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Abstract—In recent years, there has been increasing interest in
the singlet form of oxygen as a regulator of the physiological func-
tions of cells. The use of photosensitisers is a classical mechanism for
the excitation of the main triplet form of oxygen and the generation
of its singlet form. At the same time, it has been shown that there is a
possibility of direct optical excitation of the main oxygen form into
the singlet state by light at certain wavelengths. This review article
aims to combine recent accumulated experience in the field of direct
optical generation of singlet oxygen. We focus on works on the
application of a 1267 nm wavelength, which is the most frequently
used and well-studied in this area. In this review, we consider the use
of laser-induced singlet oxygen in various biomedical applications
both at the cellular level and at the level of whole organisms. This
review presents the latest results on the use of singlet oxygen for
therapeutic effects on cancer cells, as well as for photostimulation
of neurons and the vascular and lymphatic systems.

Index Terms—Singlet oxygen, direct optical generation, cancer,
cardiovascular system, ATP production, photostimulation.

I. INTRODUCTION

OXYGEN and reactive oxygen species (ROS) play a sig-
nificant role in the regulation of basic functions of the

cell, both under normal conditions and under the influence of
various pathogenic factors. Oxygen is a strong oxidiser, which
makes it an excellent electron acceptor in the mitochondrial
respiratory chain. At the same time, ROS are formed as necessary
intermediates in oxidation reactions [1]. ROS are oxygen ions,
free radicals and peroxides of both inorganic and organic origin.
These are usually small molecules with exceptional reactivity
due to the presence of an unpaired electron at the external level.
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They are constantly formed in a living cell, being products
of physiological oxygen metabolism or the result of external
influence. In recent years, the active study of the physiological
role of ROS has gathered special interest in the singlet form
of oxygen. Singlet oxygen (1O2) is a less stable electronically
excited state of triplet oxygen (3 O2) and is produced in various
ways, including thermal, enzymatic or photochemical activation
of O2.

The classical mechanism for the excitation of the main triplet
oxygen form and the generation of its singlet form is the use
of photosensitisers (PS), which, under the influence of light,
transfer the electronic excitation energy to triplet oxygen [2],
[3], [4]. These compounds have a relatively long excited-state
lifetime, which allows them to interact effectively with triplet
oxygen and transfer their energy to it. However, many PSs
have drawbacks regarding their incorporation or interaction with
living systems (poor absorption, uncontrolled localisation in
cells, induction of cellular stress, direct cytotoxicity, etc.).

At the same time, it has been shown that there is a possibility of
direct optical excitation of the main oxygen form into the singlet
state by light at certain wavelengths [5]. The first works on the
biological and clinical application of direct optical generation
of 1O2 date back to the 1990 s. For example, S.D. Zakharov and
A.V. Ivanov investigated biological effects when exposed to a
1270 nm laser [6]. They evaluated the effect on the refractive
index and the change in the cell membrane of the erythrocyte
suspension and demonstrated the possibility of using this wave-
length for the treatment of tumours in mice. Further, in a series of
publications, A.A. Krasnovsky et al. additionally substantiated
the real possibility of achieving 1O2 generation by direct optical
illumination [7], [8], [9]. Since 2010, extensive studies have been
carried out on direct optical excitation of 1O2 [5]. In particular,
this was facilitated by the development of quantum-dot laser
diodes that emit in the near-infrared (NIR) spectral range [10].
Their emission wavelength centred at around 1267 nm coincides
well with the NIR absorption band of oxygen molecules.

Some studies in recent years show that laser-induced 1O2 can
lead to the formation of free radicals, mitochondrial dysfunction
and cell death in cancer. In contrast, other studies demonstrate
that 1O2 has no toxic effect in primary astrocytes and neurons
and it activates mitochondrial bioenergetics. Thus, 1O2 may have
a different effect on the viability of cells of different tissues.
Indeed, 1O2, like other ROS, is capable of having a direct
destructive effect on cellular structures, as well as initiating free
radical oxidation of lipids, proteins, and nucleic acids, which
underlies the pathogenesis of many diseases [1]. ROS realise
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their physiological and pathological effects in close interaction
with other regulatory factors of the cell, modulating their activity.
At the same time, a lot of information has already been accumu-
lated about the signaling role of the ROS. They can participate
in the transduction of intracellular signals from various growth
factors, are able to change the activity of various transcription
factors [11].

Therefore, the aim of this article is to combine the experience
accumulated recently in the field of direct optical generation of
1O2 and to provide a review of the literature in this area. In this
review, we will consider the use of laser-induced 1O2 in various
biomedical applications at the cellular level and at the level of
whole organisms. The review will present the latest results on
the use of 1O2 for therapeutic effects in oncological cells and
tissues, for photostimulation of neurons and the vascular and
lymphatic systems. We hope that this review, based on our own
experience, will be able to contribute to the development of this
subject area and, in general, the development of translational
research.

II. MECHANISMS OF TRIPLET-SINGLET TRANSITION

In the ground state, molecular oxygen has two unpaired
electrons with parallel spins on two degenerate orbitals. This
configuration gives a total spin of 3 (triplet state, 3O2). When
molecular oxygen acquires excess energy, it can go into a sin-
glet state (1O2). There are two forms of 1O2. The electronic
configuration of these states differs only in the structure of the
π-antibonding orbitals. In the ground state, there is one electron
on each of the two orbitals, whose spins are parallel. In the
first excited state, the electrons are paired. The configuration of
the second excited state coincides with the configuration of the
ground state, except that the electrons have antiparallel spins. In
addition, these states differ in lifetime and, accordingly, in the
effectiveness of interaction with living systems. Having paired
electrons in one orbital and a vacant second orbital, 1O2 has
a high reactivity (several orders of magnitude greater than that
of the triplet oxygen form) [12] and easily binds to electron-
rich organic compounds, especially proteins, lipids, nucleic and
ribonucleic acids [13], [14], [15]. This leads to the formation
of various reactive substances, such as radicals, endoperoxides,
ROS, peroxides, etc.

There is a fairly well-studied method for generating 1O2

using artificial PS. This approach is currently actively used in
photodynamic therapy (PDT) in the treatment of tumors [16],
[17]. The most effective is considered to be the use of PDT in
the initial stages of cancer. The photosensitised generation of
1O2 requires only oxygen, light of a certain wavelength, and
PS (see part 1 of Fig. 1) [18]. 1O2 is produced as a result of
energy transfer during the interaction of an excited PS with
triplet oxygen. PS is transformed from the ground state (PS0)
to the excited 1 PS*-state after light illumination in the visible
or NIR spectral range. After the intersystem crossing, the PS
goes into a triplet state (3PS*) with a lifetime longer than 1PS*
and can transfer energy to molecular oxygen. PS accumulates in
various cell organelles (e.g., mitochondria, endoplasmic reticu-
lum, Golgi apparatus, etc.) [19]. However, as mentioned above,

Fig. 1. Two main mechanisms of 1O2 generation. (1) The photodynamic
mechanism of 1O2 generation by photosensitiser through energy transfer to
oxygen from singlet and triplet exited states of photosensitiser (1PS* and 3PS*)
and (2) the direct optical generation of 1O2. 600–800 nm is the absorption
range of most PS. 1267, 1064, and 760 nm are the maxima of light absorption
by molecular oxygen.

this PS-based technique has a number of limitations, including
uncontrolled localisation, PS toxicity, long administration time,
etc.

The opportunity of direct optical excitation (PS-free excita-
tion) of an oxygen molecule and regulation of the production of
1O2 by changing the light power and exposure time is of great
interest for modern redox biology and clinical medicine. The
ground triplet state of oxygen has certain absorption peaks in the
optical range between 390 and 1300 nm, at which 1O2 can be
generated (see part 2 of Fig. 1) [20]. For direct optical generation
of 1O2, the wavelengths of 1267, 1064, and 760 nm are most
widely used [21], [22], [23], [24]. Also, many studies involving
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Fig. 2. MCF-7 breast cancer cells irradiated at 1270 nm (top row) and 1247 nm
(bottom row) wavelengths. The left and right columns present the cells before and
27 h after laser illumination, accordingly. The area of illumination is indicated
by a black circle in all images (∼300 μm). 27 hours after 1270 nm illumination,
100% of cells died in an area with a radius of 200 μm. At the same time, cell
death was not observed at 1247 nm [27].

the use of these wavelengths do not associate the observed effects
with the generation of 1O2. The latest publication [25] shows
exciting results in the use of laser radiation with a wavelength
of 1064 nm to modulate brain activity and improve working
memory capacity. Although the authors discuss the possible
increase in metabolism in brain tissues, they do not consider
the underlying mechanisms. Below, in one of the sections of
this article, we will show how 1O2 can have such an effect on
brain cell activity. In addition, the works [5], [26] show that
some other wavelengths of light can be used to excite oxygen
molecules. However, in this paper we will consider works on the
application of a wavelength of 1267 nm, as the most frequently
used and fairly well studied in this area.

III. CANCER CELL APOPTOSIS INITIATION

The specific vulnerability of different cancer cell lines to
1O2 may be used as a potential treatment in some cancers. For
example, a number of studies on direct oxygen excitation have
demonstrated laser induction of tumour cell death [27], initiation
of oxidative stress and destabilisation of cell metabolism [28],
the relationship between the dose of laser irradiation and cell
death [29], induction of tumour cell-specific apoptosis [30].

F. Anquez et al. showed that irradiation of living human breast
cancer cells (MCF-7) at ∼1270 nm wavelength (∼100 W/cm2,
3 h exposure) can induce cell death (see Fig. 2 [27]). The
microscopic images appear to correspond to the morphology
of necrotic death associated with a loss of plasma membrane
integrity and subsequent osmotic shock. Thermal stress has also
been studied, and the authors concluded that cell death was
only attributable to the creation of 1O2. It was found, that the
obtained cumulative concentration of 1O2, which is necessary

Fig. 3. (a) Changes of 1267 nm-induced DHOE fluorescence in HaCaT cells
(blue squares), HeLa cancer cells (red circles), PK (yellow triangles) and (b)
HeLa cell death rate. BI is a positive control. Histograms show a Mean ± SE
(N = 3) [28].

to induce cell death, is consistent with the values extracted from
conventional PDT.

Works [28], [31], [32] demonstrated that the biological effects
caused by laser irradiation are closely related to the excited
molecule O2 which in turn oxidises the biological substances of
cells (proteins, DNA, RNA, phospholipids, etc.) and can finally
kill cancer cells. Fig. 3 a shows that 1267 nm laser irradiation
can trigger 1O2-dependent dihydroxyethidium (DHOE) fluores-
cence in all cell lines with the most intense impact observed in
HeLa cells and without differences between HaCaT and primary
keratinocytes (PK). Irradiation was carried out at a dose of
47.7 J/cm2.

DHOE fluorescence induced by 1267 nm also demonstrated
a clear dose dependence without achieving saturation, espe-
cially for HeLa cells (doses used: 11.9, 35.8, 47.7, 71.6, and
119.4 J/cm2). The authors assume that the high sensitivity of
HeLa cells may be due to their malignant activity, which leads
to an increased metabolic state and a weakening of the defence
system against free radicals [33], [34]. Fig. 3 b shows the results
of triggering apoptosis in cancer cells. The authors analysed cell
death by measuring the activity of lactate dehydrogenase in the
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Fig. 4. (a) Confocal images (LSM 900 with Airyscan 2, Carl Zeiss Microscopy GmbH, Germany) of B16 melanoma cells after 1267 nm and 1122 nm illumination
and control cells by using NucView 488 and Hoechst 33342; (b) results of statistical processing of cell death; (c) Confocal images of fibroblasts after 1267 nm
illumination and control fibroblasts by using NucView 488 and Hoechst 33342; (d) results of statistical processing. Values of *p < 0.001 were considered
significant [30].

extracellular medium. In addition, a positive control of cell death
was carried out by treating cells with a PLK1 inhibitor (BI2536).

Kurkov et al. have conducted further experiments using a
1267 nm continuous-wave excitation, where oxidative stress was
induced in a cervical carcinoma model (CC-5) in mice [35]. In
addition, they demonstrated mitochondrial oxidative and general
cell disruption in the colorectal cancer cell line (HCT-116) and
the ovarian epithelium cell line (CHO-K) [29]. The same sci-
entific group has recently demonstrated the possibility of using
low doses of radiation to effectively affect cellular metabolism.
They have studied cellular damage with respect to the activity
of voltage-dependent anion channels (VDAC), oxidative stress
level, mitochondrial potential, mitochondrial and nuclear DNA
damage in various mammalian cell cultures, including cancer
cells, illuminated by low-level laser irradiation (LLLI) at 1267
nm [36], [37], [38], [39]. LLLI has been shown to cause oxidative
stress and apoptosis, and alter mitochondrial functioning even
at an energy density of 9.54 J/cm2. Furthermore, inhibition
of VDAC using 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid
(DIDS) enhances the registered effects [36].

In work [30] Novikova and colleagues studied human skin
fibroblasts and B16 melanoma cell lines. The results confirmed
the high selectivity of 1267 nm laser irradiation for generat-
ing 1O2, which did not induce the production of other ROS
(superoxide anion O−

2 , hydrogen peroxide H2O2) or activation
of lipid peroxidation. 1O2 did not change the mitochondrial
membrane potential (ΔΨ m) in skin fibroblasts but caused an
oscillations in ΔΨm and full mitochondrial depolarisation due
to opening permeability transition pore (PTP) in B16 melanoma
cells. The use of 1267 nm illumination did not change the number
of necrotic fibroblasts, but the number of melanoma cells with
apoptosis has increased significantly (see Fig. 4). Therefore, 1O2

can induce apoptosis in cancer cells by opening the PTP, but it
cannot cause fibroblast death.

More specifically, 1267 nm laser illumination (200 J/cm2)
can activate apoptosis in most B16 melanoma cells (47% of
cells: 5448 apoptotic cells of 11,764 cells, Fig. 4(a), (b). At
the same time, less than <1% of apoptotic cells were observed
during illumination of fibroblasts (3 apoptotic cells of 954 cells,
Fig. 4(c), (d). Moreover, the use of a singlet oxygen-free control
laser (1122 nm, 200 J/cm2) also did not show the initiation of
cell apoptosis.

IV. MITOCHONDRIAL BIOENERGETICS STIMULATION IN

BRAIN CELLS

As becomes clear from the above, the use of 1O2 in classical
PDT or with its direct laser generation in most studies is aimed
at killing cancer cells. However, several recent studies have
demonstrated that single oxygen can act, for example, as an
activator of cellular mitochondrial respiration and thus partici-
pate in the stimulation of cell bioenergy. Apparently, mild and
constant ROS generation (in particular 1O2) is an essential part
of cell signalling [40].

In works [41], [42], the authors investigated the effect of laser-
induced 1O2 on the most important oxygen-dependent process -
mitochondrial energy metabolism. They found that direct optical
generation of 1O2 in neurons and astrocytes induces an increase
inΔΨm, activation of NADH- and FADH-dependent respiration
and increases the maximum respiration rate in isolated mito-
chondria. The activation of mitochondrial respiration stimulated
the production of adenosine triphosphate (ATP) in these cells.
Thus, they found that 1O2 generated by laser irradiation at
1267 nm can act as an activator of mitochondrial respiration
and ATP production in brain tissues (Fig. 5).

The authors demonstrated that 71 mW laser irradiation
(65.0 J/cm 2 power density) significantly increases intracellular
ATP levels. Increasing the laser power to 141 mW (129.2 J/cm2)
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Fig. 5. (a) ATP levels under 1267 nm illumination at different intensities (grey
bars) in neuronal cultures using a FRET-based mitochondrial ATP probe [43].
Confocal image of a neuron transfected with the mitochondrial ATP probe and
irradiated with 1267 nm. Scale: 50 μm. (b) Kinetic changes in mitochondrial
ATP of astrocyte while being illuminated with a 1267 nm at different intensities
in neuroglial co-cultures. Confocal image of an astrocyte transfected with the
mitochondrial ATP probe and irradiated with 1267 nm. Scale: 20 μm [41].

and further to 205 mW (187.8 J/cm2) stimulated more intensive
ATP synthesis in neurons (Fig. 5(a)) and astrocytes (Fig. 5(b)).
ATP production inhibition in these cells using an inhibitor of
oxidative phosphorylation of oligomycin and an inhibitor of
glycolysis of iodoacetic acid (IAA) caused a significant decrease
in ATP levels, proving the effect of 1O2. The authors point
out that the main target of the induced effects is mitochondrial
cytochrome C oxidase, or Complex IV of the mitochondrial
electron transport chain (ETC).

V. VASCULAR TONE STIMULATION

ROS, along with active forms of nitrogen, are known to play a
central role in the physiology and pathophysiology of the vascu-
lar bed [44], [45]. The response of the vascular bed to the action
of ROS is characterised by a multidirectional reaction [46]. It
can manifest itself in both the form of vasodilation and the form
of vasoconstriction of the vessels. In particular, the 1O2 is able to
influence changes in the vascular bed and rheological properties
of blood, manifested in stagnation and extravasation of blood,
vascular occlusion and shutdown of the vascular network [47],
[48], [49]. The shutdown of the vascular bed of the tumour leads
to its hypoxia and, subsequently, to destruction. The totality of
these changes is considered the dominant biological response
when conducting PDT using PS [49]. However, the generation of
1O2 in the presence of PS does not allow us to draw conclusions
about its exceptional effect due to the high direct cytotoxicity of
PS and the induction of cellular stress. The possibility of direct
excitation of the oxygen molecule by light in the main triplet
state and regulation of its production seems promising in the

Fig. 6. The photoplethysmography signal from the vascular bed of the rat thigh
area under the exposure of 1267 nm irradiation with a dose of 50 J/cm2 [50].
An increase in the signal corresponds to a decrease in blood content.

study of the effect of 1O2 on changes in the parameters of the
vascular bed.

In a recent work [50], it was shown that laser-induced gener-
ation of 1O2 at a 1267 nm wavelength with a 50 J/cm2 dose can
lead to a change in the microvascular bed, namely a decrease in
blood content (see Fig. 6) and vasoconstriction and shutdown of
microvessels.

The study included continuous recording of images of the
vascular network of the femoral and gluteal regions of a rat
body with a 250 FPS with laser-induced generation of 1O2.
Imaging of the vascular bed was carried out using the method
of videocapillaroscopy [51], that is, simultaneous registration of
images of backscattered radiation when illuminated by incoher-
ent (525 nm) and coherent (660 nm) light sources. Photoplethys-
mography (PPG) signals were calculated when processing the
obtained series of images. Based on Fourier analysis, maps of the
spatial distribution of blood vessels and their blood filling were
obtained [52]. Based on analysis of the change in the PPG signal,
it was found that direct generation of 1O2 leads to a change in the
vascular bed. There is a decrease in blood filling according to the
results of PPG, as well as vasoconstriction and stopping of blood
flow according to the analysis of processed speckle-images.
Here, the authors suggest that the decrease in blood flow may be
due to noradrenaline-induced vasoconstriction associated with
Ca2+-independent noradrenaline release from the prejunctional
site of adrenergic neurotransmission [53].

The possibility of regulating the processes of vasoconstriction
and vasodilation of vessels, as well as angiogenesis in the
absence of PS using direct optical generation of 1O2 is important
for the successful treatment of a whole range of diseases, includ-
ing diseases of the cardiovascular system, rheumatoid arthritis,
atherosclerosis, diabetic angiopathy and retinopathy, psoriasis,
oncology, etc.

VI. STIMULATION OF THE MENINGEAL LYMPHATICS

The lymphatic vessels (LVs) control immune surveillance
and waste elimination within different peripheral tissues and
organs [54]. LVs are not found in the central nervous system
(CNS), but are present in the meninges of the brain and spinal
cord [55], [56], [57]. Meningeal lymphatic vessels (MLVs)
play an important role in recirculation of dendrite and immune
cells, which makes them key players in the control of the brain
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immune system [58], [59], [60]. The network of MLVs is also
an important pathway for the removal of wastes and toxins
from the brain, by participating in the clearance of soluble
proteins, as well as in the drainage of the interstitial and cerebral
spinal fluids (CSF) that are involved in the mechanisms of
homeostasis of the CNS [55], [58], [59], [60], [61], [62], [63],
[64]. The dysfunction of MLVs is involved in the development
of numerous neurological diseases, including Alzheimer’s [62],
[65] and Parkinson’s [66] diseases, multiple sclerosis [67], brain
tumors [68], [69], stroke [70], and traumatic brain injury [71],
[72]. Therefore, MLVs have attracted a lot of therapeutic interest.
There is evidence that enhancement of MLV function might
be a promising therapeutic target for preventing or delaying
neurological diseases [62], [65]. However, currently there are
no technologies for modulation of the functions of MLVs.

Photostimulation can be an innovative technology that fo-
cusses on the drainage and cleaning functions of MLVs [73],
[74]. This approach, also known as low-level laser therapy
(LLLT), was first proposed in the 1960 s to stimulate hair
growth [75] and in the 1970 s to heal a wound [76]. Photostimu-
lation is based on the “therapeutic windows” in NIR wavelengths
600–1200 nm. The better tissue penetration properties of NIR
light, together with its good efficacy, made it the most popular
wavelength range. However, infra-red photostimulation has a
significant limitation, such as limited penetration into the brain
due to light scattering and heating effects [77]. The light wave-
length of 1300 nm has less scattering and can penetrate deeper
into the brain [78], [79]. Transcranial photostimulation is consid-
ered as a potential new non-pharmacological and non-invasive
promising strategy for the prevention or delay of Alzheimer’s
disease [80], [81], [82], [83], [84], depression [84], Parkinson’s
disease [85], stroke [86], [87], [88], brain trauma [86], [89], [90].

It was recently discovered that 1O2 generation with a wave-
length of 1267 nm can be a promising technology for modulation
of functions of MLVs [74], [81], [91], [92], [93]. In particular,
1267 nm laser illumination effectively stimulates the clearance
of beta-amyloid (Aβ) from the mouse brain that provides signif-
icant improvements in its neurological status [80], [81]. Further-
more, photostimulation has therapeutic effects on intravetricular
haemorrhages (IVH), accelerating the evacuation of red blood
cells (RBC) from the ventricles, reducing intracranial pressure
buildup, improving neurological outcome, and reducing mortal-
ity in adult and newborn mice [94]. These findings shed light on
our fundamental knowledge about the effects of photostimula-
tion on mature and neonatal brain recovery after IVH and suggest
that this approach may be a novel bedside technology, readily
applicable, and commercially viable for routine treatment of
IVH and other types of brain bleedings.

1267 nm stimulates lymphatic delivery of liposomes to rat
glioma, as well as lymphatic clearance of liposomes from the
brain [93]. In this pilot study, the authors demonstrate that photo-
stimulation can be a promising technology for modulation of the
lymphatic delivery of drugs and nanocarriers to the brain pathol-
ogy bypassing the blood-brain barrier (BBB). They clearly show
that 1267 nm-mediated lymphatic delivery of liposomes with
antitumor drugs in the new brain tumour branches might be a
breakthrough strategy for the therapy of gliomas.

There are a series of studies devoted to the investigation of the
mechanisms responsible for 1267 nm-mediated stimulation of
functions of the MLVs [91], [92], [93], [94]. Low doses (5 and
10 J/cm2) cause relaxation of mesenteric LVs and increase their
permeability to fluorescent macrophages through a decrease
in expression of tight junction proteins and transendothelial
resistance (Fig. 7). There is a hypothesis that a photostimulated
increase in the permeability of the lymphatic endothelium could
be the mechanism of transport of macromolecules and cells in
narrow MLVs. Increased lymphatic endothelium permeability is
the key factor underlying lipids diffusion and macromolecules
from tissues to LVs [95], [96]. Indeed, the transport of macro-
molecules across the LVs is coupled with the flow of water and
sensitive to lymph pressure [97]. The inherent permeability of
LVs is sufficient to broadcast antigens, passing within the lymph
to the lymph nodes [98]. The delivery of soluble antigens, such
as FITC-conjugated endogenous proteins and E-GFP is possible
due to the permeability of the LVs [99]. This process exposes
a large community of immune and dendritic cells, as well as
macrophages. However, the mechanisms underlying the lym-
phatic permeability to macromolecules remain unknown. The
possible role of proteins expressed in the lymphatic endothelium,
such as the lymphatic vessel endothelial hyaluronan receptor 1
and the chemokine (C-C motif) ligand 21 can be involved in the
regulation of migration of immune cells through the lymphatic
endothelium [99], [100].

Photomediation of lymphatic transport of different com-
pounds can be explained by the photorelated increase in endothe-
lial NO synthase activity in the lymphatic endothelium [101].
NO acts as a vasodilator by stimulating soluble guanylate cy-
clase and activating protein kinase G, inducing the opening of
calcium-activated potassium channels and the reuptake of Ca2+.
The decrease in the intracellular level of Ca2+ prevents phos-
phorylation of myosin light chain kinase that leads to dilation
of lymphatic vessels [102]. There are other mechanisms re-
sponsible for NO-mediated regulation of lymphatic vasculature
relaxation and contractility: 1) the activation of iron-dependent
enzymes, including mitochondrial aconitase, an [Fe-S] protein
in macrophages [103], 2) inactivation of ribonucleotide reduc-
tase [104] and aconitase [105]; the stimulation of synthesis
of ADP-ribosylation of glyceraldehyde-3-phosphate dehydro-
genase [106] and protein-sulfhydryl-group nitrosylation [107].
Photostimulation can also cause an increase in lymphatic en-
dothelium permeability through a decrease in the expression of
tight junction proteins [92]. Photostimulation has been shown
to produce highly pleiotropic biological effects (other than lym-
phatic engagement) [108], [109]. The well-studied stimulation
mechanism is focused on mitochondrial cytochrome c oxidase
(CCO), which is responsible for the final reduction of oxygen to
water using electrons generated from glucose metabolism [110].
Photostimulation causes an increase in NO production, which
inhibits the CCO enzyme activity that is accompanied by an
increase in mitochondrial membrane potential, proving in-
creased oxygen consumption, increased glucose metaboliza-
tion, and increased mitochondrial ATP production [90], [111],
[112], [113], [114], [115]. There is evidence that photostimu-
lation stimulates ROS generation in mitochondria. ROS trigger
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Fig. 7. The mechanisms of 1267 nm stimulation of functions of the MLVs: (a) illustration of effects on the MLVs (pink) along the main vein sinuses (blue),
such as the superior sagittal sinus (SSS) and the transverse sinus (TS); (b) schema of structure of the MLVs, including lymphatic capillaries, pre-collectors and
collectors with the valves expressing LYVE-1 (the lymphatic endothelium, such as the lymphatic vessel endothelial hyaluronan receptor 1), the CCL-21 (the
chemokine (C-C motif) ligand 21), the podoplanin, the PROX1 (the prospero homeobox protein 1), VEGF3 (the vascular endothelial growth factor receptor 3),
FOXC2 (the mechanosensitive transcription factor forkhead Box C2), and the Reelin; (c) 1267 nm mediates the NO generation via stimulation of endothelial nitric
oxide synthase (eNOS) in the lymphatic endothelium contributing relaxation of the lymphatic vessels and an increase in the permeability of lymphatic walls (d); (e)
these mediated modulations of the MLVs are associated with activation of clearance of metabolites and toxins [for example, lymphatic clearance of beta-amyloid
(Aβ)] from the brain and their removal into the deep cervical lymph nodes.

different mitochondrial signaling mechanisms leading to cyto-
protective, antioxidant, and anti-apoptotic effects in cells [112].

Sleep is a novel biomarker of the development of Alzheimer’s
disease [65]. In fact, people with Alzheimer’s disease have poor
sleep quality and short sleep duration that are associated with
increased deposition of Aβ in the brain tissues [116], [117].
Aβ is a metabolic “waste product” of brain tissues and is
present in brain fluids [118]. There is experimental and clini-
cal evidence that Aβ clearance increases during sleep due to
increased drainage of brain tissues [119]. Interestingly, notice
that excessive daytime sleepiness in the elderly is accompanied
by increased Aβ accumulation in the brain [120]. Even one night
of sleep deprivation provides an increase in the Aβ level in the
brain of healthy volunteers [121]. There is a growing body of
evidence that disturbance of Aβ clearance from the brain during
sleep is a biomarker of Alzheimer’s disease, at least in part, via
a mechanism of this disease [81], [122], [123]. Based on these
facts, recent studies have tested the hypothesis that 1267 nm
irradiation during sleep may be more effective for lymphatic
stimulation of Aβ clearance from the mouse brain than daytime
stimulation. These pilot findings clearly demonstrate that night
photostimulation compared to daytime causes greater removal
of Aβ from the mouse brain and is more effective as a therapeutic
tool to improve the neurological status of mice with Alzheimer’s
disease [81].

VII. LIMITATION AND OUTLOOK

1O2 can have a complex effect in the time of induction of
cell apoptosis. Moreover, 1O2 production is capable of inducing
tumour cell-specific apoptosis. Such a specific vulnerability of
cancer cells may be used as a potential treatment in some cancers.
Stimulation of nerve cells may be important in pathological
conditions and serious diseases of the brain, such as ischemia
or neurodegeneration with a lack of energy production [124].
Although various studies reporting the initiation of apoptosis or
optimisation of mitochondrial respiration by laser illumination
in various types of cells and tissues have been published, there
is still a gap in knowledge and an essential need to identify the
exact mechanism by which laser irradiation leads to these effects.
Undoubtedly, further efforts should also be directed at reducing
the uncertainty in the applied doses, developing systems to detect
the concentration of produced 1O2, etc.

Photostimulation of meningeal lymphatics is a pioneering
technology for innovative therapy of brain diseases via non-
invasive stimulation of clearance of unnecessary metabolites and
toxins as well as immune cell communications in the network
of the MLVs. However, studies of the mechanisms of such
stimulation of MLV functions are still in their infancy, which also
requires further detailed investigations in this field. Intriguing are
the pilot results of the use of photostimulation of Aβ lymphatic
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clearance from the brain during sleep that can open a new
era in the revolutionary development of smart sleep gadgets
aimed at effective therapy of IVH, brain tumours, brain trauma,
neuroinflammation and neurodegenerative diseases.

Important and worthy of consideration are the possible tem-
perature effects arising from the interaction of laser radiation
with cells and tissues that can affect redox processes [125],
[126]. In this regard, it is important to select optimal values of
power and radiation doses that exclude or minimise heating. This
effect can be achieved, for example, by using ultrashort pulses,
which will increase the peak power without significant heating of
the tissues. Moreover, in experimental studies it is important to
use control lasers having similar heating with sources generating
1O2 to distinguish the observed effects.

This review was devoted to the use of the 1267 nm laser
wavelength. However, many studies are being conducted on the
use of other wavelengths [5] that can generate 1O2 in different
media with different efficiency and thus be also applicable to the
tasks of modulating cell bioenergetics. The development of an
effective method to generate and use 1O2 can revolutionise the
modern practise of treating various diseases. Further research
in this area may lead to the creation of new high-tech medical
equipment based on the principles of interaction of 1O2 with
cells and biological tissues.

REFERENCES

[1] C. Bergamini, S. Gambetti, A. Dondi, and C. Cervellati, “Oxygen,
reactive oxygen species and tissue damage,” Curr. Pharm. Des., vol. 10,
no. 14, pp. 1611–1626, 2005.

[2] L. Benov, “Photodynamic therapy: Current status and future directions,”
Med. Princ. Pract., vol. 24, pp. 14–28, 2015.

[3] D. Kurakina et al., “Comparative analysis of single- and dual-wavelength
photodynamic therapy regimes with chlorin-based photosensitizers: An-
imal study,” J. Biomed. Opt., vol. 25, no. 6, 2019, Art. no. 063804.

[4] A. Orlova et al., “Diffuse optical spectroscopy monitoring of experimen-
tal tumor oxygenation after red and blue light photodynamic therapy,”
Photonics, vol. 9, no. 1, 2022, Art. no. 19.

[5] A. Blázquez-Castro, “Direct 1O2 optical excitation: A. tool for redox
biology,” Redox Biol., vol. 13, pp. 39–59, 2017.

[6] S. D. Zakharov and A. V. Ivanov, “Light-oxygen effect in cells and its
potential applications in tumour therapy (review),” Quantum Electron.,
vol. 29, no. 12, pp. 1031–1053, 1999.

[7] A. A. Krasnovsky, N. N. Drozdova, A. V. Ivanov, and R. V. Ambart-
sumian, “Activation of molecular oxygen by infrared laser radiation in
pigment-free aerobic systems,” Biochem. (Mosc.), vol. 68, pp. 963–966,
2003.

[8] A. Krasnovsky, Y. Roumbal, A. Ivanov, and R. Ambartzumian, “Solvent
dependence of the steady-state rate of 1O2 generation upon excitation
of dissolved oxygen by cw 1267 nm laser radiation in air-saturated
solutions: Estimates of the absorbance and molar absorption coefficients
of oxygen at the excitation wavelength,” Chem. Phys. Lett., vol. 430,
no. 4, pp. 260–264, 2006.

[9] A. Krasnovsky, Y. Roumbal, and A. Strizhakov, “Rates of 1O2 (1Δg)
production upon direct excitation of molecular oxygen by 1270 nm laser
radiation in air-saturated alcohols and micellar aqueous dispersions,”
Chem. Phys. Lett., vol. 458, no. 1, pp. 195–199, 2008.

[10] E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-
dot lasers,” Nat. Photon., vol. 1, pp. 395–401, 2007.

[11] B. D’Autréaux and M. B. Toledano, “Ros as signalling molecules:
Mechanisms that generate specificity in ROS homeostasis,” Nat. Rev.
Mol. Cell Biol., vol. 8, pp. 813–824, 2007.

[12] D. R. Kearns, “Physical and chemical properties of singlet molecular
oxygen,” Chem. Rev., vol. 71, no. 4, pp. 395–427, 2002.

[13] W. A. Pryor et al., “Free radical biology and medicine: It’s a gas, man!,”
Am J. Physiol. Regulatory Integrative Comp. Physiol., vol. 291, no. 3,
pp. R491–R511, 2006.

[14] P. D. Mascio et al., “Singlet molecular oxygen reactions with nucleic
acids, lipids, and proteins,” Chem. Rev., vol. 119, no. 3, pp. 2043–2086,
2019.

[15] T. Devasagayam and J. P. Kamat, “Biological significance of singlet
oxygen,” Indian J. Exp. Biol., vol. 40, no. 6, pp. 680–692, 2002.

[16] C. Schweitzer and R. Schmidt, “Physical mechanisms of generation
and deactivation of singlet oxygen,” Chem. Rev., vol. 103, no. 5,
pp. 1685–1758, 2003.

[17] M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared
luminescence detection of singlet oxygen generated by photodynamic
therapy in cells invitro and tissues invivo,” Photochemistry Photobiol.,
vol. 75, no. 4, pp. 382–391, 2002.

[18] M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and
its applications,” Coordination Chem. Rev., vol. 233–234, pp. 351–371,
2002.

[19] R. D. Almeida, B. J. Manadas, A. P. Carvalho, and C. B. Duarte, “In-
tracellular signaling mechanisms in photodynamic therapy,” Biochimica
Biophys. Acta Rev. Cancer, vol. 1704, no. 2, pp. 59–86, 2004.

[20] F. Anquez et al., “Chapter 4 production of singlet oxygen by direct
photoactivation of molecular oxygen,” Singlet Oxygen: Appl. Biosci.
Nanosciences, vol. 1, 2016, pp. 75–91.

[21] T. Aabo et al., “Effect of long- and short-term exposure to laser light
at 1070 nm on growth of saccharomyces cerevisiae,” J. Biomed. Opt.,
vol. 15, no. 4, 2010, Art. no. 041505.

[22] Z. Pilát et al., “Optical trapping of microalgae at 735–1064 nm: Pho-
todamage assessment,” J. Photochemistry Photobiol. B: Biol., vol. 121,
pp. 27–31, 2013.

[23] M. R. Detty, “Direct 1270 nm irradiation as an alternative to photosensi-
tized generation of singlet oxygen to induce cell death,” Photochemistry
Photobiol., vol. 88, no. 1, pp. 2–4, 2012.

[24] M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. Breitenbach, and P.
R. Ogilby, “Direct 765 nm optical excitation of molecular oxygen in
solution and in single mammalian cells,” J. Phys. Chem. B, vol. 119,
no. 17, pp. 5422–5429, 2015.

[25] C. Zhao et al., “Transcranial photobiomodulation enhances visual work-
ing memory capacity in humans,” Sci. Adv., vol. 8, no. 48, 2022,
Art. no. eabq3211.

[26] G. P. Gurinovich, “Molecular-oxygen photonics,” J. Appl. Spectrosc.,
vol. 54, pp. 243–249, 1991.

[27] F. Anquez, I. El Yazidi-Belkoura, S. Randoux, P. Suret, and E. Cour-
tade, “Cancerous cell death from sensitizer free photoactivation of sin-
glet oxygen,” Photochemistry Photobiol., vol. 88, no. 1, pp. 167–174,
2012.

[28] S. Sokolovski et al., “Infrared laser pulse triggers increased singlet
oxygen production in tumour cells,” Sci. Rep., vol. 3, 2013, Art. no. 3484.

[29] Y. Saenko, E. S. Glushchenko, I. Zolotovskii, E. M. Sholokhov, and
A. S. Kurkov, “Mitochondrial dependent oxidative stress in cell culture
induced by laser radiation at 1265 nm,” Lasers Med. Sci., vol. 31,
pp. 405–413, 2015.

[30] I. N. Novikova, E. V. Potapova, V. V. Dremin, A. V. Dunaev, and A. Y.
Abramov, “Laser-induced singlet oxygen selectively triggers oscillatory
mitochondrial permeability transition and apoptosis in melanoma cell
lines,” Life Sci., vol. 304, 2022, Art. no. 120720.

[31] S. A. Zolotovskaya et al., “Laser-induced ion channel activation in HaCaT
keratinocytes: A possible role for singlet oxygen mediation,” Eur. Conf.
Biomed. Opt., vol. ThB 4, 2009.

[32] S. G. Sokolovski, A. Goltsov, and E. U. Rafailov, “Modelling the hyper-
sensitivity of cancer cells to infra-red laser pulse: Breaking ROS defence
machinery,” Proc. SPIE, vol. 8568, 2013, Art. no. 85680E.

[33] D. Trachootham, J. Alexandre, and P. Huang, “Targeting cancer cells by
ROS-mediated mechanisms: A radical therapeutic approach?,” Nat. Rev.
Drug Discov., vol. 8, pp. 579–591, 2009.

[34] J.-H. Shim et al., “E7-expressing hacat keratinocyte cells are resistant
to oxidative stress-induced cell death via the induction of catalase,”
Proteomics, vol. 5, no. 8, pp. 2112–2122, 2005.

[35] T. P. Gening et al., “Analysis of the efficiency of using 1265-nm cw laser
radiation for initiating oxidative stress in the tissue of a solid malignant
tumour,” Quantum Electron., vol. 42, no. 9, pp 805–807, 2012.

[36] A. Khokhlova et al., “The photobiomodulation of vital parameters
of the cancer cell culture by low dose of near-IR laser irradiation,”
IEEE J. Sel. Top. Quantum Electron., vol. 25, no. 1, Jan./Feb. 2019,
Art. no. 7201510.

[37] A. Khokhlova et al., “Effects of high and low level 1265 nm laser
irradiation on HCT116 cancer cells,” Proc. SPIE, vol. 10861, pp. 85–94,
2019.



DREMIN et al.: DIRECT LASER-INDUCED SINGLET OXYGEN IN BIOLOGICAL SYSTEMS: APPLICATION FROM IN VITRO TO IN VIVO 7200911

[38] D. Dolgova et al., “Anti-inflammatory and cell proliferative effect of
the 1270 nm laser irradiation on the balb/c nude mouse model involves
activation of the cell antioxidant system,” Biomed. Opt. Exp., vol. 10,
no. 8, pp. 4261–4275, 2019.

[39] A. Khokhlova et al., “Effects of low-level laser irradiation on mammalian
cell cultures: Comparative experimental studies with different types of
lasers at 1260-1270 nm,” J. Phys. Conf. Ser., vol. 2249, no. 1, 2022,
Art. no. 012006.

[40] P. R. Angelova and A. Y. Abramov, “Functional role of mitochondrial
reactive oxygen species in physiology,” Free Radical Biol. Med., vol. 100,
pp. 81–85, 2016.

[41] S. G. Sokolovski, E. U. Rafailov, A. Y. Abramov, and P. R. Angelova,
“Singlet oxygen stimulates mitochondrial bioenergetics in brain cells,”
Free Radical Biol. Med., vol. 163, pp. 306–313, 2021.

[42] P. R. Angelova, S. G. Sokolovski, E. U. Rafailov, and A. Y. Abramov,
“Delivery of singlet oxygen into neurons stimulates mitochondrial energy
metabolism,” Biophys. J., vol. 118, 2020, Art. no. 445a.

[43] H. Imamura et al., “Visualization of ATP levels inside single living cells
with fluorescence resonance energy transfer-based genetically encoded
indicators,” Proc. Nat. Acad. Sci., vol. 106, no. 37, pp. 15651–15656,
2009.

[44] K. K. Griendling and G. A. FitzGerald, “Oxidative stress and car-
diovascular injury,” Circulation, vol. 108, no. 16, pp. 1912–1916,
2003.

[45] T. Münzel et al., “Impact of oxidative stress on the heart and vasculature:
Part 2 of a 3-part series,” J. Amer. College Cardiol., vol. 70, no. 2,
pp. 212–229, 2017.

[46] J. Tejero, S. Shiva, and M. T. Gladwin, “Sources of vascular nitric oxide
and reactive oxygen species and their regulation,” Physiol. Rev., vol. 99,
no. 1, pp. 311–379, 2019.

[47] B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and
cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene
Expression, vol. 16, no. 4, pp. 279–306, 2006.

[48] H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation
of vascular effect of photodynamic therapy in chorioallantoic membrane
using different photosensitizers,” J. Photochemistry Photobiol. B: Biol.,
vol. 138, pp. 1–7, 2014.

[49] J. P. Celli et al., “Imaging and photodynamic therapy: Mechanisms, mon-
itoring, and optimization,” Chem. Rev., vol. 110, no. 5, pp. 2795–2838,
2010.

[50] I. N. Novikova, M. V. Volkov, L. V. Eratova, D. I. Myalitsin, and V. V.
Dremin, “Direct optical generation of singlet oxygen in the regulation of
vascular tone,” SPIE, vol. 12147, 2022, Art. no. 121470O.

[51] V. Dremin et al., “Dynamic evaluation of blood flow microcircula-
tion by combined use of the laser doppler flowmetry and high-speed
videocapillaroscopy methods,” J. Biophotonics, vol. 12, no. 6, 2019,
Art. no. e201800317.

[52] M. V. Volkov et al., “Blood vessel visualization method in human skin
based on video recording of blood flow using a laparoscope,” J. Commun.
Technol. Electron., vol. 65, pp. 806–814, 2020.

[53] F. Yoshino, H. Shoji, and M.-C. il Lee, “Vascular effects of singlet oxygen
(1o2) generated by photo-excitation on adrenergic neurotransmission in
isolated rabbit mesenteric vein,” Redox Rep., vol. 7, no. 5, pp. 266–270,
2002.

[54] S. P. das Neves, N. Delivanoglou, and S. Da Mesquita, “CNS-draining
meningeal lymphatic vasculature: Roles, conundrums and future chal-
lenges,” Front. Pharmacol., vol. 12, 2021, Art. no. 655052.

[55] A. Louveau et al., “Understanding the functions and relationships of the
glymphatic system and meningeal lymphatics,” J. Clin. Investigation,
vol. 127, pp. 3210–3219, 2017.

[56] A. Aspelund et al., “A dural lymphatic vascular system that drains brain
interstitial fluid and macromolecules,” J. Exp. Med., vol. 212, no. 7,
pp. 991–999, 2015.

[57] J. H. Ahn et al., “Meningeal lymphatic vessels at the skull base drain
cerebrospinal fluid,” Nature, vol. 572, pp. 62–66, 2019.

[58] S. D. Mesquita, Z. Fu, and J. Kipnis, “The meningeal lymphatic sys-
tem: A new player in neurophysiology,” Neuron, vol. 100, pp. 375–388,
2018.

[59] O. Semyachkina-Glushkovskaya, D. Postnov, and J. Kurths, “Blood–
brain barrier, lymphatic clearance, and recovery: Ariadne’s thread in
labyrinths of hypotheses,” Int. J. Mol. Sci., vol. 19, no. 12, 2018,
Art. no. 3818.

[60] G. A. Tavares and A. Louveau, “Meningeal lymphatics: An immune
gateway for the central nervous system,” Cells, vol. 10, no. 12, 2021,
Art. no. 3385.

[61] A. Louveau et al., “CNS lymphatic drainage and neuroinflammation are
regulated by meningeal lymphatic vasculature,” Nat. Neurosci., vol. 21,
pp. 1380–1391, 2018.

[62] S. D. Mesquita et al., “Functional aspects of meningeal lymphatics in
ageing and alzheimer’s disease,” Nature, vol. 560, pp. 185–191, 2018.

[63] S. Antila et al., “Development and plasticity of meningeal lymphatic
vessels,” J. Exp. Med., vol. 214, no. 12, pp. 3645–3667, 2017.

[64] Q. Ma, B. V. Ineichen, M. Detmar, and S. T. Proulx, “Outflow of
cerebrospinal fluid is predominantly through lymphatic vessels and is
reduced in aged mice,” Nat. Commun., vol. 8, 2017, Art. no. 1434.

[65] O. Semyachkina-Glushkovskaya, D. Postnov, T. Penzel, and J. Kurths,
“Sleep as a novel biomarker and a promising therapeutic target for
cerebral small vessel disease: A review focusing on alzheimer’s disease
and the blood-brain barrier,” Int. J. Mol. Sci., vol. 21, no. 17, 2020,
Art. no. 6293.

[66] X.-B. Ding et al., “Impaired meningeal lymphatic drainage in patients
with idiopathic Parkinson’s disease,” Nat. Med., vol. 27, pp. 411–418,
2021.

[67] A. Olate-Briones et al., “The meningeal lymphatic vasculature in neu-
roinflammation,” FASEB J., vol. 36, no. 5, 2022, Art. no. e22276.

[68] X. Hu et al., “Meningeal lymphatic vessels regulate brain tumor drainage
and immunity,” Cell Res., vol. 30, pp. 229–243, 2020.

[69] Y.-L. Lan, H. Wang, A. Chen, and J. Zhang, “Update on the current
knowledge of lymphatic drainage system and its emerging roles in glioma
management,” Immunology, vol. 168, no. 2, pp. 233–247, 2022.

[70] P. Yanev et al., “Impaired meningeal lymphatic vessel development
worsens stroke outcome,” J. Cereb. Blood Flow Metab., vol. 40, no. 2,
pp. 263–275, 2020.

[71] A. C. Bolte et al., “Meningeal lymphatic dysfunction exacerbates
traumatic brain injury pathogenesis,” Nat. Commun., vol. 11, 2020,
Art. no. 4524.

[72] S. Lemprière, “Meningeal lymphatic flow slows after mild traumatic brain
injury,” Nature Rev. Neurol., vol. 16, pp. 600–6001, 2020.

[73] O. Semyachkina-Glushkovskaya et al., “Biophotonic strategies of mea-
surement and stimulation of the cranial and the extracranial lymphatic
drainage function,” IEEE J. Sel. Top. Quantum Electron., vol. 27, no. 4,
Jul./Aug. 2021, Art. no. 7400313.

[74] F. Salehpour, M. Khademi, D. E. Bragin, and J. O. DiDuro, “Photo-
biomodulation therapy and the glymphatic system: Promising applica-
tions for augmenting the brain lymphatic drainage system,” Int. J. Mol.
Sci., vol. 23, no. 6, 2022, Art. no. 2975.

[75] E. Mester, B. Szende, and J. Tota, “Effect of laser on hair growth of mice,”
Kiserl. Orvostud., vol. 19, pp. 628–631, 1967.

[76] E. Mester, T. Spiry, B. Szende, and J. G. Tota, “Effect of laser rays on
wound healing,” Amer. J. Surg., vol. 122, no. 4, pp. 532–535, 1971.

[77] C. E. Tedford, S. DeLapp, S. Jacques, and J. Anders, “Quantitative
analysis of transcranial and intraparenchymal light penetration in human
cadaver brain tissue,” Lasers Surg. Med., vol. 47, no. 4, pp. 312–322,
2015.

[78] T. Wang et al., “Three-photon imaging of mouse brain structure and
function through the intact skull,” Nat. Methods, vol. 15, pp. 789–792,
2018.

[79] D. Galiakhmetova et al., “Ultra-short laser pulses propagation through
mouse head tissues: Experimental and computational study,” IEEE J. Sel.
Top. Quantum Electron., vol. 29, no. 4, Jul./Aug. 2023, Art. no. 7200311.

[80] E. Zinchenko et al., “Pilot study of transcranial photobiomodulation
of lymphatic clearance of beta-amyloid from the mouse brain: Break-
through strategies for non-pharmacologic therapy of alzheimer’s dis-
ease,” Biomed. Opt. Exp., vol. 10, no. 8, pp. 4003–4017, 2019.

[81] O. Semyachkina-Glushkovskaya et al., “Night photostimulation of clear-
ance of beta-amyloid from mouse brain: New strategies in preventing
alzheimer’s disease,” Cells, vol. 10, no. 12, 2021, Art. no. 3289.

[82] C. da Luz Eltchechem et al., “Transcranial led therapy on amyloid-β
toxin 25–35 in the hippocampal region of rats,” Lasers Med. Sci., vol. 32,
pp. 749–756, 2017.

[83] Y. Lu et al., “Low-level laser therapy for beta amyloid toxicity in rat
hippocampus,” Neurobiol. Aging, vol. 49, pp. 165–182, 2017.

[84] J. Chang et al., “Transcranial low-level laser therapy for depression and
alzheimer’s disease,” Neuropsychiatry, vol. 8, pp. 477–483, 2018.

[85] S. Purushothuman, C. Nandasena, D. M. Johnstone, J. Stone, and J.
Mitrofanis, “The impact of near-infrared light on dopaminergic cell
survival in a transgenic mouse model of Parkinsonism,” Brain Res.,
vol. 1535, pp. 61–70, 2013.

[86] M. R. Hamblin, “Photobiomodulation for traumatic brain injury and
stroke,” J. Neurosci. Res., vol. 96, no. 4, pp. 731–743, 2018.



7200911 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 4, JULY/AUGUST 2023

[87] F. Salehpour et al., “Brain photobiomodulation therapy: A narrative
review,” Mol. Neurobiol., vol. 55, pp. 6601–6636, 2018.

[88] B. N. Huisa et al., “Transcranial laser therapy for acute ischemic stroke:
A pooled analysis of nest-1 and nest-2,” Int. J. Stroke, vol. 8, no. 5,
pp. 315–320, 2013.

[89] W. Xuan, T. Agrawal, L. Huang, G. K. Gupta, and M. R. Hamblin,
“Low-level laser therapy for traumatic brain injury in mice increases
brain derived neurotrophic factor (BDNF) and synaptogenesis,” J. Bio-
photonics, vol. 8, no. 6, pp. 502–511, 2015.

[90] L. Morries, P. Cassano, and T. Henderson, “Treatments for traumatic brain
injury with emphasis on transcranial near-infrared laser phototherapy,”
Neuropsychiatric Dis. Treat., vol. 11, pp. 2159–2175, 2015.

[91] O. Semyachkina-Glushkovskaya et al., “Photobiomodulation of lym-
phatic drainage and clearance: Perspective strategy for augmentation
of meningeal lymphatic functions,” Biomed. Opt. Exp., vol. 11, no. 2,
pp. 725–734, 2020.

[92] O. Semyachkina-Glushkovskaya et al., “Photostimulation of cerebral and
peripheral lymphatic functions,” Transl. Biophotonics, vol. 2, no. 1–2,
2020, Art. no. e201900036.

[93] O. Semyachkina-Glushkovskaya et al., “Photomodulation of lymphatic
delivery of liposomes to the brain bypassing the blood-brain barrier:
New perspectives for glioma therapy,” Nanophotonics, vol. 10, no. 12,
pp. 3215–3227, 2021.

[94] D.-Y. Li et al., “Photostimulation of lymphatic clearance of red blood
cells from the mouse brain after intraventricular hemorrhage,” bioRxiv,
2020.

[95] J. P. Scallan and V. H. Huxley, “In vivo determination of collecting
lymphatic vessel permeability to albumin: A role for lymphatics in
exchange,” J. Physiol., vol. 588, no. 1, pp. 243–254, 2010.

[96] L. Claesson-Welsh, E. Dejana, and D. M. McDonald, “Permeability of
the endothelial barrier: Identifying and reconciling controversies,” Trends
Mol. Med., vol. 27, pp. 314–331, 2021.

[97] E. Kuan et al., “Collecting lymphatic vessel permeability facilitates
adipose tissue inflammation and distribution of antigen to lymph node-
homing adipose tissue dendritic cells,” J. Immunol., vol. 194, no. 11,
pp. 5200–5210, 2015.

[98] N. L. Harvey, “The link between lymphatic function and adipose biology,”
Ann. New York Acad. Sci., vol. 1131, no. 1, pp. 82–88, 2008.

[99] S. Banerji et al., “LYVE-1, a new homologue of the CD44 glycoprotein,
is a lymph-specific receptor for hyaluronan,” J. Cell Biol., vol. 144, no. 4,
pp. 789–801, 1999.

[100] S. Liao and P. von der Weid, “Lymphatic system: An active pathway
for immune protection,” Seminars Cell Devlop. Biol., vol. 38, pp. 83–89,
2015.

[101] T. I. Karu, L. V. Pyatibrat, and N. I. Afanasyeva, “Cellular effects of low
power laser therapy can be mediated by nitric oxide,” Lasers Surg. Med.,
vol. 36, no. 4, pp. 307–314, 2005.

[102] F. Murad, “Discovery of some of the biological effects of nitric oxide
and its role in cell signaling,” Biosci. Rep., vol. 24, no. 4–5, pp. 452–474,
2005.

[103] J. Drapier, H. Hirling, J. Wietzerbin, P. Kaldy, and L. Kühn, “Biosynthesis
of nitric oxide activates iron regulatory factor in macrophages,” EMBO
J., vol. 12, no. 9, pp. 3643–3649, 1993.

[104] M. Lepoivre, F. Fieschi, J. Coves, L. Thelander, and M. Fontecave, “Inac-
tivation of ribonucleotide reductase by nitric oxide,” Biochem. Biophys.
Res. Commun., vol. 179, no. 1, pp. 442–448, 1991.

[105] J.-C. Drapier and J. B. Hibbs, “Aconitases: A class of metalloproteins
highly sensitive to nitric oxide synthesis,” in Nitric Oxide Part B: Phys-
iological and Pathological Processes, (ser. Methods in Enzymology).
Cambridge, MA, USA: Academic Press, 1996, vol. 269, pp. 26–36.

[106] S. Dimmeler, F. Lottspeich, and B. Brune, “Nitric oxide causes ADP-
ribosylation and inhibition of glyceraldehyde-3-phosphate dehydroge-
nase,” J. Biol. Chem., vol. 267, pp. 16771–16774, 1992.

[107] J. Stamler et al., “S-nitrosylation of proteins with nitric oxide: Synthesis
and characterization of biologically active compounds,” Proc. Nat. Acad.
Sci., vol. 89, no. 1, pp. 444–448, 1992.

[108] M. R. Hamblin, “Shining light on the head: Photobiomodulation for brain
disorders,” BBA Clin., vol. 6, pp. 113–124, 2016.

[109] M. R. Hamblin, C. Ferraresi, Y.-Y. Huang, L. F. Freitas, and J. D. Carroll,
Low-Level Light Therapy: Photobiomodulation, vol. 115. Bellingham,
WA, USA: SPIE Press, 2018.

[110] L. F. de Freitas and M. R. Hamblin, “Proposed mechanisms of photo-
biomodulation or low-level light therapy,” IEEE J. Sel. Top. Quantum
Electron., vol. 22, no. 3, pp. 348–364, May/Jun. 2016.

[111] N. Lane, “Cell biology: Power games,” Nature, vol. 443, pp. 901–903,
2006.

[112] G. B. Waypa, K. A. Smith, and P. T. Schumacker, “O2 sensing, mitochon-
dria and ROS signaling: The fog is lifting,” Mol. Aspects Med., vol. 47–48,
pp. 76–89, 2016.

[113] Y. Zhao, P. M. Vanhoutte, and S. W. Leung, “Vascular nitric oxide:
Beyond eNOS,” J. Pharmacol. Sci., vol. 129, no. 2, pp. 83–94, 2015.

[114] P. Cassano, S. Petrie, M. Hamblin, T. Henderson, and D. Iosifescu,
“Review of transcranial photobiomodulation for major depressive dis-
order: Targeting brain metabolism, inflammation, oxidative stress, and
neurogenesis,” Neurophotonics, vol. 3, no. 3, 2016, Art. no. 031404.

[115] F. Tian, S. N. Hase, F. Gonzalez-Lima, and H. Liu, “Transcranial laser
stimulation improves human cerebral oxygenation,” Lasers Surg. Med.,
vol. 48, no. 4, pp. 343–349, 2016.

[116] S. M. McCurry et al., “Characteristics of sleep disturbance in community-
dwelling alzheimer’s disease patients,” J. Geriatr. Psychiatry Neurol.,
vol. 12, no. 2, pp. 53–59, 1999.

[117] S. S. Tworoger, S. Lee, E. S. Schernhammer, and F. Grodstein, “The as-
sociation of self-reported sleep duration, difficulty sleeping, and snoring
with cognitive function in older women,” Alzheimer Dis. Assoc. Disord.,
vol. 20, pp. 41–48, 2006.

[118] M. Nedergaard, “Garbage truck of the brain,” Science, vol. 340, no. 6140,
pp. 1529–1530, 2013.

[119] L. Xie et al., “Sleep drives metabolite clearance from the adult brain,”
Science, vol. 342, no. 6156, pp. 373–377, 2013.

[120] D. Z. Carvalho et al., “Association of excessive daytime sleepiness
with longitudinal β-Amyloid accumulation in elderly persons without
dementia,” JAMA Neurol., vol. 75, no. 6, pp. 672–680, 2018.

[121] E. Shokri-Kojori et al., “β-amyloid accumulation in the human brain after
one night of sleep deprivation,” Proc. Nat. Acad. Sci., vol. 115, no. 17,
pp. 4483–4488, 2018.

[122] B. P. Lucey and R. J. Bateman, “Amyloid-β diurnal pattern: Possible role
of sleep in alzheimer’s disease pathogenesis,” Neurobiol. Aging, vol. 35,
pp. S29–S34, 2014.

[123] S. Cordone, L. Annarumma, P. M. Rossini, and L. De Gennaro, “Sleep
and β-amyloid deposition in alzheimer disease: Insights on mechanisms
and possible innovative treatments,” Front. Pharmacol., vol. 10, 2019,
Art. no. 695.

[124] A. Y. Abramov and P. R. Angelova, “Mitochondrial dysfunction and
energy deprivation in the mechanism of neurodegeneration,” Turkish J.
Biochem., vol. 44, no. 6, pp. 723–729, 2019.

[125] V. Dremin, I. Novikova, and E. Rafailov, “Simulation of thermal field
distribution in biological tissue and cell culture media irradiated with
infrared wavelengths,” Opt. Exp., vol. 30, pp. 23078–23089, 2022.

[126] V. Dremin, I. Novikova, and E. U. Rafailov, “In silico study of thermal
field distribution in cell culture media irradiated with wavelengths of sin-
glet oxygen generation,” Proc. SPIE, vol. 12192, 2022, Art. no. 121920R.

Dr. Viktor Dremin received the M.Sc. and Ph.D.
degrees from Orel State University, Orel, Russia, in
2013 and 2017, respectively. During the first several
years of his career, he was involved with the devel-
opment of new scientific devices for optical remote
sensing of the Earth and terrestrial planets as an op-
toelectronics design engineer of the company Astron
Electronics (Russia). As a Ph.D. student, he was also
conducted active research in biomedical engineering
and biophotonics with the R&D Center of Biomedical
Photonics Orel State University. Part of the Ph.D.

Research was carried out with Aston University, Birmingham, U.K. by Erasmus+
programme. After Ph.D. viva in 2017, his work on the development of an imaging
system for skin chromophores visualisation has been supported by EDUFI
Fellowship, Finland. In 2019, his project to develop a multimodal hyperspectral
system for the diagnosis of glycation of biological tissues received the support
of a prestigious Postdoctoral Grant by Marie Skłodowska-Curie Individual
Fellowships programme. He has authored and coauthored more than 100 articles
in refereed journals and conference proceedings, nine patents, and four book
chapters. His h-index 21; i10-index 38 (Google Scholar, 02.2023). His research
interests include biomedical imaging, optical tools for assessment of metabolic
activity of biological tissues, modelling of optical radiation propagation in
biological tissues. He was the recipient of various prestigious national and
international awards.



DREMIN et al.: DIRECT LASER-INDUCED SINGLET OXYGEN IN BIOLOGICAL SYSTEMS: APPLICATION FROM IN VITRO TO IN VIVO 7200911

Oxana Semyachkina-Glushkovskaya received the
Ph.D. degree. She is currently a Professor with
Physics Department, Humboldt University, Berlin,
Germany. She is also the Head of Chair of physi-
ology of human and animals with the Department of
Biology, Saratov State University, Saratov, Russia.
She is the Deputy Director of the Commercialization
of Scientific Research with the Scientific Medical
Center, Saratov State University. She has authored or
coauthored several pioneering works discovering the
promising strategies in rehabilitation medicine based

on the application of the new generation lasers for stimulation of lymphatic
clearance of toxins and the blood from the sleeping brain. Her research interests
include neuroscience and in the development of breakthrough technologies for
non-invasive therapy of brain diseases, brain drug delivery and monitoring of
the immune system of the brain. Her research was the recipient of the Paul
Dudley White International Scholar Award (The American Heart Association)
and DAAD (M.V. Lomonosov’s Program). She was supported by more than
30 international and Russian projects in fundamental and applied medicine
(https://lymphasleep.com/command/semyachkina-glushkovskaya-oksana). She
is the expert with the Development of Educational Programs in physiology
of humans and animals (a Program Virtual Physiology) http://www.virtual-
physiology.com/Home/About.

Prof. Edik U. Rafailov (Senior Member, IEEE) re-
ceived the Ph.D. degree from Ioffe Institute, Saint
Petersburg, Russia, in 1992. In 1997, he moved to
St. Andrews University, Scotland, U.K. and in 2005,
he established a new group with Dundee University,
Scotland, U.K. In 2014, he and his Optoelectronics
and Biomedical Photonics Group moved to Aston
University, Birmingham, U.K. He has authored and
coauthored more than 500 articles in refereed journals
and conference proceedings, including three books,
ten invited chapters and numerous plenary/invited

talks. His research interests include high-power CW and ultra-short pulsed lasers,
generation of UV/visible/IR/MIR and THz radiation, nanostructures, nonlinear
and integrated optics, and biomedical photonics. He coordinated the € 14.7 M
FP7 FAST-DOT Project development of new ultrafast lasers for biophotonics
applications and the € 12.5 M NEWLED Project which aims to develop a
new generation of white LEDs. He also coordinated the H2020 FET Projects:
Mesa-Brain (€ 3.3 M, aims to develop 3D nano-printing technology for func-
tional three-dimensional human stem cell derived neural networks), NEUROPA
(€ 3.6 M, aims to develop novel non-invasive theragnostic approaches), and
PLATFORMA. He also leads a few other projects funded by EU FP7, H2020
and EPSRC.

http://www.virtual-physiology.com/Home/About
http://www.virtual-physiology.com/Home/About


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


