proper
holes for wires and fibers. The humidity inside the chamber is
constantly monitored using a commercially available hygrom-
eter (IC-Center 317) as the humidity reference sensor. The hy-
grometer has a measurement range of 0-99% RH, a resolution of
0.1% RH, and an accuracy of ± 2.5% RH. The interior RH level
can be gradually adjusted to and stabilize at the desired value
by carefully changing the power of the pumps that bring in the
surrounding air into the chamber via tubes filled with water and
desiccant. To ensure a reliable reference RH measurement, the
MWP interrogation was only performed when the RH level had
stabilized, and the concurrent reference RH level was recorded at
the same time of the spectrum acquisition. Meanwhile, the tem-
perature variation is achieved by using a temperature controller
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(TC) (Newport 325), which detects the thermistor and drives the
Peltier cooler. A polarization controller (PolC) is added between
the laser source (Keysight, 81960A) and the DDMZM to align
the polarization of the light according to the quasi-transverse
electric mode of the chip waveguides to minimize the optical
loss. The vector network analyzer (VNA) (Keysight, N5234A)
is used to generate the SFS, which drives the DDMZM via a
90-degree electric hybrid coupler (Marki microwave, QH0444).
The DDMZM bias voltage is supplied by a DC power supply
(Keysight, E3632A) which is programmable with a voltage
resolution of 1 mV. To compensate for the coupling loss between
the on-chip waveguides and optical fibers, an Erbium-doped
fiber amplifier (EDFA) is added at the output of the sensor
probe before the optical detection in a high-speed PD (u2t). The
detected photocurrent is then sent to the VNA, which measures
the demodulated SFS and provides the SFS transmission. In
practice, the optical modulator, optical microresonator, and PD
can be integrated into a single platform to enhance the system
compactness and portability [22], while the VNA, which works
as a radio frequency transceiver, can be replaced with a compact
RF source and power meter to reduce the system volume and
cost. The power supply and VNA are connected to a computer
that dynamically adjusts the DC bias voltage to maintain the
conditions for the high-resolution MWP interrogation during
the sensing and processes the acquired interrogation results with
ML and DL techniques to enable the sensing of dual parameters.

IV. RESULTS AND DISCUSSIONS

In this section, the performance of the proposed SOR-based
MWP sensing scheme using the CNTK-DL model in the simul-
taneous measurement of temperature and humidity is demon-
strated and analyzed. To evaluate the robustness and versatility
of the DL-based sensing model, the experiment was carried out
in three different scenarios: the SOR-based MWP temperature
and humidity sensing under (i) no additional interference, (ii)
laser drift, and (iii) strong noise. Laser drift is a common
problem in optical systems and critical for long-term operation,
while noise resistance is desired for practical deployment. In
each experiment, the laser wavelength was kept on the longer-
wavelength side of the selected SOR, and 36 spectra in total
were acquired in the MWP interrogation of the SOR at six
different RH levels, ranging from around 40% RH to around
60% RH in a step of about 4% RH, while the temperature of
the MRR chip was set to six equally spaced values, ranging
from 22.20 °C to 22.63 °C, via a temperature controller. Each
spectrum acquired has a frequency range of 20 GHz and a sample
length of 1001, which corresponds to a wavelength resolution
of about 0.16 pm at the wavelengths around 1550 nm. The small
temperature and humidity increments were adopted to test the
interrogation resolution. Although the measurement range of
the MWP system demonstrated in this article is limited by the
experimental devices and instrument, such as the PD and VNA,
it can be extended by utilizing a tunable laser to conduct the
multi-channel interrogation via changing the carrier wavelength
[51]. The collected transmission spectra labeled with the ground-
truth temperature and RH values comprise the datasets for DL

Fig. 7. Flat and rugged distribution of the (a) dip positions and (b) transmis-
sion averages extracted from the transmission spectra obtained in Scenario 1,
showing their linear and nonlinear relationships with the temperature and RH,
respectively. The inset in (a) and (b) presents the transmission spectra (referenced
to -20 dBm) collected at a fixed humidity of 52.0% RH and a fixed temperature
(T) of 22.42 °C, respectively, which demonstrates the constant high interrogation
resolution and varied line shapes at varying temperature and humidity conditions.

processing. For comparison, in parallel with establishing the
CNTK-DL model, the SVR-ML model (see Appendix) was also
conducted to do the simultaneous sensing of temperature and
humidity with the same spectrum datasets and procedures by
using two handcrafted spectral features: the transmission dip
position and overall average.

A. Data Description

First, as in Scenario 1, the MWP simultaneous sensing of
temperature and humidity was carried out without additional
interference. The SOR was selected from a fabricated PMMA-
coated SOI MRR with a waveguide width of 420 nm. The
obtained dataset is named Dataset 1. Two series of spectrum
data collected at the same temperature of around 22.42 °C and
the same RH level of around 52.0%, respectively, are shown in
Fig. 7, where the transmission dip position and overall average
extracted from each spectrum data are presented altogether as
well. Under different environmental conditions, the transmission
dip remains a high rejection ratio of around 50 dB, which is
over 47 dB larger than the ER of the selected SOR shown in
Fig. 5(b), showing the constant high-resolution performance of
the MWP interrogation. When any of the two measurands varies,
the transmission spectrum exhibits clear line shape variations,
as manifested by the horizontal shifts of dip position and the
vertical shifts of the transmission average, which is calculated
by the sum of the transmission at every frequency point in the
measured transmission spectrum divided by the sample length.
As the temperature or humidity level rises, the dip position
shifts to the lower frequencies, while the overall transmission
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Fig. 8. The (a) dip positions and (b) transmission averages extracted from
the transmission spectra collected in Scenario1 and Scenario 2. The laser drift
makes the two spectral features ambiguous and lose validity as individual sensing
parameters. The inset in (a) and (b) compares the measured spectra (referenced
to -20 dBm) in Scenario1 and Scenario 2, at the fixed humidity of 60.2% RH
and the fixed temperature (T) of 22.68 °C, respectively, showing the clear shape
deformations.

average moves in an increasing trend. This nonlinear response of
transmission average can be explained by the nonlinear variation
of ER, as shown in (2), which constantly changes the average
transmitted intensity of SFS via regulating the DC bias voltage
of DDMZM according to the matching conditions.

Second, as in Scenario 2, the experiment was conducted
with the same 420 nm-SOR and the same experimental con-
ditions as in Scenario 1, but with altered laser wavelength
and power. The obtained dataset is named Dataset 2. Fig. 8
compares the spectrum data before and after tunning the laser
and the corresponding dip positions and transmission averages.
After introducing the laser drift, the high rejection ratio of the
transmission dip is still preserved, and the spectrum generally
shows a similar response to the measurands. However, at each
temperature and humidity condition point, the data shows a clear
position deviation in both horizontal and vertical directions. As
the laser wavelength drift directly superimposes on the reso-
nance wavelength shift, all the transmission dips appear at a
higher frequency, while each of the offsets slightly varies with
one another due to the non-zero filtering effect of resonance,
in practice, on the optical carrier. At the same time, all the
transmission spectra are integrally lifted, to different extents, due
to the increased optical power, whereas consequently becoming
more overlapped.

In Scenario 3, a SOR selected from a fabricated PMMA-
coated SOI MRR with a waveguide width of 450 nm was
used in the temperature and humidity sensing experiment in the
presence of a high noise level which is realized by decreasing
the experimental optical power and also shifting the MWP
interrogation window to higher frequencies [9]. The collected
spectrum data constitute Dataset 3 and are shown in Fig. 9.
Compared with Dataset 1, the total resonance wavelength shift
in response to the humidity variation is evidently smaller due to

Fig. 9. The (a) dip positions and (b) transmission averages extracted from
the transmission spectra obtained in Scenario 3, where there is intentionally
induced strong noise interference, exhibit nonlinear variation with respect to the
temperature and humidity changes. The inset in (a) and (b) presents the noisy
transmission spectra (referenced to −40 dBm) collected at a fixed humidity of
60.1% RH and a fixed temperature (T) of 22.60 °C, respectively.

the wider waveguide width that leads to the less distribution of
the transmitted optical mode field in the claddings, although the
high rejection ratio of the transmission dip is still retained. The
noisy spectra become distorted and blurry and overlap with one
another in a wide frequency range. Moreover, the dip position
now shifts nonlinearly, and similar to Dataset 2, the change
of transmission average at different environment conditions
(humidity and temperature) becomes less obvious, showing the
deterioration in the signal quality undoubtedly poses challenges
to the measurand estimation.

B. Experimental Modeling and Testing Results

As shown in Figs. 7–9, for each dataset, each spectrum data
can be identified by a unique pair of dip frequency and transmis-
sion average, which indicates that the spectrum data points in
each dataset are unambiguous. The 6-fold cross-validation was
adopted to establish and test the CNTK-DL model that enables
the simultaneous sensing of temperature and humidity using the
collected datasets (Datasets 1-3). In each 6-fold cross-validation
process, the in-use dataset was first permutated and then split into
six subsets. One by one, a subset was selected as the test set, and
the rest of the subsets were used as the training sets until all
possible combinations were evaluated. In this way, every data
point in the dataset was all used as the testing data once. In each
validation round, the MAE between the estimated and ground-
truth measurand values were calculated. The hyperparameters of
both CNTK and SVR models were determined by-way-of grid
search in a range of values based on the resulting MAE values
during a preliminary validation process. The convolutional layer
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Fig. 10. CNTK-DL model and SVR-ML model were established with Dataset
1, where the median values of the estimation results of CNTK-DL (red dots)
are located closer to the ground-truth values (black crosses) than that of
the SVR-ML model (blue diamonds) at all the experimental (a) tempera-
ture and (b) humidity points. The boxplot of MAE of (c) temperature and
(d) humidity estimations in the five 6-fold cross-validations further demonstrate
the superiority of DL of the entire spectrum over ML of handcrafted features.
The dotted lines indicate the overall average MAE values.

number and filter size of the CNTK-DL model were determined
as 8 and 11, respectively, which indicates a low complexity
that is beneficial to mitigating overfitting. To ensure a thorough
evaluation, five 6-fold cross-validations with different initial per-
mutations were performed with each CNTK-DL and SVR-ML
model.

First, the modeling and testing were carried out with Dataset
1. Fig. 10 shows the estimation results by the established
CNTK-DL and SVR-ML models. At every testing temperature
and humidity condition point, the median estimation values by
CNTK-DL are constantly located in closer proximity to the
ground truth than that of the SVR-ML model, indicating the
better estimation accuracy of the CNTK-DL model. Besides,
the total MAEs of the CNTK-DL model for the temperature
and humidity estimation in the five 6-fold cross-validations
demonstrate a more centralized distribution around small values
of around 0.04 °C and 1.30% RH, respectively, while the MAE
of the SVR-ML model fluctuates severely in a wide range and
results in an overall average MAE being nearly 3-fold worse than
that of CNTK-DL model. Although the currently achieved esti-
mation performance is restricted by the size of the experimental
dataset, the superiority of DL of the entire raw spectrum over the
ML of handcrafted spectral features for sensing is pronounced
clearly.

Next, the CNTK-DL and SVR-ML models were established
with the combined Dataset 1 and Dataset 2, for the case where
there are strong laser drift interferences. The estimation results in
the same validation process are shown in Fig. 11. The CNTK-DL
model continues to demonstrate a considerably better estimation
accuracy with the average estimation MAEs around 2.1-fold
smaller than that of the SVR-ML model. Compared with the
performance indicated in Fig. 10, the laser drift causes a small
deviation to the median prediction by the CNTK-DL model,

Fig. 11. CNTK-DL model and SVR-ML model were established with com-
bined Dataset 1 and Dataset 2 in the presence of laser drift, where the median
values of estimated (a) temperatures and (b) RH levels by CNTK-DL model
(red dots) are still located in closer proximity to the ground truth values (black
crosses) than that by SVR-ML model (blue diamonds). The boxplot of MAE of
(c) temperature and (d) humidity estimations in the five 6-fold cross-validations
further demonstrate the resistance of the ML and DL models to the laser drift
problem. The dotted lines indicate the overall average MAE values.

Fig. 12. CNTK-DL model and SVR-ML model were established with Dataset
3, which has degraded signal quality caused by strong noise, where the median
values of estimated (a) temperatures and (b) RH levels by CNTK-DL model (red
dots) still show a better precision than that by SVR-ML model (blue diamonds).
The boxplot of MAE of (c) temperature and (d) humidity estimations in the five
6-fold cross-validations further demonstrate the better robustness and spectrum
resolving power of the CNTK-DL model than that of the SVR-ML model. The
dotted lines indicate the overall average MAE values.

indicating the excellent resistance of DL-based MWP sensing
models to the laser drifts.

Finally, Dataset 3, with a high noise level, was employed
for establishing the CNTK-DL and SVR-ML models to test
their tolerance to signal degradation. The estimation results are
shown in Fig. 12. In this case, the SVR-ML model remains
an estimation performance similar to that with no additional
interferences. Although the average MAEs of temperature and
humidity estimation of CNTK-DL increase to around 0.10 °C
and 3.25% RH, respectively, they are still notably smaller than
that of the SVR-ML model. This might be due to the fact that
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the automatically extracted high-level features by the CNTK-DL
model contain not only the dip position and power transmis-
sion that the SVR-ML model solely relies on but also other
hidden features which can benefit the estimation but are now
overwhelmed by the strong noise and interfered by the wide
spectrum overlapping. This also suggests that increasing the size
of the training dataset might be beneficial for the DL model to
learn the features in a noisy environment. The higher estimation
precision of the CNTK-DL model compared with that of the
SVR-ML model, even in the strong noise situation, further
indicates the benefit of conducting DL of the raw spectrum rather
than relying on handcrafted features for sensing. As DL is a
data-driven method capable of learning features automatically,
by adopting a deeper neural network and training it with a large
dataset involving all the possible environmental interferences,
the resulting sensing model should achieve a higher capability
level and preserve excellent performance in practical use.

V. CONCLUSION

In summary, we have proposed and demonstrated the use of
DL to enable the MWP sensing of more than one measurand
sensing with the minimum requirement on the number of optical
resonances as well as the design and fabrication of optical
microresonators. As a proof-of-concept, the proposed scheme
is implemented in the simultaneous sensing of temperature and
humidity via DL of the MWP interrogation result of a SOR
of a PMMA-coated SOI MRR, where the CNTK is adopted as
the DL model to reduce the demand on experimental data. The
CNTK-DL model has been established and further evaluated in
the presence of laser wavelength and power drifts and strong
noise, respectively, in comparison with the SVR-ML model,
which requires two handcrafted spectral features as the input.
Despite the usage of a small dataset in training, the CNTK-DL
model consistently outperforms the SVR-ML model, showing
better robustness with high tolerance on the interference and
noise and demonstrating nearly 2-fold and 3-fold higher accu-
racy with and without the interference of laser drift, respectively.
Besides, within the system frequency range, the proposed sensor
can be configured for any other measurand ranges by simply
retraining the DL models with the MWP interrogation results
collected in the new target range. With such low complexity in
realizing the optical microresonator probe, the proposed MWP
sensing scheme paves the way for the realization of cost-effective
multi-parameter sensing and opens a new avenue for boosting
the integrated optical sensing and the development of smart
MWP sensors in which the complexity in hardware to combat
cross-sensitivity or interference is shifted to software using the
DL engine.

APPENDIX

The ML algorithm of SVR has been demonstrated to per-
form well in small dataset scenarios [34], [35], [52], [53].
For example, it outperformed the classification and regression
trees [52] and the multi-layer perceptron neural network [53]
when the size of the training data was even decreased to below
thirty-six. The SVR by itself is designed to mitigate overfitting

Fig. 13. Schematic diagram of the experimental SVR-ML approach that relies
on two extracted spectral features to estimate the temperature (T) and relative
humidity (RH).

via choosing a specific hyperplane via the max-margin criterion
towards better model generalization, among many hyperplanes
that can separate data in the feature space. To further miti-
gate overfitting for the small experimental datasets, the soft
margin SVR, which allows a trade-off between maximizing
the margin and minimizing the loss, is adopted. The SVR-ML
approach for comparison purposes in the experiments is shown
in Fig. 13. Unlike the CNTK-DL model that directly accepts
the interrogation results as input, the SVR-ML model requires
a preliminary procedure to extract the dip position and the
transmission average of each transmission spectrum from the
microwave photonic interrogation to constitute its input space.
As the extension of the SVR model in our previous work [34],
[35], the SVR-ML model in this work simultaneously predicts
the temperature and humidity and no longer needs the DC bias
voltages beyond the interrogation results, since the transmission
average is dominated by the passband transmission off the reso-
nance dip region, where the instantaneous transmitted power of
the swept frequency signal is subject to the DC bias voltage of the
modulator. The experimental SVR-ML model uses radial bias
function kernel [54] to make the similarity comparison between
the input vector and the support vectors in a sufficiently higher
dimension, where the support vectors are the training samples
around the ε tube [55] that determines a linear fitting function.
The similarity tolerance is controlled by γ. The proportion of
the number of points outside the ε tube is adjustable via the
regularization parameter,C. After being multiplied by learnable
weights α and β, the comparison results are then summed to
be the estimated temperature and humidity, respectively. In the
experiment, the hyperparameters of ε= 0.1, C = 10, and γ = 2
were determined in the preliminary validation process and used
for the SVR-ML model.

ACKNOWLEDGMENT

Photonic waveguide fabrication and scanning electron mi-
croscopy were conducted at the Research and Prototype
Foundry, a core research facility at the University of Sydney
and a part of the Australian National Fabrication Facility. L.
Li acknowledges the support of Sydney Research Accelerator
Fellowship. X. Tian acknowledges the support of Research
Training Program Scholarships from the University of Sydney.



7601211 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 6, NOVEMBER/DECEMBER 2023

REFERENCES

[1] X. Jiang, A. J. Qavi, S. H. Huang, and L. Yang, “Whispering-gallery
sensors,” Matter, vol. 3, no. 2, pp. 371–392, 2020.

[2] K. D. Heylman et al., “Optical microresonators for sensing and trans-
duction: A materials perspective,” Adv. Mater., vol. 29, no. 30, 2017,
Art. no. 1700037.

[3] L. Li et al., “Processing, characterization, and impact of Nafion thin film
on photonic nanowaveguides for humidity sensing,” Adv. Photon. Res.,
vol. 3, no. 2, 2022, Art. no. 2100181.

[4] W. J. Westerveld et al., “Sensitive, small, broadband and scalable optome-
chanical ultrasound sensor in silicon photonics,” Nature Photon., vol. 15,
no. 5, pp. 341–345, 2021.

[5] S. Liu et al., “End-fire injection of light into high-Q silicon microdisks,”
Optica, vol. 5, no. 5, pp. 612–616, 2018.

[6] B. B. Li et al., “Quantum enhanced optomechanical magnetometry,”
Optica, vol. 5, no. 7, pp. 850–856, 2018.

[7] Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical
bio-chemical sensors based on whispering gallery mode resonators,”
Nanoscale, vol. 10, no. 29, pp. 13832–13856, 2018.

[8] K. D. Heylman et al., “Optical microresonators as single-particle
absorption spectrometers,” Nature Photon., vol. 10, no. 12, pp. 788–795,
2016.

[9] X. Tian et al., “Cascaded optical microring resonator based auto-correction
assisted high resolution microwave photonic sensor,” J. Light. Technol.,
vol. 39, no. 24, pp. 7646–7655, Dec. 2021.

[10] H. Deng, W. Zhang, and J. Yao, “High-speed and high-resolution
interrogation of a silicon photonic microdisk sensor based on microwave
photonic filtering,” J. Light. Technol., vol. 36, no. 19, pp. 4243–4249,
Oct. 2018.

[11] X. Tian et al., “High-resolution optical microresonator-based sensor en-
abled by microwave photonic sidebands processing,” J. Light. Technol.,
vol. 38, no. 19, pp. 5440–5449, Oct. 2020.

[12] S. X. Chew et al., “Optoelectronic oscillator based sensor using an on-chip
sensing probe,” IEEE Photon. J., vol. 9, no. 2, Apr. 2017, Art. no. 5500809.

[13] C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators
in biochemical sensing applications,” J. Light. Technol., vol. 24, no. 3,
pp. 1395–1402, Mar. 2006.

[14] I. M. White and X. Fan, “On the performance quantification of resonant
refractive index sensors,” Opt. Exp., vol. 16, no. 2, pp. 1020–1028, 2008.

[15] J. Capmany and D. Novak, “Microwave photonics combines two worlds,”
Nature Photon., vol. 1, no. 6, 2007, Art. no. 319.

[16] J. Capmany et al., “Microwave photonic signal processing,” J. Light.
Technol., vol. 31, no. 4, pp. 571–586, Feb. 2013.

[17] P. Ghelfi et al., “A fully photonics-based coherent radar system,” Nature,
vol. 507, no. 7492, pp. 341–345, 2014.

[18] G. Serafino et al., “Microwave photonics for remote sensing: From basic
concepts to high-level functionalities,” J. Light. Technol., vol. 38, no. 19,
pp. 5339–5355, Oct. 2020.

[19] S. Pan and Y. Zhang, “Microwave photonic radars,” J. Light. Technol.,
vol. 38, no. 19, pp. 5450–5484, Oct. 2020.

[20] J. Hervás et al., “Microwave photonics for optical sensors,” IEEE J. Sel.
Top. Quantum Electron., vol. 23, no. 2, pp. 327–339, Mar./Apr. 2017.

[21] J. Yao, “Microwave photonic sensors,” J. Light. Technol., vol. 39, no. 12,
pp. 3626–3637, Jun. 2020.

[22] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,”
Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.

[23] J. Liu, H. Deng, W. Zhang, and J. Yao, “On-chip sensor for simulta-
neous temperature and refractive index measurements based on a dual-
passband microwave photonic filter,” J. Light. Technol., vol. 36, no. 18,
pp. 4099–4105, Sep. 2018.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[25] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Trans. Geosci., vol. 4,
no. 2, pp. 22–40, Jun. 2016.

[26] L. V. Nguyen, C. C. Nguyen, G. Carneiro, H. Ebendorff-Heidepriem, and
S. C. Warren-Smith, “Sensing in the presence of strong noise by deep
learning of dynamic multimode fiber interference,” Photon. Res., vol. 9,
no. 4, pp. B109–B118, 2021.

[27] B. Wang et al., “Deep neural networks assisted BOTDA for simultaneous
temperature and strain measurement with enhanced accuracy,” Opt. Exp.,
vol. 27, no. 3, pp. 2530–2543, 2019.

[28] J. A. Grant-Jacob et al., “Real-time particle pollution sensing using
machine learning,” Opt. Exp., vol. 26, no. 21, pp. 7237–27246, 2018.

[29] A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, and A.
Ostendorf, “Deep-learning powered whispering gallery mode sensor based
on multiplexed imaging at fixed frequency,” Opto-electron. Adv., vol. 3,
no. 11, 2020, Art. no. 200048.

[30] Z. Li et al., “Smart ring resonator–based sensor for multicomponent
chemical analysis via machine learning,” Photon. Res., vol. 9, no. 2,
pp. B38–B44, 2021.

[31] A. V. Saetchnikov, E. A. Tcherniavskaia, V. A. Saetchnikov, and A.
Ostendorf, “Intelligent optical microresonator imaging sensor for early
stage classification of dynamical variations,” Adv. Photon. Res., vol. 2,
no. 12, 2021, Art. no. 2100242.

[32] B. Duan et al., “High-precision whispering gallery microsensors with
ergodic spectra empowered by machine learning,” Photon. Res., vol. 10,
no. 10, pp. 2343–2348, 2022.

[33] M. A. Jabin and M. P. Fok, “Prediction of 12 photonic crystal fiber optical
properties using MLP in deep learning,” IEEE Photon. Technol. Lett.,
vol. 34, no. 7, pp. 391–394, Apr. 2022.

[34] G. Gunawan et al., “Machine learning assisted temperature Insensitive
microwave photonic sensor based on single microring resonance,” in Proc.
IEEE Int. Topical Meeting Microw. Photon., 2021, pp. 1–4.

[35] X. Tian et al., “Athermal microwave photonic sensor based on single
microring resonance assisted by machine learning,” J. Light. Technol.,
vol. 40, no. 20, pp. 6796–6804, Oct. 2022.

[36] J. Lu et al., “Experimental demonstration of multimode microresonator
sensing by machine learning,” IEEE Sens. J., vol. 21, no. 7, pp. 9046–9053,
Apr. 2021.

[37] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep
learning,” Electron. Marketing., vol. 31, no. 3, pp. 685–695, 2021.

[38] R. Brehar et al., “Comparison of deep-learning and conventional machine-
learning methods for the automatic recognition of the hepatocellular
carcinoma areas from ultrasound images,” Sensors, vol. 20, no. 11, 2020,
Art. no. 3085.

[39] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey
of deep learning and its applications: A new paradigm to machine
learning,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1071–1092,
2020.

[40] W. Bogaerts et al., “Silicon microring resonators,” Laser Photon. Rev.,
vol. 6, no. 1, pp. 47–73, 2012.

[41] K. Okamoto, “Planar optical waveguides,” in Fundamentals of Optical
Waveguides. Amsterdam, Netherlands: Elsevier, 2021, pp. 13–66.

[42] X. Tian, L. Li, L. Nguyen, R. Minasian, and X. Yi, “Automatic correction
assisted microwave photonic sensor system for resolution enhancement
in humidity measurement,” in Proc. IEEE Int. Topical Meeting Microw.
Photon., 2020, pp. 66–69.

[43] K. Padmaraju and K. Bergman, “Resolving the thermal challenges for
silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5,
pp. 269–281, 2014.

[44] T. Watanabe, N. Ooba, Y. Hida, and M. Hikita, “Influence of humidity
on refractive index of polymers for optical waveguide and its temper-
ature dependence,” Appl. Phys. Lett., vol. 72, no. 13, pp. 1533–1535,
1998.

[45] S. Arora et al., “Harnessing the power of infinitely wide deep nets on small-
data tasks,” in Proc. Int. Conf. Learn. Representations, 2020, pp. 1–6.

[46] S. Arora et al., “On exact computation with an infinitely wide neural net,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8139–8148.

[47] Z. Li et al., “Enhanced convolutional neural tangent kernels,” 2019,
arXiv:1911.00809.

[48] Y. Bai, B. Krause, H. Wang, C. Xiong, and R. Socher, “Taylorized training:
Towards better approximation of neural network training at finite width,”
2020, arXiv:2002.04010v2.

[49] J. B. Simon, M. Dickens, and M. R. DeWeese, “The eigenlearning frame-
work: A conservation law perspective on kernel regression and wide neural
networks,” 2023, arXiv:2110.03922v5.

[50] R. Novak et al., “Neural tangents: Fast and easy infinite neural net-
works in python,” in Proc. Int. Conf. Learn. Representations, 2020,
pp. 1–6.

[51] S. Song, S. X. Chew, L. Nguyen, and X. Yi, “High-resolution microwave
frequency measurement based on dynamic frequency-to-power mapping,”
Opt. Exp., vol. 29, no. 26, pp. 42553–42568, 2021.

[52] C. Ballabio, “Spatial prediction of soil properties in temperate mountain
regions using support vector regression,” Geoderma, vol. 151, no. 3-4,
pp. 338–350, 2009.

[53] A. F. Al-Anazi and I. D. Gates, “Support vector regression to predict
porosity and permeability: Effect of sample size,” Comput. Geosci., vol. 39,
pp. 64–76, 2012.



TIAN et al.: DEEP LEARNING ASSISTED MICROWAVE PHOTONIC DUAL-PARAMETER SENSING 7601211

[54] S. Han, C. Qubo, and H. Meng, “Parameter selection in SVM with RBF
kernel function,” in Proc. World Automat. Congr., 2012, pp. 1–4.

[55] M. Awad and R. Khanna, “Support vector regression,” in Efficient Learning
Machines. Berkeley, CA, USA: Apress, 2015, pp. 67–80.

Xiaoyi Tian received the B.Sc. degree in engineering and the M.Sc. degree
in information and communication engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2014 and 2017, respectively, and the Ph.D. degree
in engineering from The University of Sydney, Sydney, NSW, Australia, in
2022. He is currently a Postdoctoral Research Associate with the School of
Electrical and Information Engineering, The University of Sydney. His research
interests include microwave photonic signal processing, integrated photonics,
and sensing.

Luping Zhou (Senior Member, IEEE) received the Ph.D. degree from Australian
National University, Canberra, ACT, Australia. She is currently an Associate
Professor with the School of Electrical and Information Engineering, University
of Sydney, Sydney, NSW, Australia. Her research interests include machine
learning, medical image analysis, and computer vision. She was the recipient
of Australian Research Council DECRA Award (Discovery Early Career Re-
searcher Award) in 2015.

Liwei Li (Member, IEEE) received the B.E. (with First Class Hons.) and Ph.D.
degrees in electrical engineering from the University of Sydney, Sydney, NSW,
Australia, in 2009 and 2013, respectively. She is currently a Senior Lecturer with
the School of Electrical and Information Engineering, University of Sydney. Her
research interests include microwave photonics, photonic signal processing and
sensing, optical communication systems, lightwave technology, and fibre-optic
communications.

Giorgio Gunawan received the B.E. degree from the School of Aerospace,
Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW,
Australia.

Linh Nguyen received the B.Sc. and B.E. (with First Class Hons.) degrees
from the University of Adelaide, Adelaide SA, Australia, in 1992 and 1993,
respectively, and the Ph.D. degree in electrical and electronic engineering from
the University of Melbourne, Parkville, VIC, Australia, in 1997. He is currently
collaborating with the School of Electrical and Information Engineering, Univer-
sity of Sydney, Sydney, NSW, Australia, as an Adjunct Professor. His research
interests include microwave photonics for signal processing and sensing.

Xiaoke Yi (Member, IEEE) received the Ph.D. degree from Nanyang Technolog-
ical University, Singapore, in 2004. She is currently a Professor with the School
of Electrical and Information Engineering, University of Sydney, Sydney, NSW,
Australia. She was the First Cohort of Sydney Research Accelerator Fellow with
the University of Sydney. From 2011 to 2017, she was an Australian Research
Council QEII Fellow. Her main research interests include photonic signal pro-
cessing, microwave photonics, integrated photonics, sensors and phased-array
antennas. She is the Fellow of the Royal Society of NSW.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


