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Abstract—Spiking neural networks (SNN) provide a new com-
putational paradigm capable of highly parallelized, real-time pro-
cessing. Photonic devices are ideal for the design of high-bandwidth,
parallel architectures matching the SNN computational paradigm.
Furthermore, the co-integration of CMOS and photonic elements
combineslow-loss photonic devices with analog electronics for
greater flexibility of nonlinear computational elements. We de-
signed and simulated an optoelectronic spiking neuron circuit on
a monolithic silicon photonics (SiPh) process that replicates use-
ful spiking behaviors beyond the leaky integrate-and-fire (LIF).
Additionally, we explored two learning algorithms with the po-
tential for on-chip learning using Mach-Zehnder Interferometric
(MZI) meshes as synaptic interconnects. A variation of Random
Backpropagation (RPB) was experimentally demonstrated on-chip
and matched the performance of a standard linear regression on a
simple classification task. In addition, we applied the Contrastive
Hebbian Learning (CHL) rule to a simulated neural network com-
posed of MZI meshes for a random input-output mapping task.
The CHL-trained MZI network performed better than random
guessing but did not match the performance of the ideal neural
network (without the constraints imposed by the MZI meshes).
Through these efforts, we demonstrate that co-integrated CMOS
and SiPh technologies are well-suited to the design of scalable SNN
computing architectures.

Index Terms—Neuromorphic computing, spiking neural
networks, nanophotonics, photonic integrated circuits, silicon
photonics.

I. INTRODUCTION

COMPUTATION using spiking neural networks (SNN)
yields three major architectural advantages: (1) the spar-

sity of communication between elements which reduces energy
cost, (2) the binarization of communication without discretiza-
tion of messages (i.e., all-or-nothing spike responses), and (3)
completely asynchronous operation of computational units. At
the architectural level, the spiking paradigm requires several
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computational elements in common with the traditional artificial
neural network (ANN)—weighted addition, nonlinearity, and
learning algorithms—though with the additional complexity of
computation spread through time. Traditional computational ap-
proaches based on the von Neumann computing architecture—
including modern system architectures equipped with graphical
processing units (GPUs)—are not well-suited for this compu-
tational paradigm due to the fundamental separation between
computing and memory units and the resulting serialization
of many processing tasks. In turn, the traditional computing
paradigm cannot efficiently support the requisite computational
elements without significant simplification or long latencies,
thus warranting the development of new computer architec-
tures. Neuromorphic design operates under the general principle
that evolution has already produced a successful SNN archi-
tecture for operating under real-time, low-power conditions.
Approaches to replicating this design employ a variety of digital,
analog, or mixed-signal circuits based on electronic, photonic, or
optoelectronic devices. Nonetheless, substantially more work is
necessary to determine the optimal approach to abstract, apply,
and improve upon this evolutionary design.

Digital neuromorphic processors (such as TrueNorth [1],
Loihi [2], SpiNNaker [3], etc.) increase the parallelization of
processing by including a large number of cores that allow
asynchronous computation—in contrast to GPU architectures—
though this approach is not unlike a specialized and monolithic
form of cluster computing. Though each core completes its op-
eration in parallel, a desire for determinism in digital electronics
necessitates synchronization between simulated time steps. This
determinism, in turn, limits fully asynchronous operation, which
may prove to be prohibitive at biological network scales. On the
other hand, analog electronic meshes can provide fully parallel
computation, though the capacitance of electrical wire networks
causes increases in both latency and power consumption.

Photonic and optical computing efforts have sought to ex-
ploit the nearly lossless and parallel communication capabil-
ities of optical fibers into the domain of photonic integrated
circuits (PICs). Several demonstrations have already shown
matrix multiplication and convolutional processing using non-
spiking photonic circuits [4], [5], [6]. These devices use a
combination of wavelength-division multiplexing (WDM) and
space-division multiplexing (SDM) to manage multiply-and-
accumulate (MAC) operations in parallel; thus, these schemes
are also compatible with spike processing in synaptic networks.
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Choices of nonlinearity in spiking elements vary widely from
one approach to another, though a major division can be made
between all-optical and optoelectronic approaches. Optical non-
linearities typically have shorter lifetimes and can potentially
service higher-speed computation than electronic nonlinearities
based on electronic charges or currents. However, the manipula-
tion of these nonlinearities is governed mainly by material prop-
erties which are fixed after fabrication. Since biological neural
networks operate over a range of time scales, it is preferable to
have programmable elements in the neuron design. Optoelec-
tronic approaches can take advantage of recent progress in the
co-integration of CMOS circuitry with photonic devices to form
flexible and programmable spiking neuromorphic computers.

A monolithic platform for CMOS and photonic elements
allows for the close integration of programmable CMOS cir-
cuits alongside nearly lossless and highly parallelized photonic
network technologies. Time-dynamics of the system can be
programmed into mixed-signal electrical circuits while com-
munication and matrix multiplication are handled by photonic
interconnects. Whereas other approaches have relied on digital-
to-analog (DAC) and analog-to-digital converters (ADC) to
exchange input data and results between digital processors and
photonic tensor cores [6], the approach reported here relies on
analog photodetection for energy-efficient “impedance conver-
sion” [7] between electrical nonlinearities (neuron dynamics)
and photonic interconnects (synaptic networks). As such, the
reduced capacitance, wire delay, and electrical losses of the
co-integrated platform are critical for the energy efficiency of
processing. Additionally, neurons in the human brain average
upwards of 1,000 synapses per neuron [8]. Fanout in electrical
circuits is limited by the wire and gate capacitance of down-
stream elements, and the capacitive coupling between wires
places strict limits on the synaptic density of electrical neural
networks. In contrast, photonic waveguides can carry hundreds
of signals simultaneously using WDM. Furthermore, interfer-
ometry meshes in photonic circuits can perform unitary matrix
multiplication without consuming any energy (as discussed in
Section II-B). As such, electronics alone are not well-suited
for brain-like circuits, and the mixed-signal, optoelectronic ap-
proach becomes warranted.

In addition to the architectural benefits, SNNs offer provable
advantages in solving graph algorithms, constraint satisfaction,
and other optimization problems [9], [10], [11], [12]. Incor-
porating learning and training using Hebbian [13] and spike-
timing-dependent plasticity (STDP) [14] algorithms also allows
for the application of SNNs in many of the same contexts as deep
neural networks (DNN). These learning rules have the additional
architectural advantage of using only locally available informa-
tion to update each synapse. In principle, all weight updates
within the network can be calculated entirely in parallel. With
the appropriate network topology and training signals, Hebbian
learning has also been shown capable of error-driven learning
equivalent to backpropagation in deep and convolutional neural
networks of moderate size [15], [16].

In this paper we will discuss the design of a nanophotonic-
electronic neuromorphic architecture for native SNN computa-
tion with on-chip learning. First, Section II will provide a brief

taxonomy of existing photonic and optoelectronic approaches
to spiking neuron and optical matrix multiplication. Next, Sec-
tion III will discuss the technologies and algorithms used while
addressing scalability and remaining design challenges. Finally,
Section IV will detail future directions and perspectives for the
design of photonic neuromorphic processors.

II. BACKGROUND AND SURVEY

Spiking neural networks require two primary computational
elements: (i) a nonlinear spiking unit that can integrate its
inputs over time (the neuron) and (ii) a reconfigurable network
to service weighted connections between these elements (the
synaptic network). As previously alluded, the nonlinearities
exploited for the design of spiking units can vary between
all-optical and optoelectronic approaches, which limits the
choice of network elements to service communications between
units.

A. Spiking Nonlinearity

Excitability describes the ability of a system to quickly and
temporarily deviate from its quiescent state following small per-
turbations and can be rigorously described through bifurcation
analysis as done by Izhikevich [17]. Biological neurons are
dynamical systems and have been classified into saddle-node and
Andronov-Hopf bifurcations which correspond to integrator and
resonator neurons, respectively. Simply put, integrator neurons
integrate their inputs and will generate a spike upon reaching
some dynamic threshold. In contrast, a resonator neuron un-
dergoes some internal subthreshold oscillation with increased
response and likelihood to generate a spike for inputs that fall at
specific phases of a resonant frequency.

Computationally useful spiking neurons, however, need not
be entirely biologically plausible. Instead, behavior is commonly
summarized by the leaky-integrate-and-fire (LIF) neuron model.
In the LIF model, the membrane potential constantly undergoes
exponential decay towards its resting potential with discrete
jumps at each input spike. When the membrane potential reaches
a fixed threshold, the spike is generated, and the potential is in-
stantaneously returned to a reset potential. LIF neurons are only
able to represent integrator neurons and lose much of the com-
plexity of behaviors seen in biological neurons. Alternatively,
Izhikevich devised a neuron model which faithfully reproduces
a wide range of biologically observed behaviors using only four
parameters and two coupled differential equations [18]. For a
brief summary of computationally relevant neuron behaviors and
a comparison of neuron models, see [19]. Other taxonomies exist
to classify neuron types according to these behaviors, though
some evidence has shown that biological neurons may flexibly
switch between these types based on the history of the cell [20].
As such, an ideal hardware implementation of spiking neurons
would be capable of representing a range of neuron types for
maximal computational ability.

Semiconductor lasers have been investigated for the iso-
morphisms between the time dynamics of material parameters
of active photonic elements and the cellular mechanisms of
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biological neurons. Researchers have exploited the time dy-
namics of photocarriers, thermal diffusion, optical modes, and
polarization competition to create excitable laser devices with
varying degrees of faithfulness to their biological counterpart.
Photonic spiking neurons can be most meaningfully divided into
two categories based on whether the device can accept optical
or electrical inputs—some devices can be modulated by either
option, but electrical inputs provide advantages in system design
as discussed in Section II-B.

Optical devices can be further classified into coherent and
incoherent devices based on how incoming wavelengths are used
to excite the active medium. In coherent excitable semiconductor
lasers [21], [22], [23], [24], [25], the incoming signal interacts
with a lasing cavity mode on the same wavelength to modulate
the output signal directly. Excitability is induced by disturbing
the balance between competing modes or polarizations which,
with sufficient input energy, temporarily drive the extinction of
one mode and amplification of the other. Bandwidth for such
devices is bound by the cavity Q factor, with a time constant
for energy dissipation given by τ = Q/ω0. For incoherent de-
vices [26], [27], [28], [29] the incoming signal interacts with
some element within the cavity that indirectly modulates the
output signal. This may take the form of optical pumping of the
laser medium, or otherwise modulating the carrier populations
which affect gain and saturation properties. Bandwidth for such
approaches are limited by the dynamics of these carrier popu-
lations which are material dependent. Alternatively, optoelec-
tronic approaches [30], [31] can allow for the design of analog
circuitry with time-dynamics that can be fit to a variety of avail-
able neuron models, with lasers modulated by current injection
in response to processed photodetector input. Optoelectronic
designs are mainly limited by the total bandwidth of integrated
photodetectors and electronics, though some estimates suggest
that bandwidths upwards of 10 GHz can be expected; see [32]
for a more in-depth review of various excitable semiconductor
lasers with discussions of bifurcation paralleling Izhikevich’s
analysis.

B. Reconfigurable Networks

Given the ability of silicon waveguides to simultaneously
support a wide range of wavelengths with negligible loss, on-
chip optical networks are most efficiently parallelized using
wavelength division multiplexing (WDM). Time-division mul-
tiplexing (TDM) offers another scheme for sharing computing
resources over time, but the asynchronous and stochastic nature
of SNNs is not likely to benefit from this technique. Using WDM,
signals from each neuron can be routed according to wavelength,
and resources for matrix multiplication may potentially be used
for multiple independent operations to support weight sharing
and convolution. To support such architectures, different neurons
must be distinguishable by output wavelength. However, the
system does not need a unique wavelength for each neuron since
most SNN architectures group neurons into layers that provide
an additional level of hierarchy for routing structures.

Using a WDM approach, arrayed waveguide grating routers
(AWGR) can be used to support all-to-all routing schemes

between neural layers [33], [34], [35]. Inputs to each layer
would be passed through reconfigurable optical matrix multi-
pliers such as cross-bar networks, micro-ring resonator (MRR)
banks, and Mach-Zehnder interferometry (MZI) meshes. MZI
meshes can perform unitary matrix transformations that corre-
spond to lossless multiplication and are thus particularly suitable
for low-power neuromorphic computing. See [36] for a longer
discussion on the design trade-offs between each of these de-
vices. Section III-B describes our MZI mesh architecture, while
Section III-C details algorithms for training SNNs using MZI
meshes.

III. SCALABLE PHOTONIC SNN TECHNOLOGIES

A. Towards Attojoule Nanophotonic-Electronic
Spiking Neurons

Neurons provide nonlinearity and signal regeneration be-
tween each neural network layer. Our previous work [37]
presents an optoelectronic neuron design with projected energy
efficiency on the order of 200 aJ/spike. Because the time scales
of electrical circuits are more tunable than nonlinear photonic
materials, the neuron is more easily programmable while still
taking advantage of low-loss communication provided by pho-
tonic interconnects. The previous design closely matches the
behavioral characteristics of the Izhikevich neuron model to
achieve a variety of neural behaviors. We have updated this
design for a more advanced foundry platform to move a step
forward in realizing attojoule energy efficiencies.

Our previous foundry neuron design [37] also employs op-
toelectronics and a scalable MZI interconnect mesh; however,
this design is not capable of the full range of neural behaviors
described by the Izhikevich model. Using the GlobalFoundries
(GF) 45SPCLO PDK, a new neuron was designed that can
support a wider range of neural behaviors depending on ap-
plied voltage biasing. GF 45SPCLO is the successor of the GF
90WG PDK and preserves the same CMOS-silicon photonic
co-integration with a more advanced process node and additional
metal routing layers. Fig. 1 shows the GF 45SPCLO neuron
circuit design. The pins labeled red mark voltage biasing nodes
that can be adjusted to achieve the desired neuron behavior.
These nodes correspond to the control of an adjustable positive
bias (Vbias), spiking threshold (Vth), refractory feedback rate
(Vleak), and adaptation rate (Vleak2). The function of these
node voltages is divided between membrane potential control
and feedback potential control. Membrane potential controls
Vbias & Vth adjust the spiking threshold and determine the cur-
rent flow into membrane potential for each spike input. Feedback
potential controls, Vleak & Vleak2, determine the strength of
negative feedback on the membrane potential and the length
of the refractory period. Balanced photodetectors receive exci-
tatory and inhibitory light input. The diode at the circuit output
incorporates the I-V characteristics of the laser diode chosen for
the design.

To demonstrate this design, we first simulate the basic spiking
behavior in response to excitatory and inhibitory inputs simu-
lated in Cadence Spectre (shown in Fig. 2). Next, the nodes
of each measurement are matched to the color of each line in
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Fig. 1. The circuit diagram of 45SPCLO neuron design. The circuit mecha-
nism of the optoelectronic neuron starts with converting light input to current.
The membrane potential control section will decide the neuron threshold and
feedback strength to the refractory feedback potential control section before
sending the light out from the laser diode. The feedback potential control decides
the refractory strength and the frequency of spiking.

Fig. 2. Basic spiking behavior with excitatory and inhibitory input. Inhibitory
inputs are assigned on the 11th and 12th spikes which oppose the excitatory
input currents.

Fig. 1. Finally, we include inhibitory inputs on spike #11 and #12
and can confirm from Fig. 2 that inhibitory input suppressed the
membrane potential and output, which matches our expectation.

Next, we demonstrate three spiking patterns: regular spiking
(RS), fast spiking (FS), and chattering (CH) in analogy to [18].
These behaviors can be achieved flexibly by modifying the
voltages at each biasing pin, which allows a greater tolerance for
mismatch between design and tapeout. These spiking patterns

Fig. 3. Regular spiking neuron behavior. The step input shows that the circuit
feedback mechanism properly functions and that the neuron is an excitable
system. The spiking rate for regular spiking is set to the lower end of each
voltage supply.

Fig. 4. Fast spiking neuron behavior. Each spike is 50 ns faster than a regular
spike. The spiking speed can be adjusted by changing the voltage supplies. Vth

has the most influence on spiking rate adjustment.

are shown in Fig. 3, Fig. 4, and Fig. 5 respectively. Input
photocurrents are simulated as step functions from 0.0mA to
0.1mA, and node voltages corresponding to each behavior are
set as follows:

1) Regular spiking: bias (Vbias) low, threshold (Vth) low, re-
fractory feedback (Vleak) low, and frequency adaptation (Vleak2)
low.

2) Fast spiking: bias (Vbias) low, threshold (Vth) high, refrac-
tory feedback (Vleak) low, and frequency adaptation (Vleak2)
high.

3) Chattering: bias (Vbias) medium, threshold (Vth) medium,
refractory feedback (Vleak) high, and frequency adaptation
(Vleak2) high.

These simulations verify the ability of the neuron circuit to
achieve various spiking patterns on the more advanced 45SP-
CLO process. While the increased complexity of the spiking
neuron creates difficulty for gradient approximation, learning al-
gorithms can be designed that are agnostic to system parameters
and nonlinearities. Section III-C will explore two such meth-
ods. Implementing these algorithms alongside spiking neurons
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Fig. 5. Chattering neuron behavior. The neuron continuously fires for 0.3μs
and rests for 0.6μs. This cycle is repeated with shorter firing and resting periods.

Fig. 6. (a) DC voltage sweep for phase shifter θ, (b) 2 × 2 MZI unit with
power monitoring and local training features.

would bring the benefits of deep learning into the domain of
event-driven processing.

B. Photonic MZI Mesh as Synaptic Network

The building block of an MZI Mesh is a 4-port device that
consists of two 50:50 beam splitters and two-phase shifters,
θ and φ as shown in Fig. 6(b). Inside the interferometer, the
phase shifter θ controls the power splitting ratio. Meanwhile,
outside of the interferometer, the phase shifter, φ, controls
the relative phase difference between the two coherent input
ports. As demonstrated in Fig 6(a), the tunable power splitting
functionality is tested by sweeping applied DC voltage on the
phase shifter θ. MZI Meshes can be arranged in several ways,
with the most popular arrangements being the triangular [38]
or rectangular [39] formations. Both of the formations can
realize an arbitrary N × N unitary matrix. There are a vari-
ety of applications where MZI Meshes are employed, such as
mode-division multiplexing [40], free-space beamforming [41],
quantum computing [42], and photonic neural networks [43].
Our work utilizes MZI Meshes as synaptic interconnections
for bio-inspired neural networks and aims to integrate learning
algorithms on the same chip.

Calibration procedures of MZI Meshes are well-studied [44],
but training MZI Meshes as neural network (NN) interconnects
remains challenging. Hughes et al. [45] proposed an in-situ train-
ing to realize the traditional backpropagation algorithm for MZI

meshes, and recently Pai et al. [46] experimentally demonstrated
the method. This in-situ training requires additional forward
and backward light propagation with power monitoring for each
phase shifter element at each step. Pai et al. [46] utilized power
tapping and grating couplers with an infrared camera to record
the emitted power from MZI Meshes. Alternatively, Morichetti
et al. [47] used a non-invasive power sensing device introduced
for silicon waveguides. Ideally, neural network training algo-
rithms are agnostic to the performance or transfer function of
devices in the network. Done correctly, this avoids the need
to calibrate elements within the network as it autonomously
achieves a global minimum of its cost function. To this end, we
exploited in-mesh 1:99 power taps and Ge photodetectors (PDs)
within the Process Design Kit (PDK) elements of the active
silicon photonic multi-project-wafer (MPW) runs from the AIM
Photonic foundry. Information from these internal monitors
were used with an implementation of random backpropagation
(discussed in Section III-C1) to train a small neural network
without MZI mesh calibration. Fig. 6(a) shows photocurrent
changes on the monitoring PDs with respect to applied voltage
on phase-shifter θ. Although we used thermo-optics as a sim-
ple and practical phase-shifting mechanism, it is also possible
to utilize micro-electro-mechanical systems (MEMS) for even
lower power consumption [48] in future designs.

Fig. 7(b) shows the fabricated and tested 6 × 6 rectangular
MZI Mesh with power taps after each 2 × 2 MZI unit as shown
in Fig. 6(b). At each output waveguide of the 6 × 6 mesh, a
micro ring resonator (MRR) add-drop filter is placed with a
PD on the drop ports, allowing for output monitoring by either
optical or electrical means. When the MRR is at resonance, the
output can be monitored and accessed through the electrical
interface during the training. Alternatively, the MRR resonance
wavelength can be tuned to let the optical signal propagate after
the MZI Mesh. This way, multiple MZI Mesh layers can cascade
for DNN-like implementation. All the components are available
in AIM Photonic’s PDK v4.0. The device is wire-bonded on
a fanout printed-circuit board. A USB-interfaced multi-channel
high current output digital-to-analog converter (DAC) unit drives
the thermo-optic heaters and MRR add-drop filters. Similarly,
the photocurrents are digitized by a USB-interfaced multi-
channel 250kSps analog-to-digital converter (ADC), as shown
in Fig. 7(a).

C. Training and Inference

We targeted a linear classification problem with 4-
dimensional input vectors and two output classes for the on-chip
training demonstration. We used the Iris flower dataset [49],
consisting of 3 classes and 150 input samples. For simplicity
in the proof-of-principle demonstration, we excluded one of the
classes that is linearly separable from the other two classes.
Therefore, a linear regression classifier can achieve a maximum
of 94 true classifications over 100 samples. We use a single-mode
cleaved fiber to couple a CW tunable laser source operating at
1553.7 nm to the chip. After the edge coupler, the first three 2×2
MZI stages act as tunable beam splitters and are used to generate
coherent input vectors. First, the input generator phase shifters
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Fig. 7. (a) Random backpropagation experimental setup with optical and electrical components, (b) SiPh MZI Mesh, wirebonded on fanout PCB.

are optimized adaptively to create desired 100 input samples.
Next, optimum voltage values are recorded in a look-up table
(LUT) to recall in the training and interference cycles.

One of the challenges of using MZI Meshes as a synaptic
weight matrix is that controllable variables (phase shifters) do
not explicitly map to individual weight matrix entries. In other
words, adjusting a single phase shifter will affect multiple weight
matrix entries. Clements et al. [39] devised a decomposition
method for rectangular meshes. In machine learning, however,
the optimum weight matrix is unknown at the beginning of
training and the additional resources for continual adjustment
and decomposition become intractable. Hughes et al. [45]
demonstrated a method of differentiating the weight matrix
w.r.t. each phase shifter. However, this method requires two
optical propagation steps in addition to the initial inference
step: one forward, and one backward. Therefore, an external
controller is required to schedule each propagation, and light
sources must be bidirectional. Moreover, during the additional
optical propagation steps, power must be monitored for every
phase shifter element. The number of phase shifters in the MZI
mesh scales as N(N − 1) for N × N weight matrices, meaning
O(N2) power monitoring is required. This presents remaining
challenges for scalability in deep neural networks.

Here, we looked for more hardware-friendly solutions and,
taking inspiration from biology, explored random backprop-
agation (RBP) and contrastive Hebbian learning (CHL) for
MZI Meshes. In Section III-C1, we present an experimental
demonstration of random backpropagation training for a linear
classification task; Section III-C2 discusses the CHL algorithm
and its relevance to human-like predictive error-driven learning.

1) Random Backpropagation: In RBP, global error is back-
propagated electrically from the end of the network. As such,
RBP does not require optical backpropagation or power moni-
toring for each 2× 2 MZI unit. An important difference between
conventional BP and RBP is the direction of the gradient. BP
follows the steepest gradient direction, which requires error to

multiply the conjugate transpose of the forward weight matrix.
These forward weights are available in the memory unit in a
digital computer, but for MZI Meshes, optical light would be
physically backpropagated, as discussed earlier. The original
researchers demonstrated that a random backward weight matrix
could also guarantee learning unless random backward weights
are exactly orthogonal to the steepest backward weights [50].
Further, neuroscience studies observed that backward synaptic
connections of neural networks in mammals are not fully sym-
metric [51], [52] giving biological credibility to the RBP algo-
rithm. Direct feedback alignment, a variant of RBP, has also been
demonstrated for MRR-based photonic weight matrices [53].
Given that tunable elements in the MRR bank have a one-to-one
mapping with the synaptic weight matrix, it is computationally
easier to calculate the steepest gradient direction. Therefore,
RBP can be more useful for MZI mesh training where this
mapping is non-trivial. Nonetheless, MZI meshes are preferred
for their ability to perform lossless matrix multiplication.

Appendix A summarizes our method of applying RBP on a
SiPh MZI Mesh, while an illustration of our experimental setup
is shown in Fig. 7(a). Python scripts realize multiplication, ad-
dition, comparator, and memory buffer operations in an external
computer. Unlike conventional RBP, we draw a new random
backward matrix for each iteration where the error is larger than
the previous. With this modification, we empirically observed
faster convergence to the classifier’s highest accuracy and the
ability to escape local minimums, as seen in the coarse search
of Fig. 8(a). Note, however, this additional operation may not
be necessary for a network with a larger number of parameters
and multiple synaptic layers. For example, in the papers [50],
[51], [52], [53], the authors use fixed random backward weights.
Future efforts will involve the real-time implementation of these
operations by integrated electronic circuits within the mesh.

Fig. 8(a) shows the interference accuracy of the SiPh MZI
Mesh classifier for each epoch. In each epoch, 100 samples
are forward propagated once. We use i.i.d. random backward
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Fig. 8. (a) Interference accuracy during the random backpropagation training,
(b) Confusion matrices for ideal linear regression and SiPh MZI Mesh classifer.

weights uniformly distributed in the interval [−μ, μ]. During
the coarse search cycle (μ = 0.05), the classifier searches dif-
ferent local minimums, and after some epochs, the interference
accuracy decreases due to large variance on random weights.
Therefore, we defined an accuracy limit (85 true labels among
100 samples) and switched to the fine search cycle (μ = 0.0025)
when the limit was reached. As seen in Fig. 8(a), the coarse
search cycle ended when the classifier labeled 89 samples cor-
rectly, and in the fine search cycle, 92 true labels were achieved.
The confusion matrix for the ideal linear regression classifier
and SiPh MZI Mesh classifier are presented in Fig. 8(b). The
SiPh MZI Mesh misclassified only two samples compared to
the ordinary least squares linear regression model we built in the
computer via scikit-learn Python package. We also implemented
a numerical simulation for the MZI Meshes on the computer.
From the simulation results, we observed that the SiPh MZI
Meshes achieve the same accuracy as the linear regression
model. Therefore, we concluded that the reason for the mis-
classification of two input samples was related to hardware
imprecisions such as noise on the output PDs, electrical wires,
thermal crosstalk between the phase shifters, etc.

Intuitively, traditional BP outperforms RBP in terms of con-
vergence speed due to the steepest gradient direction. However,
RBP is more hardware-friendly given that forward weights are
unavailable and phase-shifter-to-weight mapping is not explicit
in the MZI Meshes. Because the steepest direction for the
gradient is not calculated, RBP does not require any power
monitoring inside the MZI Meshes except for the input and
output stages. Therefore, the PDs can scale with O(N ) for N
× N weight matrices. In the future, we plan to study RBP for
larger SiPh MZI Meshes and more complex machine learning
problems.

2) Contrastive Hebbian Learning: In contrast to backprop-
agation, where learning is based on credit towards global error,
learning in biological systems is restricted to information local
to a given synapse. Despite this, biological neural networks are
able to autonomously develop expansive hierarchical abstrac-
tions of information useful for interpreting the environment.
This represents a form of self-supervised learning that needs

Fig. 9. (a) Schematic of two-layer CHL network structure. (b) Extension of
this structure to predictive error-driven learning.

no explicit calculation of error but instead relies on chemical
signals marking recent spiking activity local to a synapse.

O’Reilly [15] proved that differences in activity at two dis-
tinct phases of network computation could drive a class of
temporal-difference learning rules equivalent to backpropaga-
tion and gradient descent of errors. This equivalence, however,
only holds for a multi-layer perceptron (MLP) with recurrent
feedback connections between each layer as in Fig. 9(a). The
general learning rule has minor variations which have different
properties, though an empirical test under common MLP tasks
showed that the CHL variant often converges to a solution most
quickly:

Δwij = η
(
a+i a

+
j − a−i a

−
j

)
(1)

where ai and aj are variables representing the activity of the ith
and jth neuron, and η dictates the rate of learning.

Superscripts denote the phase of activity that each variable
represents. The minus phase of execution occurs first, and repre-
sents the network’s natural response to the given input sample.
Next, in the plus phase, the target activity is imposed on the
output layer, and the network reaches a new equilibrium. For
the fastest implementation, the duration of each phase should
be the minimum time required for stable output activity. The
product of sending and receiving neuronal activity roughly
tracks their correlations during each phase. Taking the difference
of this correlation in each phase forces the network to unlearn
its natural response and learn the desired target activity. In a
spiking network, activity in these phases can be represented
by low pass filters of spike trains; however, non-spiking ac-
tivity can be assumed to approximate a rate-coding of spiking
activity that fits some non-linear activation function. Unlike
backpropagation, however, the network architecture requires
bidirectional synaptic connectivity (as shown between layers
1 and 2 of Fig. 9(a)) such that information propagates in both di-
rections. Because each neuron is asynchronous, recurrence does
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Fig. 10. Root-mean-squared-error (RMSE) of the MZI-mesh network (blue) compared to an ideal implementation of CHL (orange) and another implementation
with completely random learning signals (green).

not increase computational complexity as it does on traditional
computer architectures. Additionally, the locality of learning
and agnosticism to the neuron nonlinearity is advantageous for
spiking neuromorphic hardware.

Following the two-layer network structure depicted in
Fig. 9(a), we simulated an implementation of CHL on an
ideal MZI-mesh neural network. A set of 40 input-output pairs
were generated from randomly-distributed, uniform-magnitude,
four-dimensional vectors. Each layer was simulated with four
rate-coded neurons with a sigmoidal activation function; as
such, each MZI mesh was simulated as a 4× 4 rectangular
mesh. As in Fig. 6(b), it is assumed that each MZI unit of each
mesh contains four PDs for input and output monitoring. For
simplicity, it is assumed that each neuron injects light into the
mesh on a separate wavelength and that the PD capacitance is
large enough to reject the cross-term products between signals.
Thus, the PD is assumed to linearly sum the power received from
each wavelength. Because CHL assumes real-valued activation,
phase shifter φ is neglected such that phase of each signal can
be ignored. Following these assumptions, each MZI unit can
be treated as a 2× 2 sub-network that applies the following
transformation to signal amplitude at each arm:

W =

[
w11 w12

w21 w22

]
=

[
sin(θ/2) cos(θ/2)
cos(θ/2) −sin(θ/2)

]
(2)

Given that CHL is agnostic to the neural nonlinearity, Eq. 1
can be directly applied to the photodetector outputs as long
as they are measured correctly at the plus and minus phases.
However, as seen in, the MZI mesh cannot implement any
arbitrary matrix. To resolve this, we can calculate derivatives
that relate how a change in θ affects each individual weight.
Next, we average the contribution from each Δwij to estimate

the best overall change:

Δθ =
1

4

∑
i,j

[(
dwij

dθ

)−1
Δwij

]
(3)

Note, we use (dwij/dθ)
−1 because it is simpler to calculate

than dθ/dwij . Assuming that the plus and minus activity of each
detector is recorded locally, this rule can be applied to every
MZI in each mesh all at once. Fig. 10 shows the root-mean-
squared-error (RMSE) over each epoch for the aforementioned
two-layer 4× 4 network, along with an ideal implementation
(direct application of Eq. 1) and implementation with randomly
selected Δwij . Learning is applied after each sample (not
batched) with 500 epochs of training and a learning rate,η = 0.1.
Each implementation is initialized to the same starting matrices.

Our MZI implementation of CHL showed an 11.21% decrease
in RMSE over the course of training, which is indicative of
learning. However, the ideal implementation showed a signif-
icantly larger decrease of RMSE at 46.53%. For comparison,
the randomly varying network shows an increase of 28.87% in
RMSE, giving more credibility to the idea that the MZI-CHL
implementation is capable of learning—albeit at a much slower
rate than the ideal implementation. It is clear from the stochastic
nature of RMSE in Fig 10 that this implementation is prone
to local minimums and instability. Nonetheless, this simple
simulation illustrates the ability of the CHL rule to train local
synaptic weights without regard for the other connections in
the synaptic mesh and provides proof of concept for its use in
MZI meshes. Additionally, the MZI mesh is restricted to unitary
matrices, which preserve the magnitude of the input vector (be-
fore neural nonlinearity). In contrast, the ideal implementation
allows independent gain and attenuation of each weight in the
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synaptic network. More work is needed to determine strategies
for mitigating these restrictions and characterizing learning with
more bio-realistic neural nonlinearities.

3) Predictive Error-Driven Learning: In the biology, how-
ever, target signals can only come from the network’s own
activity in response to its observations; even in the case of
instructed learning, a biological brain must interpret percep-
tual stimuli (i.e., auditory and visual) and transform them into
intelligible target signals for training. More recent work by
O’Reilly et al. [54] has shown that the human brain may generate
its own target training signals through cortico-thalamo loops
which constantly undergo phases of prediction and observation
to reduce future errors in prediction. O’Reilly et al. postulate
that the alpha cycle (≈ 10 Hz) in the human brain demarcates
iterations of such predictive error-driven learning, where plus
and minus phases are separated by a bursting skip connection
between primary processing regions and prediction-carrying
regions (shown as the dotted connection in Fig. 9(b)) that fire
with a 25% duty-cycle within the alpha rhythm; a simplified
diagram of this neural network architecture can be seen in
Fig. 9(b). Over many iterations of such prediction and observa-
tion, abstract representations can be learned that are capable of
transformation-invariant object-recognition [54]. The learning
rule in this model is more complicated than CHL to include
additional biologically relevant terms, though the error-driven
learning is captured sufficiently by the simpler rule.

Bursting is important to enforce the 25% duty-cycle and
thus generate activity differences between the plus and minus
phases of the CHL rule. The skip connection between first-order
processing and the prediction layers allows the representation of
the latter to more accurately match the ground-truth observation
in the plus phase. Thus, without an explicit target signal, the net-
work learns to better predict future inputs. Because subsequent
inputs are governed by causality and are constantly occurring,
the network is also constantly learning to better understand its
environment. This structure can even be repeated for higher-
order processing layers to hierarchically form even deeper, more
abstract predictions of the input space. Future work is needed
to identify an optimal implementation of the CHL rule within
the MZI mesh structure and subsequently employ this style of
self-supervised learning.

IV. PERSPECTIVES AND FUTURE DIRECTIONS

A. Our Future System and Benchmarking

The nanophotonic-electronic spiking neuron is composed of
three main components: a photodetector, a nonlinear electrical
circuit, and a laser. The photodetector receives information from
the synaptic network and converts the optical signal to electrical.
The electrical circuit is the core of the neuron and processes
the inputs to generate output spike responses. The laser output
regenerates signal power after each layer to supply synaptic
fanout to subsequent layers. Our team will exploit attojoule
photonics with quantum impedance conversion [55] and closely
integrate with low-capacitance (< 1 fF ) electronics for mono-
lithic integration on a silicon-on-insulator (SOI) platform. Using
photonic communication between each SNN layer reduces the

capacitive charge associated with the interconnect wires [56]
in comparable electronic circuits. Additionally, the photonic
platform can allow neurons to communicate with other neurons
at high speeds (∼10 GHz) independently of communication
distance.

To calculate the projected energy consumption, we can ex-
amine the composition of each component in the attojoule
nanophotonic-electronic spiking neuron design. The dynamic
energy cost of the nonlinear electronic circuit and laser can
be calculated by examining the transistor on-state currents and
associated operation voltages and frequency. Meanwhile, the
parasitic energy cost can be calculated from the total capacitance
and the leakage current. According to our previous work [37],
the electrical circuit current flow inside the maximum 10GHz
spiking rate attojoule neuron is expected to be 31.27μA at 1.4V
voltage supply when the neuron is in the ON state, while the leak-
age current is 10nA in the OFF state. The expected nanolaser
energy consumption is 4.4 fJ per spike for a fanout of∼ 80 [56].
The parasitic capacitance includes the load capacitance on the
photodetector, membrane capacitor, and transistor gate capaci-
tance. According to the IRDS2020 [57] and [58], we expect the
load capacitance of the photodetector to be around 0.1fF, and
the simulated membrane capacitor to be 0.5fF. By considering
closely integrated nanoelectronics at 10 fJ/bit energy efficiency
and a fanout of 10-100 following the concept outlined by [56],
the minimum dynamic input energy to generate a spike output
is projected to be 200aJ/spike.

For input, the proposed attojoule neuron design will utilize a
low-Q nanophotonic crystal photodetector with a Ge/Si cavity.
The photonic crystal creates a resonant cavity that increases
the confinement of light and reduces the size of the absorption
medium [59], [60]. This allows for an ultra-low capacitance
(∼0.1fF) nano-cavity PD that can generate sufficiently large
voltage without amplification when combined with a high-
impedance load [7]. In addition, minimizing the electrical wiring
between PDs and the nonlinear electronic circuit also reduces
power consumption [56]. Similarly, for spiking output, a hybrid
InAs/AlGaAs quantum-dot nanolaser with a photonic crystal
cavity can be employed.

The main sources of power consumption in the MZI-based
synapses are waveguide loss,2× 2MZI insertion loss, and phase
shifters’ power consumption. While standard silicon waveguide
losses are around 2 dB/cm, SiN waveguides can further improve
propagation loss to 0.45 dB/cm. Similarly SiN platforms can
achieve 0.002 dB per waveguide crossing and 0.037 dB per 90◦

bending [61]. Unlike thermo-optical phase tuning, MOS capaci-
tor (MOSCAP) phase shifters and phase change material (PCM)
based optical phase tuning consume ’0’ mW static power [62].
With MOSCAP phase shifters 0.77 dB per 2× 2 MZI can be
achievable while PCM phase shifters provide <0.3 dB per 2× 2
MZI unit [55].

One of the system-level design challenges is the thermal
crosstalk between photonic and electronic circuits. Photonic cir-
cuits are sensitive the temperature due to optical phase changes.
However, the proposed optoelectronic neuron circuitry is quiet
for most of the response time thanks to the sparse nature of
SNNs. The integrated laser and the MOS transistors are kept
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below the threshold when no spike event exists. Therefore,
low power consumption and heat dissipation are achievable.
Although optical phase tuning inside the interferometry provides
weighting between the spiking neurons, proposed MZIs have
symmetric arms. Therefore, unless the temperature changes are
highly localized, optical power weighting by MZIs remains
stable.

The scalability of interconnect is another critical design chal-
lenge. MZI meshes show nearly lossless multiplication that
is particularly suitable for large-scale low-power neuromor-
phic computing. However, the number of tunable elements,
N · (N − 1) in an N ×N MZI mesh, grows polynomially with
the number of neurons in the layer. As such, a control circuit must
be designed that scales with minimal additional computational
complexity.

B. Footprint Efficiency

In the previous sections, we introduced and experimentally
demonstrated bio-inspired on-chip training methods which im-
prove the scalability of the SiPh MZI meshes for synaptic
networks. We also simulated optoelectronic spiking neurons
in GF 45SPCLO electronic-photonic hybrid platform and en-
visioned a scalable attojoule nanophotonic-electronic neuron
design. However, one handicap of the proposed photonic neuro-
morphic system remains unaddressed: footprint efficiency. From
our experience with commercial SiPh foundries, a 16× 16 MZI
mesh occupies a 12.5mm2 chip area. Similarly, Lightmatter in-
troduced their 64× 64 SiPh AI accelerator occupying a 150mm2

chip area [63], which incorporates billions of transistors. For
context, many fabrication facilities have a reticle limit that
falls between 400mm2 and 800mm2. As such, the increased
size of photonic elements creates challenges for large on-chip
neural networks. To improve footprint efficiency and enable
deep and wide photonic neuromorphic systems, we propose
two solutions: Tensorized Photonic Neural Networks (TPNN),
which can reduce the number of MZIs by a factor of 582x [64],
and 3D Electronic-Photonic Integrated Circuits (3D EPICs) that
support the chiplet design being pushed by industry leaders like
Cadence [65].

1) Tpnn: There are three main methods to avoid over-
parameterized neural networks and relieve hardware require-
ments such as weight pruning, quantization, and model com-
pression [66]. Because photonic NNs are analog computers,
available bit precision is already limited. Unlike electronics, a
photonic system can easily offer all-to-all connectivity through
wavelength and space-division multiplexing. Therefore, the ben-
efits of weight pruning and quantization approaches are not
significant. In contrast, model compression can result in fewer
hardware resources and smaller footprints. We proposed and
simulated an algorithm-hardware co-design approach: photonic
tensorized neural networks [64]. Tensor-Train (TT) decomposi-
tion is a multi-dimensional array processing technique to repre-
sent large matrices in a low-rank approximation [67]. Although
low-rank approximation may cause decreased performance in
NNs, one could train NN models in TT-decomposed format
so that performance degradation is minimized [68]. For some

ML problems, low-rank approximation also serves as a regu-
larization term and improves performance [69]. Moreover, in
the simulations [70], we observed that TT-decomposed MZI
meshes are more resilient to noise and hardware imprecision.
Our simulations and benchmarks demonstrated that TPNN could
improve the footprint-energy-efficiency product by 4 orders of
magnitude by using 79× fewer 2 × 2 MZI units without de-
creasing accuracy below 95% in image classification tasks [62].
Future work will realize a SiPh end-to-end TPNN system
and provide benchmarks for footprint-energy efficiency and
performance.

2) 3D EPIC: 3D electronic ICs (EIC) promise low energy
consumption, low noise, and high density because of shorter
electrical wires [71]. The main enabling technology for 3D
EICs is through-silicon vias (TSV). Although thermal relief and
yield are the challenges, 3D integrated high bandwidth mem-
ories show clear advantages compared to 2D EICs. Similarly,
3D electronic-photonic ICs (EPICs) can achieve high density,
low loss, and high bandwidth performance. Multi-layer silicon
photonic devices are already available in commercial foundries.
However, they rely on evanescent vertical couplers, which re-
quire relatively long taper lengths (∼ 100μm) and small layer
distance (∼ 1μm) [61], [72]. As an alternative, our previous
work demonstrates through silicon optical vias (TSOV) [73],
[74] for 3D EPICS using 45◦ reflectors and silicon vias [74].
Ultrafast laser inscription also allows for freeform shaping of
waveguides useful for routing in three dimensions. This tech-
nique has already been demonstrated for orbital-angular mo-
mentum multiplexing/demultiplexing and optical beam steering
applications [75]. Furthermore, 3D EPICs provide devices to
be stacked vertically, allowing for greater neuron density per
area and thus the design of deeper and wider photonic neural
networks.

C. Applications for SNNs

In relation to AI and machine learning, SNNs provide several
advantages over modern computing paradigms for tasks that
mimic the conditions in which they naturally evolved. Because
SNNs process data over time in a continuous manner, they are
well-suited to applications situated in real-time environments
with single inference and learning instances presented at a time
(such as event-based signal processing [76]). In addition, the
spread of information over time allows multiple forms of mem-
ory at different time scales, similar to the human distinction be-
tween working [77], short-term [78], and long-term memories.
Neuromorphic sensing and robotics are common applications
of SNNs; for example, an adaptive robotic arm controller can
provide reliable motor control as actuators wear down [79]. More
speculatively, future devices might exploit these properties in
the context of live audio and natural language processing for
voice assistants, live-captioning services, or audio separation;
similarly, SNNs can be used for live video and lidar process-
ing in autonomous vehicles or surveillance systems. SNNs are
not ideal for batched computation—in which multiple training
samples are computed in parallel and averaged for parallelism
in training—however, data centers may still make use of the
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increased computational parallelism in tasks like the nearest-
neighbor search, which can be performed in constant time,O(1),
on neuromorphic chips like Loihi [80].

A major challenge of many modern DNN and reinforce-
ment learning (RL) agents is the development of abstract,
transformation-invariant representations of objects relevant to
the task. For example, in classification tasks, a neural network
must transform its input space into a representation that most
clearly separates each labeled class. Similarly, RL agents must
be able to process their input space into a representation that best
accentuates the value of potential actions. Predictive error-driven
learning, modeled after the work of O’Reilly [54], has the
potential to autonomously build deep hierarchies of abstrac-
tion for a given input space. For example, a learning agent
could implicitly learn physical properties of the world—such
as gravity, buoyancy, and contact forces—simply by observ-
ing its environment. Combined with complementary learning
systems for memory [81] and RL models based on the basal
ganglia [82], a neuromorphic learning agent may be capable of
replicating simple navigation and foraging behaviors that require
the flexible application of knowledge and memory. Such a model
could provide key insights for the development of self-motivated
learning agents that exploit hierarchical representations to solve
reinforced tasks. Developing dedicated spiking neuromorphic
hardware and taking advantage of energy-efficient and scalable
photonic devices will allow the development of larger models
and new computational paradigms. These developments can
be applied in dynamic, noisy environments that are not well-
handled by today’s machine learning efforts.

V. CONCLUSION

We have discussed the advantages of dedicated SNN hardware
and highlighted the benefits of nanophotonic-electronic design
within this computational paradigm. Additionally, we argued
that the co-integration of photonic and electronic devices com-
bines the high-bandwidth, low-power communication protocols
of photonics with well-established and flexible CMOS circuitry.
Towards constructing a photonic SNN computing architecture,
we demonstrated an Izhikevich-inspired optoelectronic neuron
design, implemented RPB on an MZI mesh, and simulated
CHL on a rate-coded, MZI-mesh neural network. In addition,
we proposed the construction of a powerful self-learning SNN
computing architecture built from these technologies and based
on predictive error-driven learning models of the human brain.
Subsequently, we have discussed technologies for improving the
scalability of neuron and network density through tensorization
of large neural networks and 3D electronic-photonic integration.
Finally, we discussed perspectives on the suitable applications
of photonic SNNs and emphasized applications of interest for
our efforts.

Future work is needed to establish the optimal design for
brain-inspired spiking networks. Modern ANNs have oversim-
plified neural nonlinearities due to the limitations of the von Neu-
mann computing architecture. Meanwhile, the heterogeneity of
neural behaviors in different regions of the human brain provides
various methods of encoding information. As such, a deeper

exploration of these encodings is warranted to fully leverage
the computing power of SNNs. Furthermore, modern learning
algorithms are designed for sequential processing, which is
not ideal for SNN hardware. As such, considerable work is
necessary to determine the most efficient on-chip implemen-
tation of local learning rules like CHL. Nonetheless, the design
challenges are well worth the effort to provide alternative routes
for continued advances in computation and signal processing
in the face of slowing progress of transistor scaling. Our con-
tinued work will focus on the characterization and design of
nanophotonic-electronic spiking neurons and their incorporation
within scalable, MZI-based neural networks capable of on-chip
local learning.

APPENDIX

RBP ALGORITHM

Algorithm 1: Random Backprop on SiPh MZI Mesh.
1: Initialize resistor values R, accuracy limit L, total

number of samples N , MZI voltages v−1MZI , error
e−1 =∞, coarse and fine step sizes μc, μf , start with
coarse search μ← μc„ random backprop weights
B ∼ [−μ, μ]

2: for Every epochdo
3: for k = 0 through Ndo
4: Find input generator voltages vk

in for xk in LUT
5: Read input generator’s PDs to verify xk

6: Read output PDs vout

7: Calculate photocurrent iout = (vdd − vout)/R
8: Normalize iout to calculate ŷk

9: Calculate error ek = |ŷk − yk|2
10: if ek > ek−1then
11: Draw a new B ∼ [−μ, μ]
12: end if
13: Update vk

MZI ← vk−1
MZI +Bek

14: end for
15: Calculate interference accuracy a
16: for Every sample xk do
17: Find input generator voltages vk

in for xk in LUT
18: Read input generator’s PDs to verify xk

19: Read output PDs vout

20: Calculate photocurrent iout = (vdd − vout)/R

21: Decide class label l̂k = argmax
n

iout[n]

22: end for
23: a = sum(̂l == l)
24: if a ≥ L then
25: Switch to fine search μ← μf

26: end if
27: end for
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