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GHz Rate Neuromorphic Photonic Spiking Neural
Network With a Single Vertical-Cavity
Surface-Emitting Laser (VCSEL)

Dafydd Owen-Newns, Joshua Robertson

Abstract—Vertical-Cavity Surface-Emitting Lasers (VCSELs)
are highly promising devices for the construction of neuromorphic
photonic information processing systems, due to their numerous
desirable properties such as low power consumption, high modu-
lation speed, and compactness. Of particular interest is the ability
of VCSEL:s to exhibit neuron-like spiking responses at ultrafast
sub-nanosecond rates; thus offering great prospects for high-speed
light-enabled spike-based processors. Recent works have shown
spiking VCSELSs are capable of tackling pattern recognition and
image processing problems, but additionally, VCSELs have been
used as nonlinear elements in photonic reservoir computing (RC)
implementations, yielding state of the art operation. This work
introduces and experimentally demonstrates for the first time a
new GHz-rate photonic spiking neural network (SNN) built with
a single VCSEL neuron. The reported system effectively imple-
ments a photonic VCSEL-based spiking reservoir computer, and
demonstrates its successful application to a complex nonlinear clas-
sification task. Importantly, the proposed system benefits from a
highly hardware-friendly, inexpensive realization (a single VCSEL
device and off-the-shelf fibre-optic components), for high-speed
(GHz-rate inputs) and low-power (sub-mW optical input power)
photonic operation. These results open new pathways towards fu-
ture neuromorphic photonic spike-based processing systems based
upon VCSELSs (or other laser types) for novel ultrafast machine
learning and AI hardware.

Index Terms—Vertical cavity surface emitting lasers,
semiconductor lasers, artificial neural networks, neural network
hardware, spiking neural network, photonic reservoir computing.

1. INTRODUCTION

NFORMATION processing platforms, inspired by biologi-
I cal neural networks, are at the forefront of both academic and
industrial research as major efforts are being made to improve
the energy efficiency and speed of machine learning and artificial
intelligence (AI) hardware. These so-called neuromorphic sys-
tems, are being developed as alternative (non-Von Neumann)
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processing architectures, and make use of artificial neurons
and artificial neural networks (ANNs) to perform brain-inspired
information processing. ANNs are highly parallel systems that
use layers of multiple nodes (neurons) to efficiently realize
nonlinear transformations which, once trained, can be used to
perform complex processing tasks [1]. With the push for higher
energy efficiencies and faster operating speeds, the attractive
properties of the photonic platform (e.g. large bandwidths,
low cross-talk, low power consumption and ultrafast speeds)
have drawn increasing interest from the research community
searching for novel light enabled neuromorphic processing
systems [2].

Impressively, despite the recent emergence of the field of
neuromorphic photonics, multiple reports of photonic ANN
accelerators, based on technologies such as micro-ring weight
banks [3], [4], [5], modulators [6], and phase change mate-
rials [7], [8], amongst others, have been produced, realizing
systems capable of multiple different processing tasks. Yet, a
quintessential photonic device -the semiconductor laser- has
seen a significant and increasing amount of research attention,
in part thanks to its capability to provide dynamical behaviours
suitable for individual artificial neurons, as well as for ANN
implementations (see [9] for a review). More specifically, one
type of semiconductor laser, the Vertical Cavity Surface Emitting
Laser (VCSEL), has recently demonstrated the capability to
operate both as an ultrafast artificial photonic spiking neu-
ron [10], [11], [12] and as the key-nonlinear element in photonic
ANN realizations, through the technique of reservoir computing
(RC) [13], [14], [15].

Importantly, thanks to their compact structure, vertical light
emission, low cost and technology maturity, VCSELs are ubig-
uitously deployed in our society for disparate industrial uses,
spanning from automotive sensors, to supermarket bar code
scanners and telecommunications, just to name a few. However,
their investigation as potential candidates for photonic artificial
neurons for brain-inspired computing systems has been building
over the past few years. Their unique attributes (e.g. high modu-
lation speeds, low energy operation, reduced costs, compactness,
high coupling efficiency to optical fibres, ease of integration in
2-dimensional arrays, etc. [16]) make them exciting candidates
for fast, low energy neuromorphic hardware elements. Most
interestingly, these devices have produced multiple dynamical
behaviours analogous to those exhibited by biological neurons
in the brain. It has been shown that off-the-shelf VCSELs
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can be made to elicit fast (100 ps-long) action potential-like
spiking responses at high (GHz) rates [17]. Further, additional
reports of neuron-like properties, such as threshold-and-fire
operation [10], spike inhibition [11], spike rate-encoding and
refractoriness [12], now place VCSELs as highly promising
candidates for the realization of photonic artificial spiking
neurons.

Moreover, beyond the promising realization of single artificial
photonic neurons, VCSEL-based ANNSs, developed through a
technique commonly known as reservoir computing (RC), have
recently appeared in literature [13], [14], [15]. The RC technique
uses the fixed internal connections of non-linear systems (such
as VCSELs) to create what is known as a reservoir. This can
be treated as an ANN that utilises the intrinsic processing
capability of the dynamical system to perform machine learning
functionalities. The fixed internal connections of the reservoir
mean that only the output weights of the ANN require calcu-
lation; hence significantly improving the speed and efficiency
of network training [18]. Within the concept of RC are extreme
learning machines (ELMs) [19]. ELMs are purely feed-forward
neural networks that operate on the same principles of a fixed
reservoir of nodes, and a single output layer that needs train-
ing. The simplified architecture and training procedure makes
the implementation of RC/ELM systems in photonic hardware
highly desirable, and now photonic platforms based on numer-
ous devices [14], [15], [20], [21], [22] (also recently including
VCSELs), have successfully performed information processing
tasks such as image classification, time series prediction and
signal conditioning with state of the art performance. However,
to date neuromorphic photonic systems, such as laser-based
photonic reservoir computers, have not demonstrated spiking
neural network (SNN) architectures using excitable neural-like
spikes for information processing.

This work combines for the first time the concept of artificial
photonic VCSEL-based spiking neurons with that of photonic
RC, to create a radically-new photonic neural network archi-
tecture using fast (sub-ns) excitable optical spikes to process
information. The proposed architecture, based on the RC/ELM
paradigm, delivers a virtual photonic neural network of >1000
spiking nodes (at 250 ps/node), creating an ultrafast SNN that
also boasts a hardware-friendly platform using only a single
VCSEL for the (spiking) reservoir. We report the successful
application of this VCSEL-based SNN in a complex nonlinear
classification task (Fisher’s Iris flower classification) achieving
>97% accuracy. These results offer exciting prospects for novel
VCSEL-based SNNs for future cheap, low-energy, high-speed
and hardware-friendly photonic neuromorphic computing plat-
forms.

In this paper, we first provide in Section II an introduction
to the recent experimental reports of VCSEL-based neuromor-
phic processing systems. In Section III we next describe the
technique and characteristics of the experimental layout devel-
oped to implement the novel VCSEL-based SNN architecture
for photonic spike-based RC. Further, in Section III we then
describe the complex nonlinear task (classification of Iris flower
species) selected to demonstrate the successful performance of
the system, and report the effect of altering system parameters
(such as the number of network nodes) on the performance of
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the spike-based RC system. Finally, in Section IV we provide
the conclusions of this work.

II. VCSELS FOR NEUROMORPHIC PROCESSING SYSTEMS
A. Information Processing With Spiking VCSEL Neurons

VCSELs operating at key telecom wavelengths (1300 nm and
1550 nm) have in recent years generated reports of neuron-like
behaviours (e.g. spike activation and inhibition, refractoriness,
threshold-and-fire, integrate-and-fire, etc.) with their potential
use as artificial spiking photonic neurons having been out-
lined [10], [11], [12], [17]. Therefore, these early works have
since opened the way for new reports of spiking VCSEL neurons
capable of brain-inspired processing tasks (e.g. temporal pattern
recognition and image edge feature detection) [23], [24], [25],
[26], [27], [28]. The first experimental processing task per-
formed by a spiking VCSEL neuron was the coincidence detec-
tion of two input pulses and the subsequent recognition of 4-bit
input patterns [23]. In this report VCSEL neurons were found to
behave analogously to integrate-and-fire neuronal models that
combine the influence of multiple inputs arriving within a short
temporal window (approx. 1 ns). It was found that the VCSEL
neuron only triggered a fast 100 ps-long spiking response when
a sufficient number of sub-threshold inputs occurred within
a short integration time. Using this neural-like behaviour, a
VCSEL neuron then demonstrated that coincidence detection
(within a short sub-ns temporal window) could be performed
with fast optical inputs, realizing all-optical spike-based alarm
triggering [23]. The recognition of 4-bit input patterns (see
Fig. 1(a)) was then demonstrated using the hardware-friendly
single spiking VCSEL neuron system. Different 4-bit binary (1
or 0) input patterns at fast 80 ps/bit rates, were time multiplexed
into bursts of input pulses, weighted by a user defined set of
weights, and injected into the VCSEL neuron. The < 1 ns-long
input pulse bursts were then integrated by the VCSEL neuron,
triggering spikes for the recognition of target patterns only. The
system achieved high recognition efficiencies for 14 different
patterns of 1, 2 and 3 active bits. These experimental results
showcased for the first time that the neuronal behaviours of VC-
SELs could be harnessed and implemented in order to achieved
an experimental optical spike-based pattern recognition task at
near GHz rates. Similarly, spiking VCSEL neurons subject to
dual modulated optical injection have been used to experimen-
tally achieve all-optical XOR classification functionality, similar
to the behaviour of biological pyramidal neurons [24].

More recently, artificial spiking VCSEL neurons have also
been implemented to realize image processing tasks, such as
image edge-feature detection [25], [26]. In this process, kernel
operators are used to pre-process digital images before injecting
them into the VCSEL neuron, which triggers fast (100 ps-long)
optical spikes for the desired target feature. It was shown that
by combining multiple kernel operators the image gradient
magnitude could be extracted, subsequently detecting all edge
features in a single run of the image at the high rate of 1.5 ns
per pixel [25]. Further, a binary convolution approach using
again a single VCSEL neuron, was shown to calculate image
intensity gradients with high processing efficiency and low
power requirements, all with a hardware-friendly system [26].
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Fig. 1. Examples of information processing with a spiking VCSEL neuron. (a)

4-bit pattern recognition with a spiking VCSEL neuron. Input binary patterns
are weighted and optically encoded into the injection of the VCSEL neuron.
The VCSEL neuron triggers a fast spiking response for the target pattern (C
1001). (b) Image processing with a spiking VCSEL neuron. The integrate-and-
fire edge detection of 5000 MNIST handwritten digit images was performed in
combination with a SNN reaching a classification accuracy of 96.1%. (c) The
spike rate encoding and decoding of image colour channels and the final spike
rate reconstruction. (a)—(c) Reprinted with permission from [23], [27], [28],
under the terms of the Creative Commons CC BY license.

Similar single VCSEL neuron systems have also reported the
capability to rate-code the pixel colour information of RGB
images in the (GHz) firing rates of optical spike trains [28]. The
demonstration, shown in Fig. 1(c), used the input-dependent
spike rate of the VCSEL neuron to assign different colour
intensities a spike firing frequency. This created a spike-timing
dependent information encoder that converted an RGB image
into fast (sub-nanosecond) spike trains. The reconstruction of
the image was performed (Fig. 1(c)) to demonstrate the po-
tential for spike-based image encoding and processing. Finally,
edge-feature detection and classification of MNIST handwritten
digits was recently reported with a single experimental spiking
VCSEL neuron working together with a software-implemented
SNN [27]. In this demonstration a total of 5000 images were
processed using the VCSEL neuron and 6 symmetrical kernels,
identifying edge features with fast spiking responses (Fig. 1(b)).
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Fig. 2. Information processing with a VCSEL-based time-delay reservoir
(TDR). (a) Schematic of a TDR built using a single VCSEL and a feedback
loop. The output of the VCSEL is time-multiplexed to create virtual nodes.
Nodes are sampled, weighted and combined to provide the system readout.
(b) The performance of a VCSEL-based RC system on a chaotic timeseries
prediction task. The normalised mean square error (NMSE) is plotted for parallel
and rotated polarization configurations at multiple VCSEL bias currents (/).
Overall low error performance with an NMSE = 0.012 was achieved for a
parallel-polarization configuration. (b) reproduced A©2022 IEEE. Reprinted,
with permission, from [14].

The generated optical spike trains were then directly fed into the
software-implemented SNN which provided a classification of
the hand-written digits, achieving an average classification ac-
curacy of 96.1% [27]. These demonstrations therefore highlight
a few recent reports of promising spike-based image processing
systems built using hardware-friendly neuromorphic VCSELSs.

B. Information Processing With VCSEL-Based Photonic
Reservoir Computers

Another promising avenue for VCSEL-based information
processing systems, that has recently received pressing research
attention, is photonic reservoir computing (RC). Unlike spiking
photonic neuromorphic systems, photonic RC systems do not
rely on neural-like signals for operation. Instead, laser-based RC
systems use the inherent nonlinear dynamical responses of lasers
(VCSELs in this case) subject to external optical injection and/or
feedback to process information. Recently, VCSEL-based RC
systems have been demonstrated on two different experimental
architectures, namely time delay reservoirs (TDRs) [13], [14],
[29], [30] and spatial-temporal reservoirs [15], [31]. Approaches
based on the TDR architecture (shown in Fig. 2(a)) create an
interconnected network of virtual nodes using a single VCSEL
and an optical delay line (round trip time 7). Input information
is first weight-masked and optically injected into the VCSEL,
which acts as a non-linear element transforming inputs and
feedback signals continuously. The continuous intensity output
of the VCSEL is then sampled at set periods () to read the
output state of each individual virtual node (NN, total nodes).
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Finally, a set of output weights are applied to the nodes before
each is linearly combined (X) into the final output state of
the reservoir. In these TDRs, the nodes of the network are all
internally connected given 6 occurs on a timescale smaller than
the (VCSEL’s) non-linearity [32]. The 7-long feedback loop
in the system works to create memory, providing additional
network connections across time [33]. It has been shown that
these VCSEL-based TDRs not only provide a hardware-friendly
solution to photonic RC systems (using only a single non-linear
element), but in fact deliver state of the art performance at
benchmark classification and time series prediction tasks [13],
[14], [29], [30]. It was also found that the intrinsic polarization
properties of VCSELSs provided additional avenues to enhanced
performance via the control of light polarization in both injection
and feedback channels. This feature of VCSEL-based TDRs has
since been investigated, as shown in Fig. 2(b), revealing that the
performance of tasks like the chaotic Mackey-Glass time series
prediction, can be significantly improved given the appropriate
polarization configuration [14]. Furthermore, the polarization
properties of these systems has also been exploited to demon-
strate parallel processing, completing two non-linear channel
equalisation tasks with a single VCSEL [13]. VCSEL-based
TDRs are therefore extremely powerful and hardware-friendly
neuromorphic processing tools.

VCSEL-based spatial-temporal reservoirs implement individ-
ual nodes as physical points in space (spatially-multiplexed).
In a recent first report [15], a spatial-temporal reservoir based
on a large area VCSEL (LA-VCSEL) was showcased. Here,
the light output from different points on the surface was
spatially-multiplexed creating the individual network nodes,
which were interconnected via surface carrier interactions and
optical diffraction. This LA-VCSEL-based system achieved low
error performance during a 3-bit binary header classification task
and a further report was generated studying the ideal conditions
for reservoir operation [31]. Overall, these reports demonstrate
that VCSELSs offer an exciting platform for photonic RC systems
using the inherent nonlinear dynamical behaviours produced in
these devices, yielding high performance across diverse complex
tasks (non-linear channel equalisation, time series prediction,
etc.) in different architectures.

III. PHOTONIC SNN ARCHITECTURE FOR IMPLEMENTING A
PHOTONIC SPIKING RESERVOIR COMPUTER

A. VCSEL-Based SNN Structure and Experimental Setup

As previously outlined, reservoir computers and ELMs are
two similar types of ANNs whose structures are recurrent (RC)
and feed-forward (ELM). These ANNSs each host a hidden layer
of interconnected nodes whose weights and parameters do not
need to be adjusted, leaving only the single output layer requiring
training [18], [19]. The structure of ELMs are therefore close to
those of reservoir computers, but lack any feedback connections
or recurrence. As pointed out in Section II-B, VCSELs have
demonstrated they are ideal candidates for photonic RC (or
ELM) systems given their nonlinear dynamical behaviours and
inherent advantages (e.g. compactness, high speed, low-energy,
reduced costs, etc). In parallel, as reported in Section II-A,
VCSELSs can operate as artificial spiking neurons as they exhibit

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

(@) SNN Setup

PS AMP AWG
<1

<

veseL a
cC

(b)  SNN Reservoir computing

Data spiking
node

Nv: 4

non-spiking
e

® nod
Mask

Output

VCSEL

Output
Weights
S — >

Fig.3. Experimental setup and SNN operation. (a) The experimental setup for
the spiking reservoir computer/SNN. An external Tuneable Laser (TL) injects
intensity-modulated light into the VCSEL via an optical coupler and circulator.
Injection light polarization is controlled by polarization controllers (PCs). The
masked input signals are generated by an arbitrary waveform generator (AWG)
and amplified electrically (AMP) before entering the DC power supply (PS)
-controlled Mach-Zehnder intensity modulator (MZ). The optical spiking signals
produced by the VCSEL are analysed using a 16 GHz oscilloscope (OSC)
and a optical spectrum analyser (OSA). (b) The operation of the spiking RC
system. Input data is multiplied by a random mask before injection into the
VCSEL. The VCSEL is operated near the injection locking boundary where
inputs can produce non-linear spiking responses. Inputs occurring within the
refractory period/non-linear timescale of the spiking dynamics (~1 ns) are
internally connected, hence producing unique spiking patterns at SNN output.
The virtual nodes are measured from the optical output of the VCSEL at intervals
of 6 (0 = 250 ps), internally connecting 4 sequential virtual nodes. The output
weights are applied to each node and linearly combined to provide the readout
of the reservoir.

nonlinear neural-like behaviours (e.g. leaky-integrate and fire
responses and refractoriness). Remarkably, in the same way it is
performed in VCSEL-based TDR systems [14], the neuron-like
responses in spiking VCSELs also permit the coupling of multi-
ple time-multiplexed virtual nodes for the creation of complex,
interconnected ANN structures. The coupling of virtual nodes
in this way (via time-multiplexing) is possible if the temporal
duration of the nodes () is set shorter than the time-scale of the
neuronal spiking non-linearity (approx. 1 ns in the investigated
VCSELSs [28]). Importantly, the coupled time-multiplexed nodes
now deliver spike firing responses instead of a continuous output,
thus using truly neural-like signals for operation. Using this
technique (depicted graphically in Fig. 3(b)), a single VCSEL
can deliver a system of coupled spiking neurons (with sub-
nanosecond temporal operation) effectively yielding a novel
photonic SNN architecture, operating as a spiking photonic
RC platform. Unlike previous VCSEL-based RC reports [14],
this system (shown in Fig. 3(b)) has no recurrent/feedback
connections, thus will operate as a photonic spiking ELM which
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only requires the hardware implementation of a single spiking
VCSEL. In this approach, the input signals entering the VCSEL-
based SNN (spiking photonic RC system) are chosen (for this
proof-of-concept demonstration) to be analogous to those used
previously in traditional non-spiking laser-based photonic RC
systems (i.e. continuously modulated light input) [14]. Yet, we
believe operation with other types of input signals (such as
pulsed or spiking inputs) should also be possible and will be
investigated in the future. Importantly, now (as seen in Fig. 3(b)),
the signals used for computation (at the output of the VCSEL-
based reservoir) are event-based (sub-nanosecond long optical
spikes) and binary. The value of the system’s output nodes
are directly determined by the firing (binary ‘1’) or non-firing
(binary ‘0’) of a short 150 ps optical spike within the timeframe
0 of the virtual node. This removes the down-sampling or
smoothing operations often performed during continuous value
readouts in other non-spiking RC systems. Further, the lack of
feedback grants additional stability to the SNN system, as well
as performance flexibility, with the number of virtual nodes
selected without consideration of hardware manipulation.

The experimental setup used to build the VCSEL-based SNN
(a spiking photonic RC system) is shown in Fig. 3(a). This
all-optical fibre setup consists of a 1300 nm tuneable laser (TL)
whose output is externally modulated by a Mach-Zehnder (MZ)
intensity modulator. The modulated TL light’s is subsequently
optically-injected into an off-the-shelf 1300 nm VCSEL oper-
ating as the spiking photonic RC system. The optical injection
power is measured using a power meter (PM) and the corre-
sponding output of the VCSEL-based SNN and spiking RC
system is measured using an optical spectrum analyser (OSA),
a fast (>9 GHz) amplified photodetector and a high-speed
(16 GHz) real-time oscilloscope (OSC). An arbitrary wave gen-
erator (AWG) operating at 12 GSa/s generated the input wave-
forms to the spiking RC system. The output signals of the AWG
are amplified with a 14 GHz electrical amplifier (AMP) before
their injection into the RF input of the MZ modulator, which
encodes the input waveforms into the TL’s light. The DC bias
input of the MZ is set using a power supply (PS). The 1300 nm
VCSEL used in the experiments had a measured lasing threshold
current of 1.4 mA at room temperature (293 K). The VCSEL’s
spectrum showed two peaks, corresponding to the two orthogo-
nal polarizations of the fundamental transverse mode of the de-
vice (see [10] for exemplar device spectral characteristics). The
polarization of the TL’s injected light is matched to that of the
subsidiary attenuated mode of the VCSEL (using Polarization
Controllers, PCs) and injected such that the VCSEL injection-
locks to the TL’s light emission. Under these conditions, as
described in detail in previous works (see for example [10] and
references therein) the VCSEL can be made to fire fast optical
spikes in response to intensity modulated optical injection. This
neural-like behaviour is used here to develop a first spiking
photonic RC system, in which the spiking patterns elicited in
the VCSEL will depend on the specific input data waveforms.

B. Nonlinear Classification Task Operation

The task selected to demonstrate the performance of the new
photonic VCSEL-based spiking RC system is that of Fisher’s
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Fig. 4. Scatter plot of Fisher’s Iris data used in the classification task [35].
One class (Setosa) is linearly separable, the other two (Versicolor & Virginica)
are less easily separable.

1936 iris flower dataset, a well-known benchmark Machine
Learning classification task [34]. Each data point in this dataset
(plotted in Fig. 4) has 4 variables, representing the dimensions
of particular features (the sepal and petal lengths and widths) of
multiple Iris flower specimens, and includes a total of three iris
species/classes (Setosa, Virginica & Versicolor). The dataset is
made up of 150 different flower specimens (50 of each species)
with only one of the three species linearly separable from the
others by the provided variables. Using the 4 variables, namely
Sepal Length (SL), Sepal Width (SW), Petal Length (PL) and
Petal Width (PW), as inputs for the spiking RC system, we
can effectively create an SNN architecture (depicted in Fig. 5)
capable of classifying the 150 Iris flowers into their respective
3 species. As in more traditional laser-based TDRs for photonic
RC systems, we make use of time division multiplexing (TDM)
to create the spiking (virtual) nodes in the proposed VCSEL-
based spiking RC system. Sampling the temporal spiking output
of the VCSEL at time intervals of 6, provides the spiking or non-
spiking output state of each node in the SNN. These nodes are
interconnected by the system’s neural-like dynamics (e.g. leaky
integrate-and-fire behaviour, refractory period), which occur on
timescales around 1 ns [12]. Hence, using a spiking node dura-
tion @ lower than 1 ns allows neighbouring nodes to influence
one another, creating fixed network connections and therefore
forming an SNN architecture with a single VCSEL system.
Additionally, unlike many previous realizations of laser-based
TDRs, in our SNN architecture, in which we strategically chose
not to configure recurrent/feedback connections, the number of
spiking nodes (V) is flexible, and can be defined and modified
at will. Hence, in our proposed system, the number of nodes
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Fig. 6. The preparation of the SNN input. The input value for each virtual
spiking node is calculated by multiplying the vector of each data point (sepal
length (SL), sepal width (SW), petal length (PL) and petal width (PW)) by a
random matrix (mask) of length NV,,.

can be tuned by simply modifying the temporal length and
characteristics of the input data waveforms injected into the
VCSEL-based photonic spiking RC system. This simple, yet
powerful approach allows us to scale the number of spiking
nodes in the photonic SNN as required for different tasks and/or
desired performance requirements, while maintaining a highly
hardware-friendly single-VCSEL system.

Fig. 6 shows how the data is prepared for injection into the
VCSEL-based spiking RC system. First a random input weight
matrix (mask) is created with 4 columns and as many rows
as spiking nodes (/V,) in the SNN. This matrix multiplies a
column vector whose components are the 4 Iris flower data
point variables (SL, SW, PL, PW), giving a final vector (with
N, components). This vector configures the inputs that are
generated by the AWG, encoded in the TL’s light output by
the MZ modulator, and optically-injected into the photonic
VCSEL-based spiking RC system. Each data point (flower input)
is applied the same input weight mask and all 150 flower data
points are concatenated in series (as shown in Fig. 7(a)), with
all Setosa Iris flower species directly followed by the Versicolor
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Fig. 7. (a) Section of time series containing the prepared SNN input of all

150 masked data points. The input data points are concatenated by species and
separated by 2 ns. Input shown is for 512 virtual nodes. (b) Highlighted red
section containing the SNN input of flower number 1. SNN input has been
resampled for AWG generation (12 GSa/s - 3 samples per ). (c) The recorded
output timeseries of the SNN, showcasing the spiking pattern obtained for flower
number 1.

and Virginica species. Fig. 7(b) shows an expanded section of
the input waveform in Fig. 7(a)), which represents a single input
data point (flower number 1) for the photonic spiking RC system.
Time-periods of no input modulation (lasting 2 ns) are added
between each data point (between different flowers) to allow the
VCSEL to reach equilibrium between consecutive data inputs
(consecutive flowers). These can be seen as the minima values
in the input waveform of Fig. 7(a)), and more clearly after the
input data for flower 1 (at approx. SNN Input y = 2.85 x 102,
time = 550 ns).

The optical output of the VCSEL, representing the output
states of all the spiking nodes in the photonic SNN, is recorded
with a real-time oscilloscope (OSC). Fig. 7(c) shows the mea-
sured optical output from the VCSEL for the same time segment
of input data (flower number 1) included in Fig. 7(b). The output
from the VCSEL-based photonic spiking RC system takes the
form of a fast temporal optical spiking pattern (see Fig. 7(c)),
showing multiple (sub-ns long) excitable neuron-like spikes
occurring at the output of the different (virtual) spiking nodes
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of the proposed SNN architecture. To detect which nodes have
fired spiking responses the recorded output is cut into bins of 0
(such that there are V,, bins). If the peak power in a bin exceeds
the chosen spike threshold, that bin is taken to contain a spike.
This process creates a vector of binary (spike & no-spike) values
that are used to produce, using linear-least-squares fitting, the
weight matrix of the output layer of the photonic spiking RC
system.

C. Experimental Performance of the Photonic Spiking
Reservoir Computer

The VCSEL-based SNN implementing the photonic spiking
RC system, was configured to run with a spiking virtual node
duration of = 250 ps. Two different configurations with distinct
numbers of virtual nodes, namely N, = 512 and N,, = 1024,
were tested. In each of these two cases the same procedure
was followed at all times, with the only difference being the
total duration of each input data point, namely 128 ns/point
(for the 512 nodes SNN) and 256 ns/point (for the 1024 nodes
SNN). This permitted not only to demonstrate experimentally
the successful operation of the photonic spiking RC system of
this work, but also to evaluate the system’s performance for
different numbers of nodes in the generated SNN.

When testing the system with 512 spiking nodes, the VCSEL
was driven with a bias current of 4.02 mA (approx. 2.9 times the
device’s lasing threshold current) and at a constant temperature
of 293 K. The optical injection from the TL was made with
181 W average optical power and an initial frequency detuning
of —1.1 GHz between the externally-injected optical signal and
the resonance of the VCSEL's subsidiary polarization mode. For
the system test with 1024 spiking nodes, the driving bias current
applied to the VCSEL was equal now to 3.92 mA (approx. 2.8
times the lasing threshold current), and the optical injection was
performed with a 159.4 W average optical input power at a
frequency detuning of —3 GHz between the resonant frequency
of the TL’s light and the VCSEL’s subsidiary attenuated mode.
Near-identical spiking regimes were obtained using each set of
experimental conditions, allowing for consistent photonic SNN
operation on different experimental runs. The stability of the
system against changes in environment (e.g. ambient tempera-
ture) and system parameters was determined by the stability of
the spiking regime, which is described in previous works [10].

Fig. 8 plots the experimentally measured temporal maps of
all the optical spike patterns produced at the output of the
VCSEL-based SNN in response to all 150 data points in the
Fisher’s Iris flower dataset. Temporal maps are plotted for both
tests of 512 (Fig. 8(a)) and 1024 (Fig. 8(b)) spiking nodes. In
the temporal maps of Fig. 8, the nodes that displayed (did not
display) a spike firing event are plotted in green (black). The
temporal maps show that for both cases investigated, each data
point (each input flower specimen) produces a characteristic
response with distinct spiking patterns shared across flowers
of the same species (class). The results in Fig. 8 reveal (for
the cases with 512 (fig. 8(a) and 1024 neurons), that specific
spiking patterns arise in the system’s response to each flower
species, with selected nodes firing and others remaining silent
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Fig. 8.  Spike patterns produced by the SNN for all 150 flower data points (50

of each species). The system was tested using (a) 512 and (b) 1024 virtual nodes,
with each input flower producing a different spiking pattern. Green represents
the presence of a spike within the virtual node.

consistently. This can be better seen by the naked eye for the
case of 512 neurons, given its shorter overall temporal scale, but
also to a certain extent in the figure depicting the results for the
case of 1024 neurons. Building on these arising spiking patterns
in the system’s response the training algorithm used in this work
can produce the classification of the different flower species with
high accuracy.

By interpreting the output state of each spiking (virtual) node
in the photonic SNN, the weights of the output layer were trained
using a linear-least-squares fit. The data used for training was
arranged into two matrices: a first matrix in which the rows were
the spiking patterns produced by each data point, and a second
matrix with three columns to label the data (i.e. a value of ‘1’ in
the first, second or third column denotes the data point as classes
‘17, “2’, and ‘3’, respectively). The output layer weight matrix
W is therefore sought in such a way that solves (with the least
square error) the equation:

S«W =1L, (1)

Where L is the label matrix and .S corresponds to the matrix
generated from the spike patterns obtained at the output of the
VCSEL SNN. In S the (virtual) nodes with and without elicited
optical spikes are represented by binary ‘1’ and ‘0’ values,
respectively. W is the weight matrix for the output layer of
the spiking RC system (formed by the VCSEL SNN). This can
be calculated directly from the product of the Moore-Penrose
inverse of S and L, giving a matrix with IV,, rows and 3 columns
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Fig. 9. Confusion matrix for the Iris flower classification task using (a) 512,
and (b) 1024 spiking (virtual) nodes in the VCSEL-based SNN implementing
the photonic spiking RC system. A training set of 10 data points was used for
each class.

(W = ST x L). Subsequently, by multiplying the output weight
matrix W by the spiking pattern produced by the SNN in re-
sponse to a new input data point, we produce a triplet containing
the probabilities that the data point belongs to each of the three
Iris flower classes.

Training was done using an equal random selection of data
points from each of the three (Iris flower) classes, with the
remaining points used to test the accuracy of the VCSEL SNN
(photonic spiking reservoir computer). Fig. 9 provides confusion
matrices obtained from the VCSEL SNN (with 512 or 1024 spik-
ing nodes) when performing the Iris flower classification task.
The confusion matrices in Fig. 9 were obtained for a training
set size of 30 (10 of each flower class) and a test set size of 120
(40 of each flower). Fig. 9 shows the VCSEL-based photonic
spiking reservoir’s very good performance of the Iris flower
classification task. Specifically, Fig. 9(a) shows that the SNN
correctly classifies almost all of the flower data points yielding an
average classification accuracy (correct classifications divided
by the number of test points) of 0.917. Notably, Fig. 9(b) reveals
that once the number of nodes in the photonic SNN is increased
to 1024, the spiking RC system correctly classifies all 120 tested
data points, reaching full accuracy.

Further, we investigate the performance of the VCSEL-based
SNN when different training set sizes are applied to both con-
figurations of 512 and 1024 virtual spiking nodes. Here we
determine the ideal training dataset size that will allow for the
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error for runs of both (a) 512 and (b) 1024 spiking (virtual) nodes are shown.
Faint lines represent several experimental runs of the VCSEL-based photonic
SNN, the dark blue solid line represents the average error. This error is calculated
as the number of points incorrectly classified out of the total number of points
tested.

performance optimization of the nonlinear classification task.
The curves plotted in Fig. 10 provide the system’s classification
error obtained across 10 different experimental runs for both
cases of 512 and 1024 spiking (virtual) nodes. The calculated
average error in each of the two cases is given by the dark blue
solid line (see Fig. 10). For both cases, Fig. 10 shows that as
expected, at first for very small training dataset sizes (up to 3
points) the system’s error is very high. However, remarkably,
the system’s performance improves drastically in both cases for
very small training set sizes (from values as low as >5 training
points), reaching classification error minima at around training
setsizes of 10. The error remains very low for increasing training
dataset sizes, increasing slightly for very large training dataset
sizes (>25-30 training data points). This increase in error can be
explained from the reduced size of the test dataset (as the training
dataset size increases). Here, just one or two classification errors
will have a larger effect on the total error of the system. For
both cases investigated, very high performance is obtained, with
classification accuracies remaining consistently over 90% and
97% when the VCSEL SNN is configured with 512 or 1024
spiking nodes (node numbers outside this range are not partic-
ularly useful for the specific task selected for proof-of-concept
demonstration with the photonic SNN of this work: reducing
the nodes number below 512 results in the attainment of lower
accuracy levels, whilst increasing the node count above 1024
does not improve the very high accuracy already achieved).
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Therefore, the successful operation of a complex nonlinear
classification task is demonstrated by the photonic spiking RC
system of this work. Notably, very high performance (>97%
classification accuracy) is obtained using a system with highly-
reduced hardware complexity (which uses a single off-the-
shelf, telecom VCSEL), low energy requirements for operation
(~100 s of uWs optical input power signals and a few mAs
of applied bias current) and ultrafast speed operation (250 ps
spiking node separations and approx. 100 ps-long optical spikes
for computation). Moreover, the proposed VCSEL-based SNN
architecture permits to modify at will the number of coupled
spiking virtual nodes, configuring the photonic spiking RC
system depending on the complexity of the task to be performed
and the desired levels of performance. The performance of our
proposed single-VCSEL SNN compares positively to recently
reported traditional (continuous) photonic RC systems [36]
when attempting the same benchmark (Iris flower) classifica-
tion task in terms of accuracy, power requirements and opera-
tional speed. Additionally, our VCSEL-based SNN, thanks to
its unique operation with ultrafast (approx 100 ps-long) spikes
for computation, removes any requirement for smoothing and
down-sampling [36] when obtaining the readout of virtual nodes.

IV. CONCLUSION

In summary, we report and experimentally demonstrate for
the first time a photonic Spiking Neural Network (SNN) built
with just one VCSEL. Our technique, merging in the same
platform the excitable spiking dynamics of artificial photonic
(VCSEL-based) neurons with the RC/ELM paradigm, describes
a radically new class of photonic RC system using neural-like
optical spikes to compute (thus yielding a truly neuromorphic
photonic processor). In our approach, the optical spiking output
of the VCSEL RC system is time-multiplexed into multiple
temporal spiking virtual nodes. This creates a photonic SNN
with the spiking nodes interconnected through the non-linear
integrate-and-fire and refractory dynamics of the excitable neu-
romorphic (spiking) responses elicited by the VCSEL. We re-
veal the successful operation of this first photonic spiking RC
system on a complex nonlinear classification task. Notably,
very high accuracy was achieved (>97%) in the so-called Iris
flower classification task, thus showcasing its powerful com-
putational performance. It is also important to mention that
the spiking photonic RC system of this work is built using a
single commercially-available telecom VCSEL and off-the shelf
fibre-optic components; hence benefiting from an extremely
simple, inexpensive and hardware-friendly implementation. Ad-
ditionally, the system of this work also offers other important
inherent attributes, including ultrafast (GHz rates, 250 ps/node)
and low-power operation (~100 s of W5 optical input power,
few mAs of VCSEL bias current). It is also worth mentioning
that the characteristics of the photonic SNN implementing the
(VCSEL-based) photonic spiking RC system can be modified
at will. In the proof-of-concept demonstration of this work, we
showcase the possibility to fully control the number of inter-
connected spiking nodes in the photonic SNN. In our demon-
stration, we report results for 512 and 1024 spiking nodes (at
250 ps/node), but SNNs with either a smaller or a larger number
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of spiking nodes are possible, depending on the complexity of the
task to be processed and the desired performance requirements
(e.g. accuracy levels desired, total operation speed). It is also im-
portant to note that whilst we report and experimentally demon-
strate the first photonic spiking RC system using a VCSEL as
the core nonlinear (spiking) element, the architecture described
could be also transferred to other excitable spiking systems (pho-
tonic or otherwise) to deliver a new generation of spiking RC sys-
tems based upon different technologies. These results therefore
open exciting new avenues towards ultrafast, low-power pho-
tonic SNNs yielding powerful processing hardware-systems for
future light-enabled neuromorphic computing and Al platforms.
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