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Abstract—This paper performs a detailed, multi-faceted analysis
of key challenges and common design caveats related to the devel-
opment of efficient neural networks (NN) based nonlinear channel
equalizers in coherent optical communication systems. The goal of
this study is to guide researchers and engineers working in this
field. We start by clarifying the metrics used to evaluate the equal-
izers’ performance, relating them to the loss functions employed
in the training of the NN equalizers. The relationships between
the channel propagation model’s accuracy and the performance of
the equalizers are addressed and quantified. Next, we assess the
impact of the order of the pseudo-random bit sequence used to
generate the – numerical and experimental – data as well as of
the DAC memory limitations on the operation of the NN equalizers
both during the training and validation phases. Finally, we examine
the critical issues of overfitting limitations, the difference between
using classification instead of regression, and batch-size-related pe-
culiarities. We conclude by providing analytical expressions for the
equalizers’ complexity evaluation in the digital signal processing
(DSP) terms and relate the metrics to the processing latency.

Index Terms—Neural network, nonlinear equalizer, over-
fitting, classification, regression, coherent detection, optical
communications, pitfalls.

I. INTRODUCTION

MACHINE learning techniques and, more specifically,
deep artificial neural networks (NN), are rapidly finding

their way into the telecommunication sector, in particular due
to their ability to efficiently mitigate transmission and device
impairments (see, e.g., [1]–[12]). Indeed, a large number of
NN-based techniques have already been proposed and tested
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for the channel equalization in coherent optical communication
systems [9]–[11], [13]–[15].

The NNs are known to be universal approximators that can
mimic almost any complex function, provided that the NN
structure possesses enough computational capacity and is trained
on a sufficient dataset. NNs are especially useful in solving
complex nonlinear problems, where the results rendered by
more conventional approaches often have limited applicability.
The capability of NNs to learn from data, and their inherent
adaptability to diverse operating conditions, make them a natural
tool for the equalization of fiber-optic channels where the data-
carrying signal experiences nonlinear interactions, signal-noise
interference, and memory effects. The considerable speed of
optical data transmission results in large datasets obtained in
a short time, making the optical channel a suitable playground
for machine learning techniques. Despite various acknowledged
advantages and benefits, there are still challenges and pitfalls
that hinder the use of machine learning and NNs, particularly
in optical transmission-related tasks. In this paper, we discuss
common misunderstandings and misinterpretations that occur
when using ML approaches for channel equalization in coherent
optical communications.

When applying known NN techniques to optical fiber trans-
mission, the customization and adaptation of these algorithms
can be necessary for reaping the full benefits of machine
learning.1 For example, when using NN approaches in image
recognition tasks, an accuracy of 99% is typically regarded as
“more than superb”. Alternatively, this outcome may be viewed
with skepticism as being considered too good to be true. In con-
trast, in optical transmission-related problems, the 99% accuracy
– when deciding which bit was transmitted – is typically the
minimum required by state-of-the-art transponders operating at
pre-forward error correction (FEC) bit error rate (BER) ranging
between 10−3–10−2. In modern transponders, this threshold is
even higher, e.g., 2 · 10−2–4 · 10−2, and we ought to push the
BER tolerance to higher values to improve the operating margin
of the system performance. Consequently, we inherently have to
impose stricter conditions on our NN architectures: in the case
of optical communications, the learning quality must be higher
than in the other fields. Unfortunately, efficient NN structures

1Similarly, when the telecommunication industry began to use DSP tech-
niques – already employed in wireless – in optics, adaptions were also required.
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that meet such ultra-high accuracy requirements are often more
vulnerable to various problems and pitfalls.

The severe overfitting that is frequently encountered while
dealing with optical channel equalization is a critical element ad-
dressed in this work. Furthermore, because we are dealing with
a high-accuracy problem, local minima can play an important
role, since the NN can stop learning if the current local minima
yield an almost zero gradient. Arguably, the overfitting and local
minima are the main issues capping the equalization capacity of
the NN-based DSP elements (when we neglect other technical
issues such as the high complexity of NN-based components).
Generally, overfitting occurs when models or procedures that
violate a “parsimony principle” are used. For example, this
happens when more elements than required by the task at hand
or more complicated approaches than necessary are employed.
In other words, it occurs “when using a model that includes
irrelevant components (excessive degrees of freedom)” [16].

Overfitting in optical channel equalization is the state in which
an NN starts to interpret the structure of the training set with
such detail that it effectively models the noise or some spurious
periodicity present in the transmission data instead of identifying
the true inverse transfer function (the deterministic part) of the
channel. In this context, the “barriers” that preclude the NN
learning process should be considered with a wider meaning
than just the well-known performance gap between the training
and validation curves. Here we show that learning the noise
characteristics in the training dataset, typically produces the “jail
window” pattern in equalized 2D constellations, and this effect
degrades the learning while we can still have a small gap between
the training and testing loss curves. This result indicates that the
manifestation of overfitting and local minima in our problems
can be intricate and unusual. Additionally, a small gap (between
training and validation) can be observed when the NN learns the
possible periodicity in the dataset, but it is a clear deviation from
the “true purpose” of the NN-based equalizer.

Another major issue that is frequently identified in the lit-
erature, is the overestimation of the performance and com-
putational complexity (CC) of the NN equalizers. We devote
the entire Sec. VIII to discuss this. Therein, we show that the
pseudo-random bit sequence (PRBS) order and digital-to-analog
converter (DAC) memory may lead to an overestimation of the
system performance. Furthermore, we also show that CC can be
misinterpreted and exaggerated if certain points are overlooked.
In this case, we demonstrate that the number of NN parameters
is not a precise indicator of the true CC. In addition, when
pruning and quantizing an NN-based equalizer, special care must
be taken to how the NN is pruned and quantized; otherwise,
overestimation can occur in the CC analysis.

In summary, we investigate typical caveats and pitfalls that
may occur when using machine learning-based methods for
impairment compensation in coherent optical communication
systems. We introduce and discuss the most widely used metrics
to quantify the performance and complexity of NN-based equal-
izers. Our main goal is to present some form of a guide, providing
the reader with an intuitive understanding of the key pitfalls
when using NNs in optical communications. We illustrate the
potential issues that can occur when using some current practices

Fig. 1. Experimental setup used to analyze the performance of NN equalizers;
D(f) is the DAC electrical transfer function,A(f) is the ADC electrical transfer
function, and x(t) and y(t) are the transmitted/received time sequences of
symbols, respectively. The input of the NN is the soft output of the regular
DSP just before the decision module.

proposed in the literature in this field. We also hope that this
paper can serve as an introduction to this fast-growing field of
high practical importance.

II. EXPERIMENTAL AND NUMERICAL SETUP AND NN-BASED

EQUALIZER CHARACTERISTICS

Our results will be further predominantly demonstrated and
confirmed by the data obtained in the extensive numerical mod-
elling of rather general transmission systems. However, we also
verified key conclusions using the (relatively) smaller set of
the experimental data for specific set-ups. We would like to
stress that our conclusions, findings, and design propositions are
quite general and apply to various similar optical transmission
systems.

The setup used in our experiment is depicted in Fig. 1. At the
transmitter (TX) side, a dual-polarization (DP) 16-quadrature
amplitude modulation (16-QAM) 34.4 GBd symbol sequence
was mapped out of data bits generated by a 232 − 1 PRBS. Then
a digital root-raised cosine (RRC) filter with a roll-off factor of
0.1 was applied to limit the channel bandwidth to 37.5 GHz. The
resulting filtered digital samples were resampled and uploaded to
a DAC operating at 88 GSamples/s. DAC outputs were amplified
by a four-channel electrical amplifier that drove a Mach-Zehnder
modulator in the phase/quadrature of DP, modulating the con-
tinuous waveform carrier produced by an external cavity laser at
λ = 1.55μm. The resulting optical signal was transmitted over
the 5 × 50 km spans of standard single-mode fiber (SSMF) with
an erbium-doped fiber amplifier (EDFA) only. The EDFA noise
figure was in the 4.5 to 5 dB range. The parameters of the SSMF
at λ = 1.55μm, are: attenuation coefficient α = 0.21 dB/km,
dispersion coefficient D = 16.8 ps/(nm · km), and effective
nonlinear coefficient γ = 1.2 (W · km)−1.

At the receiver (RX) side, the optical signal was converted
into the electrical domain using an integrated coherent receiver.
The obtained signal was sampled at 50 Gsamples/s by a digital
sampling oscilloscope and processed by an offline DSP based
on the algorithms described in [17]. First, the bulk accumu-
lated chromatic dispersion (CD) was compensated using a fre-
quency domain equalizer, which was followed by the removal
of the carrier frequency offset. Then a constant-amplitude zero
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autocorrelation-based training sequence was located in the re-
ceived frames and the equalizer transfer matrix was estimated
from it. This equalizer transfer matrix was applied to the signal
to remove the remaining linear distortions (due to polarization
mode dispersion (PMD), residual CD, filtering), and to demul-
tiplex the signal polarization. The processed signal was cor-
rected for clock frequency and phase offsets. The carrier phase
estimation was then achieved with the help of pilot symbols.
Thereafter, the resulting soft symbols were used as input for the
NN equalizers. Finally, the pre-FEC BER was evaluated from
the signal at the NN equalizer output.

A simulator was implemented aiming at mimicking the ideal
transmission setup, i.e., using ideal TX/RX components. As a
consequence, only impairments resulting from fiber propagation
and amplified spontaneous emission (ASE) noise originating in
the EDFA are considered in the numerical simulations.2 The
propagation of the optical signal along the optical fiber was
simulated by solving the Manakov equations using the split-step
Fourier method (with a resolution of 1 km per step) [18]. Each
fiber span was followed by an optical amplifier with the noise
figure NF = 4.5 dB, which fully compensates for fiber losses
and adds ASE noise. At the receiver, after full electronic CD
compensation (CDC) by the frequency-domain equalizer and
downsampling to the symbol rate, the received symbols were
normalized to the transmitted ones.

The BER was estimated from the received symbols following
three different approaches: i) applying a hard decision strategy
only; ii) first, equalizing the signal using an NN equalizer in
the regression task and then applying a hard decision, or iii)
using an NN classifier (the classification is used only in the
section where we compare its performance with the regression).
These approaches are schematically depicted in Fig. 1. The NN
input mini-batch shape can be defined by three dimensions [14]:
(B,M, 4), whereB is the mini-batch size,M is the memory size
defined through the number of neighbors N as M = 2N + 1,
and 4 is the number of features for each symbol, referring to the
real and imaginary parts of two polarization components. The
objective of NN is to recover the real and imaginary parts of the
k-th symbol in one of the polarizations, so that the shape of the
NN output batch can be expressed as (B, 2).

In general, for the regression task – within the NNs considered
in this paper, we incorporate the mean squared error (MSE)
loss function estimator and the classical Adam algorithm for the
stochastic optimization step with the default learning rate set
to 0.001 [19]. Standard training was carried out for up to 1000
epochs with a batch size of 2048, which has proven to be high
enough to reach convergence for the considered transmission
scenarios. Furthermore, the total dataset used consisted of 218

symbols for the training dataset, 218 symbols for the validation
dataset, and 218 independently generated symbols for the testing
phase. All three are generated with a different random seed.
The training dataset is used to update the weights of our NN
model; the validation one is to monitor the overfitting of the

2We considered the propagation of a single-channel signal filtered by an RRC
filter with 0.1 roll-off factor and with an upsampling rate of 8 samples per symbol
over different transmission systems.

Fig. 2. The schematics of different NN architectures considered in our paper:
(a) biLSTM equalizer with Nh hidden units and (b) MLP equalizer having
three hidden layers, with N1, N2, and N3 neurons in each consecutive layer,
respectively. The input has a memory equal to M = 2N + 1 and 4 features
representing the real (I) and imaginary (Q) parts of both X and Y polarizations.
The functionϕ represents the activation function which in our case is the “tanh”.

learned model and to trigger the early stopping, and the testing
one gives us the final measurement with a never-seen dataset
after the training has been done. In this paper, all results showing
the Q-factor after equalization are obtained by using the testing
dataset, and all results that show the Q-factor over the epochs,
are obtained by using the validation datasets.

The training dataset was shuffled at the beginning of every
epoch to avoid overfitting caused by learning the connections be-
tween the neighboring training pairs [5]. All simulated datasets
were generated using the Mersenne twister generator [20] with
different random seeds, which guarantees a cross-correlation
below 0.004 between the training and testing datasets, meaning
that the symbols are virtually independent.

Finally, since the goal of this work is to demonstrate pos-
sible pitfalls and overestimation scenarios of the NN-based
equalizers, we tried to use the same architecture and hyper-
parameters throughout the paper. In some sections, those pa-
rameters are altered for some specific purpose that we will
be clearly highlighted. In general, when using the multilayer
perceptron (MLP), we considered three hidden layers with
[N1 = 481/N2 = 31/N3 = 263] neurons in each layer, respec-
tively. When using the bidirectional long-short-term memory
(biLSTM) equalizer, the number of hidden units (Nh) was set
to 226. Both NN models are illustrated in Fig. 2. The standard
number of taps used was N = 25: this is the maximal memory
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size estimation for the scenarios that we will address. The
memory effect is important because, even though we compensate
for the effect of CD electronically, we still have to mitigate the
impact of the coupling between the nonlinearity and the CD,
which occurs along with the fiber transmission. Since the aim
of this work is not to propose a new NN equalizer, we do not
focus on optimizing the NN structure for different transmission
setups [14]. In contrast, we used the same NN structure in
different scenarios. Nonetheless, the chose the NN structure to
be complex enough to be capable of dealing with the different
levels of nonlinearity while allowing us to clearly demonstrate
various caveats and pitfalls that can occur in the coherent optical
channel equalization task.3

III. QUALITY OF TRANSMISSION METRICS

There exists a variety of performance indicators that can be
used to assess the quality of M -ary QAM transmission systems:
bit error rate (BER), mutual information (MI), Q-factor, signal-
to-noise ratio (SNR), effective SNR, and error vector magnitude
(EVM), to mention the most used examples.

The ultimate quality of transmission (QoT) metric in digital
communications is the post-FEC BER or the Q-factor,4 because
all real transmissions occur with close to 0 post-FEC BER. The
MI can also be a highly valuable metric because it estimates the
achievable spectral efficiency when matched with the post-FEC
BER. When the decoder is not available (e.g. when measuring
channel equalization using received soft symbols), the post-FEC
metric is often omitted in favor of the pre-FEC metric, which is
a common performance measure for an uncoded system.

The pre-FEC BER can vary depending on the decision tech-
nique (hard or soft decision, HD and SD) utilized after the
equalization of the soft symbols. This metric accurately pre-
dicts the post-FEC BER for HD-FEC with optimal interleaving.
Adopting such a metric, however, can result in an incorrect
spectral efficiency estimate, which is especially evident at low
code rates (see [22] for details). However, when dealing with
NN equalizers, the pre-FEC BER/Q is commonly used because
obtaining the post-FEC BER/Q would require integrating the
equalized symbols into the rest of the DSP chain, which is not
worth the work for initial performance evaluations. The SNR and
EVM are the least accurate QoT measurements. However, these
two measurements can also be utilized to provide a qualitative
comparison of different transmission regimes. It is worth noting
that these metrics are related to channels with known statistics,
such as the additive white Gaussian noise (AWGN) channel.
The correlations between the different QoT metrics in nonlinear
channels, on the other hand, are not always known, and adopting
extrapolations based on linear theories should be done with
caution.

Although the pre-FEC BER is an important QoT metric, it
does require the transmission of a known pattern, such as a

3As discussed in [11], [14], the step of hyperparameter optimization is crucial
on the process of designing a NN equalizer with good performance, and to tackle
this we use and suggest the usage of the Bayesian Optimization tool in [21],
which is more efficient than other traditional power-hunger techniques.

4BER entirely defines the Q-factor in this case, and we use it to employ dB-s
instead of a linear scale.

training sequence, through the system for continuous perfor-
mance monitoring.5 As a result, the effective SNR (ESNR) and
EVM gained popularity insofar as they lent themselves well
to the study of unknown symbol sequences. Furthermore, as
previously stated, these QoT metrics can still provide an accurate
estimation of the BER when the system errors are primarily
caused by optical AWGN, i.e., when fiber transmission is close
to the linear regime and nonlinear effects (arising in TX/RX
components and non-additive noise) are almost negligible. For
such metrics, it is inherently assumed that the reception is
non-data-aided and that a quadratic-QAM signal constellation is
used. The ESNR, EVM, and Q-factor can be calculated using the
following expressions that are valid for a Gaussian-distributed
signal [23]–[26]:

EVMRMS =

[
1/N

∑N
n=1 |yn − xn|2

1/N
∑N

n=1 |xn|2

] 1
2

, (1)

SNR ≈
[

1

EVMRMS

]2
, (2)

Q =
√
2 erfc−1(2BER), (3)

where yn is the normalized n-th symbol in the stream of mea-
sured symbols, xn is the ideal normalized constellation point of
the n-th symbol (i.e. a symbol from the M -QAM alphabet), N
is the total number of symbols in the constellation, and erfc−1 is
the inverse complementary error function. We typically consider
these metrics in dB, using the relation: T [dB] = 20 log10(T ),
where T is the QoT metric under investigation.

From a statistical perspective, the BER depends on the partic-
ular decision mechanism utilized at the receiver side, whereas
the MI gives the effective transmission capacity regardless of the
decision process. However, because we work with the received
soft symbols, the MI cannot be conveyed explicitly. One option
to derive the MI value is to estimate it by assuming a single-
input single-output AWGN channel, which yields a suboptimal
estimate giving out the MI’s lower bound. This lower bound to
the MI, I(X;Y ), can be expressed as [27]–[29]:

I(X;Y ) = E

[
log2

(
p(y|xk)∑MF−1

i=0 p(i)p(y|xk)

)]
, (4)

where p(i) is the probability distribution of each k-th QAM
alphabet symbol, and p(y|xk) defines the conditional probability
of the received constellations given the k-th QAM input symbol.
Then we can use the multivariate Gaussian distribution estima-
tor [30], [31] to calculate p(y|xk) of the transmitted-received
complex symbols, which, ultimately, gives as the lower bound
for the MI via (4).

Now, as we have established the framework for the most
relevant QoT metrics and addressed the assumptions used in
their computation, we will look at how those metrics may be
used to evaluate the performance of the NN equalizer. The main
purpose of this section is to raise awareness of the fact that,

5Note that in practical terms, the pre-FEC BER is usually derived from the
post-FEC BER assuming that the FEC can correct all errors.
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TABLE I
SUMMARY OF THE BEST PERFORMANCE AFTER 1000 TRAINING EPOCHS FOR DIFFERENT QOT METRICS AND TRANSMISSION SETUPS. (SIMULATION

RESULTS OF SINGLE-CHANNEL TRANSMISSION)

depending on the modulation format, the NN structure, and the
level of noise, the NN can produce the effect of squeezing the
constellations: we name this effect the “jail window” pattern.
We notice that numerous other works [1], [32]–[38] have also
reported the “jail window” type constellations after the NN-
based equalization, often without paying attention to the true
meaning and consequences of this phenomenon. We clarify this
effect and explain possible related misinterpretations. The effect
of “jail window” results from the regression task carried out by
NN equalizers based on the MSE loss; the effect occurs because
the ultimate goal of such NNs is to minimize the Euclidean
distance between recovered and transmitted symbols. However,
we emphasize that the “jail window” constellation forms violates
the Gaussian channel assumption used in the computation of
some metrics mentioned above. Indeed, this effect reduces the
accuracy of all Gaussian-assumption-based metrics (e.g., the
ESNR) besides the Q-factor calculated directly from the BER
obtained via direct error counting. Thus, when using these
inaccurate Gaussian-assumption metrics, we can obtain false
results indicating that the NN performs well while, in reality, the
true gain provided by the “jail window” constellation is highly
overestimated. The “jail window” effect can also be explained by
the mismatch between the true transmission performance metric
(the BER) and the metric that is minimized by the NN training
(the MSE loss), such that we have a disagreement between the
objective function and the actual NN result; however, the BER
itself cannot be used as a NN loss function inasmuch as it is
non-differentiable. Further investigation of the effect of the “jail
window” is given further in Section VII.

To illustrate the metric-related problem, we have tested two
types of equalizer, biLSTM and MLP, in four different numerical
transmission setups: i) 20×80 km SSMF when transmitting
8-QAM at 34.4 GBd; ii) 15×100 km SSMF when transmit-
ting 16-QAM at 28 GBd; iii) 30×50 km SSMF when trans-
mitting 16-QAM at 64 GBd; iv) 10×60 km SSMF when trans-
mitting 64-QAM at 30 GBd; the launch power was set to 3 dB
higher than the power level for the best performance without
NN equalizer. Clearly, when a nonlinear equalizer is employed,
the optimal launch power should increase. The scenarios and
NN-equalization results for different metrics are summarized in
Table. I.

Here, we note that Table I shows the best value of each
QoT metric after running the process over 1000 epochs, but
the best value did not occur at the same epoch number for
all metrics. For example, in case ii), 15×100 km SSMF
with 16-QAM at 28 GBd, we observed that, for the epoch

corresponding to the lowest EVM (9.4%), the MI and Q-factor
values were, respectively, 3.12 bits/symbol and 7.87 dB; for
the epoch corresponding to the highest MI (3.89 bits/symbol),
the EVM and Q-factor values were, respectively, 17.27% and
7.84 dB; and for the epoch leading to the highest Q-factor
(7.89 dB), the MI and EVM values were, respectively, 3.25
bits/symbol and 9.8%. This result clearly highlights that the
particular QoT metric selected for performance optimization
does impact the eventual result for the system with equalizer
and that the differences can be even more accentuated if another
transmission setup/ NN architecture is used. Indeed, depending
on the quality metric, the constellation after the equalization
changes. Fig. 3 shows the constellation corresponding to the
maximum of each metric for cases ii) and iv), where, in the first
case, the “jail window” pattern does appear, but in the second
it does not. For case ii), we can see the “jail window” with thin
lines connecting the constellation points for the best EVM. The
same “jail window,” but with somewhat thicker lines, can be
observed in the case leading to the best Q-factor. Contrarily, the
traditional Gaussian-type constellations are observed in the case
leading to the best MI. For case iv), the NN did not generate
the “jail window” pattern. In this case, the minimum in the
EVM and the maximum in the MI and Q-factor were achieved
at approximately the same epoch. It is important to note that
the Q-factor in all three cases did not change significantly, but
the improvement in the EVM with the “jail window” caused a
high decrease in the MI estimation from 3.89 bits/symbol (the
epoch leading to the best MI) down to 3.12 bits/symbol (the
epoch leading to the best EVM). This result is the consequence
of the non-Gaussian shape of the constellation obtained, which
violates the applicability conditions of (4) used to measure the
MI. Furthermore, Fig. 3 points to one of the repercussions of
the “jail window” pattern: the NN continued to minimize the
Euclidean distance between the prediction and the labels, but
this process no longer decreases the BER, and so we departed
from the main goal of equalization. Our observation was that
after the epoch of the highest MI (Fig. 3(c)), the NN began to
converge to the “jail window” and stopped further improving
the Q-factor, which is why Fig. 3(a) and (c) have roughly the
same BER / Q-factor but Fig. 3(a) has a much smaller EVM than
Fig. 3(c).

This effect shows that the usage of QoT metrics mentioned
above for the regression task can be misleading, resulting in
an underestimation of the true achievable MI and converging
to a non-optimal equalizer’s structure. Ultimately, in Fig 4 we
present the evolution of those three metrics over the epochs for
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Fig. 3. Constellation diagrams after the MLP-based equalization, corresponding to the best performance when using the different QoT metrics. (a) and (d) lowest
EVM; (b) and (e) best Q-factor; (c) and (f) highest MI. The simulated transmission scenarios are: 15× 100 km, 4 dBm, 28 GBd 16-QAM (a)–(c); 10× 60 km,
3 dBm, 30 GBd, 64-QAM (d)–(f). In each constellation, the QoT metrics were presented as (EVM/ MI/ Q-factor).

Fig. 4. Evolution of Q-factor (simulations), MI, and EVM over the training
epochs when using the MLP equalizer in the 15× 100 km, 4 dBm, 28 GBd
16-QAM system.

case ii), to visualize the previous statements, where we can see
that the overall behavior and the best values are different for
different metrics.

Table I also demonstrates that the NN equalizer may lead
to significant improvement of the EVM when compared to
the linear equalization only, but without rendering the same
corresponding improvement in the Q-factor. To better illustrate
this effect, we can use the following expression to estimate the
BER from EVM after the equalization [39]:

BER = κ
1−M−1/2

1/2 log2(M)
erfc

[√
3/2

(M − 1)EVM2
RMS

]
, (5)

where M is the cardinality of the modulation format and κ is
the correction factor. Now, we estimate how much the result
obtained through (5) deviates from the one calculated through
the direct bit error counting. We start by using the EVM and
BER before the NN to calculate the correction factor κ: for case
ii), the correction factor is κ = 1.076, which means that the
BER calculated via (5) using the reference value of the EVM
(before the NN equalization) is a suitable QoT estimator, almost
matching the true BER value after the respective conversion.
However, this equation shows how overestimated the EVM can
be if the “jail window” is present after the NN equalization.
For the MLP equalizer, by using (5) for case ii), we obtain a
Q-factor estimate of 13.62 dB while, in reality, it is only 7.89 dB.
Additionally, in case iii), the Q-factor estimated using (5) is
13 dB, whereas the true Q-factor is just 7.65 dB. However, in
case iv), where the “jail window” is absent (see Fig. 3) the Q-
factor estimated through the EVM is equal to 9.4 dB, whereas
the true one is 9.2 dB, showing a good match. Interestingly,
even in cases where the “jail window” is absent, the Q-factor
calculated through the EVM can be considerably overestimated.
For instance, in case ii) and using the biLSTM equalizer, the
Q-factor estimated through the EVM is 15.6 dB, whereas the
true value is 10.7 dB.

Finally, the results in Table I also show that when using
the biLSTM equalizer, the “jail window” phenomenon occurs
rarer compared to when we use the MLP equalizer. However,
it can still persist for the biLSTM in some scenarios, as will
be pointed out later in section VII. Therefore, we can conclude
that to avoid the overestimation of the system’s performance, the
results should be presented in terms of BER or Q-factor derived
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through (3). Otherwise, the constellations after equalization
should be assessed to ensure that it is still approximately Gaus-
sian so that the other QoT metrics provide a good approximation
of the true performance.

IV. PRBS ORDER IMPACT IN SYSTEMS’ PERFORMANCE

There has been a plethora of empirical evidence that deep
enough NNs can memorize random labels, even when using con-
siderably large datasets [40]. Thus, in principle, by sufficiently
increasing the size of a NN, we can always reduce the training
error to small enough values, even though the task of learning a
completely random sequence is meaningless.

Unfortunately, when transmitting the commonly-used PRBS
(say, of orders 7, 9, 11, 15, 20, and 23), the benefits rendered
by the NN-based equalization can be overestimated. Indeed, the
NN may learn the PRBS generation rules themselves, instead
of estimating the inverse of the transmission channel model,
and this naturally results in a sharp equalizer’s performance
degradation when truly random data (say, obtained from live
traffic) is transmitted. This overfitting effect is particularly rel-
evant because the NN-based equalizers are often trained using
PRBS-based datasets, even in experiments.

When dealing with NNs, two key PRBS-related issues must be
addressed. First, the PRBS has a periodicity that is determined in
terms of symbols by the PRBS order and the modulation format
cardinality. The order 20 PRBS, for example, has a period of
220 − 1 bits, and if we use a 64-QAM signal with 6 bits per
symbol representation, the symbol periodicity will be around
174 k symbols.6 To avoid NN learning such a pattern in this
circumstance, the size of the training dataset used to train the
NN must be less than the aforementioned quantity. This topic
was investigated in [5], where an MLP classifier was used to
check the overestimation of PRBSs of orders 7 and 15 in the
4-pulse amplitude modulation (PAM) transmission system using
a large training dataset of size 219. According to the findings of
that work, the NN was able to produce a reasonable result when
tested on another PRBS sequence, but when tested on a fully
random signal, the system’s performance degraded dramatically
because the NN did not learn the channel equalization but instead
learned the PRBS periodicity.

A very simple and popular approach for the generation of
PRBS is to use a linear feedback shift register (LFSR) with
particular initialization and feedback. This approach can lead
to a serious limitation since, if the NN’s input is broad enough
to catch the whole inputs used by the LFSR to construct the
current symbol (typically its size is equal to the memory), the
NN will be able to learn the PRBS model properties instead
of performing the genuine nonlinearity mitigation task. More
recently, in [41], this issue was mathematically studied and tested
for an MLP classifier for both on-off keying (OOK) and 4-PAM

6The true period of symbols will be 6 times longer in this case, because this
is when the bit sequence is aligned to the symbol boundaries. However, because
the NN maps the input symbols onto a multidimensional space, the NN may also
trace the information on bit periodicity. As a result, we define symbol periodicity
as the number of symbols that contain the entire bit periodicity.

transmission. In that Ref., the authors used the PRBS of order
20 and generated 219 bits, a sequence that is shorter than the
generator periodicity. The bits were converted into symbols and
fed into the NN classifier. The authors then created an input
with the neighbor symbols but removed the current symbol
to be classified. If the current symbol cannot be learned from
adjacent symbols, the NN cannot correctly decide which bit
was transmitted, and this situation corresponds to BER = 0.5.
Otherwise, the BER should be significantly lower than 0.5,
indicating that the NN can understand the symbol generation
and mapping rules. In [41], the authors found that, in the case
of OOK signals, the input memory length of 17 was enough
to recover the symbols. In the case of transmission of 4-PAM
signals, the same behavior was observed once the input had 9
taps. In the case of 4-PAM, some fewer taps were needed because
each symbol carries 2 bits, whereas the OOK signals carry only
1 b per symbol. In order to avoid the issues resulting from the
limited PRBS length, instead of LSFR, the Mersenne Twister
random sequence (MTRS) generator should be used, which can
provide the sequences with a much longer period than that of
the LFSR.

In this section, differently from the two previous works [5],
[41], we evaluate both aforementioned issues using the recurrent
equalizer (biLSTM). The biLSTM’s likelihood of learning the
deterministic time correlation due to the PRBS order is by far
superior to that of the MLP equalizer. Additionally, we consider
the transmission of a 64-QAM modulation format, which in-
creases the number of bits per symbol, therefore enhancing the
PRBS-related problems in the NN-based equalization.

We generated data from 10 transmission runs with PRBS
orders 16, 18, 20, 22, 24, 26, 28, 30, 32, and 34. AWGN was
added to the RX input in a back-to-back scenario, so that all
data sets after the hard decision had the same Q-factor (6.9 dB).
Since the only source of signal degradation is a random noise
coming from the AWGN added, the NN should not provide any
performance improvement, as the NN is a nonlinear determinis-
tic function. Hence, any Q-factor improvement when employing
the NN results from the NN’s learning of the PRBS generation
rule.

We perform two tests to evaluate the impact of the PRBS
order on the performance of NN. First, we study the impact of
the training data set and PRBS symbol periodicity. Fig. 5 shows
the Q-factor as a function of the PRBS order when 218 symbols
are used to train the NN. A different seed is used to generate
another sequence of 218 symbols (with the same PRBS order),
which are used to test the NN. The analysis of Fig. 5 shows a
clear improvement in the Q-factor for PRBS orders 16 and 20.
This result confirms that the NN can learn the PRBS periodicity
when the training data sets (218 symbols) are larger than the
symbol periodicity. Moreover, Fig. 5 also shows that increasing
the number of taps enables achieving an even better Q-factor
(the NN could train faster); this behavior was also observed in
[41]. For the PRBS orders higher than 24, the training data set
becomes smaller than the symbol periodicity, and, consequently,
the NN is no longer capable of learning the PRBS generation
rules: the values drop below the threshold (the dashed line).
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Fig. 5. Q-factor’s dependencies on the PRBS order for (a) the different values of input memory (the different number of taps is highlighted with different bar’s
color) and different random seeds for training and testing with dataset sizes of 218 symbols; (b) for the same random seed for training and testing, but taken from
different chunks, with using 40 taps and different training dataset sizes per PRBS order as indicated in Table II. The red dashed lines for both panels show the
threshold, over which we arrive at the overestimation issue. (Simulation results)

TABLE II
SUMMARY OF PARAMETERS SUCH AS PERIODICITY AND TRAINING/TESTING

DATASET SIZE PER PRBS ORDER USED IN OUR STUDY WITH 64-QAM

At this point, it is worthwhile to question for which dataset size
the NN would learn the data generation rule for the higher-order
PRBS. To address this issue, we have conducted a second round
of tests, where we trained the NN using up to 1M symbols for
the PRBS orders ranging from 16 to 34. The main results of
this study are reported in Fig. 5(b). Note that to guarantee that
the NN learns the PRBS generation rule instead of the symbol
periodicity, we generated the training and testing data sets with
the same seed, but for training and testing, we selected different
data blocks with lengths shorter than the PRBS periodicity.
Table II provides the periodicity for each PRBS order, and the
training/testing data set sizes for our study. The number of taps
was set equal to 40 and the NN equalizer was trained for more
than 5000 epochs. As before, if the Q-factor increases above the
reference (red line in Fig. 5(b) is the B2B level), this indicates
that the NN was able to learn the data generation rule. Fig. 5(b)
shows that the Q-factor increases with PRBS order up to 22.
This behavior can be explained by the fact that PRBS orders 16

and 18 were trained with 5 k and 20 k symbols, respectively.
This training data set is too small to fully train the NN, but we
cannot increase it further because of the periodicity constraint
given in the third column of Table II.

When the PRBS order is increased, the amount of training
data required to learn the respective PRBS generation rule also
increases. However, increasing the size of the training data
beyond 1M becomes impractical (the training takes too long).
Thus, the Q-factor curve in Fig. 5(b) starts decreasing for PRBS
orders above 22, indicating that the NN’s capacity to recover
the PRBS generation rule becomes progressively worse. In this
case, the 1M training data size is insufficient (and/or the NN
complexity is insufficient to learn the PRBS generation rule of
the highest order). Thus, when increasing the PRBS order from
24 to 30, we observe a decrease in the Q-factor until the point
where the NN completely ceases to learn the PRBS generation
rule (for the PRBS orders equal to or higher than 32).

We emphasize again that the MTRS should always be used
in simulations, instead of the LSFR, because it renders virtu-
ally infinite PRBS lengths. Therefore, an undesirable system
performance overestimation can be avoided. When dealing with
experimental data, even larger PRBS orders (e.g. ≥ 32) should
be used with caution, since, depending on the training dataset
size, modulation format, and input memory, overestimation can
still occur therein.

V. DAC/ADC MEMORY IMPACT ON TRAINING

NN EQUALIZERS

As described in the previous section, the two most influential
factors related to the data quality are the dataset size and its
variability (the absence of spurious periodicity, bias, etc). Fig. 6
shows the typical layout of a lab-style optical transmitter and a
coherent receiver. The Tx-DSP writes the signal samples into
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Fig. 6. A simplified block diagram illustrating the components of a typical transmitter and receiver. The DAC/ADC RAM memory is highlighted to emphasise
its role in the transmission chain.

the DAC memory, and the signal is transmitted cyclically. On
the Rx side, the output of the ADC is written into memory
and processed subsequently by the Rx-DSP. When dealing with
experimental data, there are several factors to take into account
in order to ensure proper data quality for the NN training.
First, the DAC and ADC memory is clearly limited in size,
which puts an upper limit on the length of the signal to be
transmitted. This applies primarily to capturing the buffers built
into real-time transponders, where the memory resource is very
precious and, hence, the available memory is usually rather
limited. However, the same argument applies, in principle, to lab
equipment, where, however, the limits are not so stringent. The
other factors to consider are the sampling frequency of DAC and
ADC devices and the symbol rate of the transmitted signal. For
the NN training, we are interested in the sequences of symbols
or bits; for a given DAC memory, the number of symbols the
DAC can hold depends on the sampling frequency and symbol
rate. Finally, an additional constraint can emerge due to the Rx
DSP architecture. Often, to achieve synchronization, the DSP
implementation assumes that the data are composed of frames of
equal length. Furthermore, all frames may be assumed to contain
the same payload data to facilitate the alignment of received and
reference sequences. In this case, only the data obtained from a
single received frame can be taken up for the NN’s training and
testing. In this section, we will look into how the aforementioned
properties impact the training of NN-based equalizers and data
variability quality.

Consider an exemplary scenario where we have a DAC/ADC
with a memory equal to 512 k samples per channel, operating
at the sampling frequency of 80 GSample/s. Assume that the
DSP requires about 10 frames holding identical data to achieve
a proper synchronization and evaluate BER. Then, the number
of samples per frame is around 52 k samples. Let us further
assume that our transmission symbol rate is 34.4 GBd. This
leads to the number of effective symbols 52 k/(80/34.4) ≈
22 k, which are available for NN training. This can be easily
verified by applying the autocorrelation function for the received
symbols: Fig. 7 shows the autocorrelation of the experimental
data that was produced with a DAC specification close to the
ones mentioned above. As it can be seen, the difference in
the peaks is around 22 k, which is the same value that we
calculated.

Fig. 7. The auto-correlation diagram of the received experimental signal shows
the impact of the DAC memory on the signal’s periodicity.

With this information, two main concerns can be raised in
terms of the use of machine learning in systems employing
DAC/ADC. First, our having a system that is unintentionally
biased towards one subset of symbols can result in poor model
performance when the latter is validated on a different subset.
This fact can ultimately lead to the overfitting of the NN-based
equalizer. Second, as shown in Fig. 7, even when we use a PRBS
of order 32 or even completely random data, we cannot remove
the periodicity in the data since the DAC will repeat just a portion
of the PRBS. Because of this, the same transmission trace
cannot be used for training and testing even if we select non-
overlapping chunks. In Fig. 8, we show the constellations after
NN equalization using different chunks of the same transmission
trace, Fig. 8(a), and when using the transmission traces with
different random seeds, Fig. 8(b). From these constellations, it is
evident that using the same random seed to train and test the NN
provides a constellation of outstanding quality (the respective
Q-factor is equal to 13 dB). Nevertheless, the NN trained with the
same random seed (the one that produced the picture in Fig. 8(a))
cannot generalize to perform the channel equalization: when
we use it with another random seed, we see that the resulting
equalized constellation is noticeably degraded, and the NN’s
true performance in terms of Q-factor is just 8.66 dB, well below
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Fig. 8. 16-QAM signal constellation after the NN-based equalization when (a)
training and testing are carried out using different datasets but generated with
the same random seed, and when (b) training and testing are run using datasets
generated with different random seeds.

the previous overestimated value. This fact clearly demonstrates
that, in this scenario, the system has overfitted over the training
sequence pattern. Therefore, when reporting results using the
same random seed for training and testing, you may overestimate
the performance of your equalizer.

To avoid overfitting, we have generated our NN inputs with
the following procedure. First, we record 60 measurement traces,
each with 218 symbols, using a different random seed to generate
each trace. After that, we split the entire data set into two parts:
50 traces were taken for training purposes and the remaining 10
traces were saved for testing. From these traces, we then gener-
ated the window vector inputs for each symbol to be recovered.
Afterward, we concatenated all these window vectors to generate
our training and testing datasets. Finally, after having ≈ 13M
window vectors in the training and ≈ 2M window vectors in the
testing datasets, we select 220 random input vectors from the
overall 13M in each epoch while training the NN. To show the
impact of not having enough variability in the training dataset,
we compared the NN equalizer performance trained using our
aforementioned dataset generation solution with the case where
we trained the NN with 220 vectors generated by just one random
seed. To evaluate the performance of the equalizers, we tested
both trained models with 218 input vector taken from 2M (the
testing set) that were never used in the training.

The results of our comparison are summarized in Fig. 9, and
several conclusions can be readily drawn from that figure. First,
for the case where we trained the NN with only one trace, the
traditional overfitting appears: the training curve keeps growing
while the testing curve bends down after some point as the
model does not generalize. Because the model’s variability was
only for 22 k points, it overfitted quickly, and the maximum
Q-factor of the testing dataset was just 8.66 dB. On the other
hand, when we used our multiple trace training solution, we
see that both the training and testing datasets’ curves grow
simultaneously, indicating the generalization capability of the
equalizer. Using our method, we were able to reach a maximum
Q-factor of 9.69 dB using the testing dataset, which is almost
1 dB higher than the value obtained when training the NN with
one single trace. Note that our solution uses the different parts of
the training dataset, which benefits not only from the diversity
of different symbols picked from different random seeds but
also from the fact that noise (which is different for each trace)

Fig. 9. Q-factor versus training epochs for the experiment with 16-QAM
5×50 km SSMF, 34.4 GBd, 6 dBm power, using the biLSTM equalizer. These
curves refer to the training and testing performance of the NN when using one
trace or when using multiple traces (our solution is described in the main text)
for training.

adds diversity to the dataset as well. Heuristically, we expect
this noise to “smear out” each data point, making it difficult
for the network to properly match individual data points, and
therefore reducing the overfitting [42]. However, as it has been
observed in several previous works [43]–[49], the noise injection
to various parts of the NN during the back-propagation training
can remarkably improve NN’s generalization capability, and the
latter observation fully complies with the result achieved with
our solution, Fig. 9.

VI. REGRESSION OR CLASSIFICATION (SOFT DEMAPPING) NN
EQUALIZERS: THE DESIGN DILEMMA

First, we mention that the regression versus classification
question in designing the most efficient NN equalizer structures7

was covered exhaustively in [50]. Thus, in this section, we do not
expose any specific pitfalls attributed to the types of predictive
modeling used in the equalizers, referring an interested reader to
the aforementioned Ref., but, instead, we review the drawbacks
of using specifically the regression or the multi-class classifi-
cation in the context of coherent optical channel equalization
task.

For regression, the MSE loss function can be treated as a
simplification of the true likelihood measurement for the case of
optical channel equalization: using the MSE optimization, we
assume that the channel noise distribution is additive Gaussian;
if the noise distribution is non-Gaussian or signal-dependent,
then the MSE-based optimization fails to capture all information
in the distorted sequences [51], and may not learn the model
parameters that optimally maximize the negative log-likelihood
that is the cross-entropy between the empirical distribution
defined by the training set and the probability distribution

7The receiver NN-based classifiers can be understood as soft-demappers
implemented with the NNs.
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Fig. 10. Performance metrics’ comparison for the regression- and classification-based equalizers, showing the impact of overfitting that can be seen when
comparing the training and testing learning curves. The analyzed setup considered a 20×50 km SSMF link and a single-carrier-DP 64-QAM signal with 30 GBd
and 0.1 RRC pulse shape (simulation results).

defined by the model [52, Chapter 5.5]. In practice, when using
MSE-based regression, we try to recover the deterministic part
by assuming that the stochastic part has a Gaussian distribution
with a signal-independent variance. This approximation is often
reasonable, as in many systems the noise-signal interaction is
smaller than the transmitter-induced and additive optical ampli-
fier signal-independent noises, and the latter two can often be
well approximated as a Gaussian process [53].

For the classification, the cross-entropy loss (CEL) – the
most common loss function used in the classification tasks [54]
– is the most suitable loss function concerning its meaning
in information theory [55], effectively representing any type
of noise statistics. However, there are two major drawbacks
associated with this loss function, emerging specifically from
the machine learning-related perspective, which can make the
training of such a classifier a troublesome task. First, regardless
of the corresponding inaccuracy in the target space, the CEL
penalizes the misclassification between the two classes (i.e.
between any two constellation points in our problem) with the
same “cost” value: the penalization ignores the spatial proximity
of the labels, reflecting only the fact that the constellation point
has been misclassified. However, typically, the account of the
misclassification “type,” i.e. when the cost of all errors is not
equal, can be (and typically is) quite beneficial for the efficient
NN’s training. The cost of making a mistake can be determined
by the projected and actual classes of an example [56], [57].
Each class represents a distinct notion that can be identified
using a NN in the conventional classification task, for example,
when we classify different kinds of coordinate objects. However,
when it comes to the problem of optical equalization, each class
contains more information than just a label. In other words, the
different classes correspond to different point positions in the
constellation, and each class has its nonlinear distortion level.
The additional information about each label can be obtained
by using the physical nature of each nonlinear level, i.e., the
aforementioned distortion level that depends on the constellation
point’s power.

To better understand this question, consider the task of classi-
fying symbols in, say, a 16-QAM constellation. In this problem,
the misclassification between classes that share the same deci-
sion boundary should cost less than the misclassification of the
ones that do not share any decision boundary: in the first case, one
naturally shares some symbols due to the noise-induced clouds’
spreading and overlap, while the second case is a “serious error”.
However, using the CEL, we will only capture errors on the target
class: it discards any notion of errors that you might consider
“false positive” and does not care how predicted probabilities are
distributed other than the predicted probability of the true class
(since we deal with one-hot encoded vectors), implying that only
the predicted probability associated with the label influences the
value of the CEL. Thus, from the standpoint of machine learning,
we can say that there is a natural ordering among the labels of the
target variable. The training difficulties that the standard CEL
can bring in classification with natural ordering problems are
discussed in more detail in [58].

The second classification disadvantage is the magnitude of
the gradients that arise during the training process with the CEL.
The CEL surfaces, according to [59], present fewer local minima
than the square error-based losses (SEL), the type to which the
MSE loss belongs. The CEL, on the other hand, has stronger
gradients than the SEL, which leads to a stronger tendency of
overfitting in CEL-trained systems, leading to the SEL’s having
a better generalization property in almost all scenarios examined
in [59]. This result was explained thereby assuming that the CEL
loss surface is more prone to sharp minima (narrow valleys) than
the SEL’s surface, making the overfitting considerably “easier”
to happen for the former systems. Additionally, it was also shown
that such classification-based systems can suffer from the gra-
dient vanishing problem. For instance, [60] shows the gradient
vanishing when using the softmax with categorical-CEL, and
the same for the sigmoid with the binary-CEL was reported in
[61]. We observed the same tendency in our coherent channel
equalization problem, when the MSE-based system generalized
better than the categorical CEL systems, due to overfitting, sharp
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Fig. 11. Gradient norm over the training epochs for the Regression model
(red) and Classifier model (blue), to highlight the gradient vanishing problem
and sharp loss-landscape local minima.

local minimal, and ultimately the gradient vanishing problem
that is observed in the CEL-based learning.

Finally, we can point out one more disadvantage of
classification-based equalizers, which is more relevant to their
use in real transmission systems. When utilizing the classifica-
tion, the equalization must have a predefined number of outputs
that correspond to the constellation’s cardinality. This means that
the classifier model’s operation is dependent on the modulation
format on which it was trained. In other words, a classifier’s
practical implementation (e.g., in hardware) would limit the
device’s applicability to a particular modulation format only,
which greatly reduces the device’s flexibility and adaptability.
However, as shown in Refs. [15], when we use regression, we
can easily adapt the model to work with different modulation
formats. As a result, regression-based models are much more
flexible (reconfigurable) than classification models, allowing us
to use the former under conditions different from the ones in
which the regression models were trained.

Now, since we have covered the key points related to the
regression and classification tasks, we will look at how an equal-
izer (or a soft-demapper) with the same architecture (applied to
the data from the same transmission setup) performs, and how
the result depends on whether the regression or classification
task is employed. In this test, a single channel DP signal of
30 GBd is transmitted over 20×50 km employing 64-QAM
(used in Figs. 10 and 11). The optical launch power is varied
from −3 dBm to 5 dBm. We used a biLSTM equalizer with 208
hidden units and 66 neighboring symbols for the input (the mem-
ory). Note that both regression and classification architectures
have the same number of layers, inputs, hidden units, and they
were trained on the same data sequences. However, for fairness
purposes, we have optimized the mini-batch size and learning
rate for each equalizer individually, because we observed that
using the same ones in regression and classification was causing
even stronger overfitting after a few epochs for the latter, which
is one of the classification drawbacks.

Fig. 10 shows the Q-factor and MI dependencies for training
and test datasets when we use the same biLSTM equalizer for

regression and classification (of course, the output layers of
NN structures are different for the two tasks). The Q-factor
curves for the training and testing of the classifiers exhibit a
considerable discrepancy, as shown in Fig. 10(a), indicating that
the classification model is overfitted. This noticeable difference
in the classification task persisted even after we had optimized
the learning rate and mini-batch size. However, in the case of
regression, the training and testing output curves behave almost
identically, in contrast to the classifier’s results. It follows that
for our test scenarios, the regression model based on the MSE
generalizes considerably better, which is consistent with the
findings from [59], where the strong gradients in the classifi-
cation task loss function impact learning further: the learning
state gets “trapped” in a sharp local minimum of loss landscape.
Furthermore, we point out that after the equalization, the regres-
sion equalizers resulted in a higher Q-factor than the achieved
value for the classifiers, owing to the better generalization of
the regression-based NN structures on the optical datasets. The
maximum regression-based NN’s Q-factor on the testing dataset
was 9.82 dB at 2 dBm, while the maximum Q-factor for the
classification was 7.74 dB at −1 dBm. Besides the Q-factor, it is
also instructive to show the MI for both tasks as well. The reason
for this is that the classification loss function, the CEL, is directly
related to the MI metric, therefore, displaying Q-factor after a
hard decision can limit the entire potential of the model [15].
Looking at the MI values in Fig. 10(b), we can see that the clas-
sifier’s training performance was overfitted, yielding nearly the
maximum MI attainable for each power when the training dataset
was used. However, in the case of regression, the training and
testing curves followed the same trend, indicating a much better
generalization capability of the equalizers. The maximum MI
on the testing dataset of the regression NN was 5.97 bits/symbol
(note that this value is only a MI’s lower bound), and the one
for the classification was 5.87 bits/symbol (but this MI value
is exact). We can then conclude that in typical optical trans-
mission tasks, the machine learning drawbacks associated with
conventional classification “overpower” the regression-related
shortcomings related to statistical limitations.

Aside from the overfitting, we also want to highlight the
consequence of the second classification drawback, regarding
the gradient vanishing in the training process. According to [52,
Chapter 8.2.2], a practical way to demonstrate that the local
minima is potentially the cause of the learning problem is to
verify that the gradient norm shrinks to some “insignificant”
values along with the training. As in [50], we depicted in Fig. 11
the gradient norm of the last layer for the biLSTM equalizer
over the epochs to show the effects of the loss function on the
behavior of the gradient norm. Unlike [50] that presented this
plot for the MLP architecture, we now show it for the biLSTM
equalizer, basically observing the same trend as reported for
the MLP equalizer in a completely different transmission setup.
From Fig. 11, it is clear that after just 200 epochs, the gradient
norm for the categorical-CEL case drops from 1.25 to 7× 10−5

and, with continued training, goes even lower to 8× 10−7. For
the regression case using MSE, the gradient continues to stably
decrease over the epochs, reaching a minimum of around 0.003.
Therefore, we can affirm that we potentially have sharp local
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TABLE III
SUMMARY OF BILSTM AND MLP PERFORMANCE DEPENDENCE ON THE MINI-BATCH SIZE FOR THE DIFFERENT CONSTELLATION CARDINALITIES.

SIMULATION RESULTS

minima in categorical CEL for the optical channel equalization
task, since, as described in [52, Chapter 8.2.2], the gradient
norm shrinks to a negligible value (on the order of 10−7) during
training.

Finally, we conclude this section with a brief discussion of
the loss function study in the task of optical channel equaliza-
tion/soft demapping. Even though the MSE is a good fit when
we deal with a Gaussian noise model making the NN learn ef-
fectively and deliver attractive Q-actor gains, in some scenarios,
the stochastic gradient descent (SGD) algorithm continues to
decrease the MSE, but this does not translate into the BER
improvement, which means that we fall into a local minimum.
This is visually observed when the “jail window” constellation
pattern appears, which indicates a mismatch between the MSE
loss and the BER metric. We believe that the “jail window”
appears for local minima in learning, and although it can produce
seemingly good BER results, it is not the ultimate equalization.
In the next section, we present a scenario where we clearly show
that when the “jail window” disappears due to optimization of
the mini-batch size, the final Q-factor performance increases
for the model without the “jail window”.8 To match the QoT
metric of our transmission and the loss function of our learning
algorithm, we can claim that the CEL is the most suitable loss
function for communication applications [55] since by minimiz-
ing cross-entropy, we maximize the mutual information of the
system, and therefore no mismatch between the loss function
and the QoT metric appears. However, as presented in this
section, we observed other machine learning-related problems
attributed to the learning process, namely SGD learning. We note
that the landscape of such a loss function has very sharp local
minima, and the gradients tend to vanish in the early learning
stage due to our high accuracy requirements in optical channel
equalization tasks. Therefore, even though the CEL does not
have a statistical limitation for the noise likelihood, it poses many
learning difficulties that can ultimately make its performance
worse than that of the regression NNs based on MSE. Here, we
also stress that several works have also acknowledged that both
regression and classification have disadvantages [62]–[68].

So we can confidently say that, for optical communication,
we still do not have the ultimate answer to the question of what
would be the best loss function, as each candidate has drawbacks.
We believe that by looking at different fields we can potentially
find some other possible candidates, but this required further

8Note that this is not always the case, increasing the mini-batch size will not
necessarily eliminate the “jail window” pattern.

investigation. In computer vision, it was discovered that when
an image is processed, the majority of the pixies describe the
image background, and only a few pixels express the objects in
the image. This resulted in inefficient training because most parts
of the image correspond to “an easy prediction” (which means
that they can be easily labeled as background by the detector)
and therefore offer little relevant learning. Although individually
they provide tiny contributions to the loss value, when we
combine those contributions, they can overwhelm the loss and
computed gradients, resulting in a degraded model’s prediction
performance. It happens because easy predictions (detections
with high probabilities or, in our context, the correct classifica-
tions following a simple hard decision) account for a large share
of inputs. To address this issue, in [68] Facebook A.I. developed
a new modified approach named focal loss (FL), by adding a
weighting factor to the CEL function. The FL gives a higher
weight to cases that are hardly misclassified: in communications,
it would correspond to the cases that has been misclassified after
the HD process. We believe that the difficulty of the “dataset
imbalance” (meaning that just a small fraction of the dataset
corresponds to the wrong HD predictions) exists in virtually all
high-accuracy communication-related equalization/demapping
problems. As a toy example, consider a system where an initial
SER after HD is equal to 10−3. Training the NN-classifier with
100 K symbols, in this case, means that only 100 symbols (0.1%)
are the errors that persist after HD and that the model needs
to learn from them to mitigate the impairments, while the rest
99900 symbols (99.9%) of the training dataset corresponds to
“an easy prediction”. Therefore, to improve the performance
of classifiers, we expect that a similar focal loss function, as
in computer vision, must be created for the communications
application. This can be an interesting topic for future research in
the field of optical channel equalization and efficient NN-based
soft symbol demapping.

VII. INTERRELATION BETWEEN BATCH SIZE, CONSTELLATION

CARDINALITY, AND EQUALIZATION QUALITY

The NN training presupposes the use of optimization algo-
rithms, such as SGD or Adam [69], to update the NN parameters
(weights) based on the value of the loss function. Traditionally,
two training methods are utilized: batch training, in which the al-
gorithm updates the weights after the entire training dataset, and
online learning, which is executed after each training sample.

In practice, however, stochastic optimization methods use
mini-batches, i.e., the portions of all training examples with the
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Fig. 12. Signal constellation of 16-QAM after metro-link (450 km) simulated
optical transmission using a Nonzero Dispersion Fiber [73]. We used this highly-
nonlinear exemplary system to visually demonstrate the distinct distortion levels
at different constellation points: the constellation points at the outer layer are
clearly more distorted than the ones closer to the origin.

size greater than one, but less than the entire training dataset,
to compute the gradients using less memory and update the
parameters after each mini-batch [52]. One reason for this is
that modern NNs demand such a large amount of data that
the computer dynamic memory cannot keep the entire dataset.
Notably, the size of a mini-batch is regarded as one of the most
important hyperparameters to consider when training an NN.
Large mini-batches are well known in deep learning for their
ability to significantly speed up the training process, while also
providing an accurate approximation of the gradient [52]. Small
mini-batches, on the other hand, have been shown to have a
regularizing impact, preventing overfitting [52], [70]. The latter
phenomenon can be explained by the fact that, while the large
mini-batches can indicate the gradient’s direction, the algorithm
cannot forecast how long this trend would continue, usually
causing the training process to take a large update step forward.
This leads to unstable learning or falling into local minima.
However, small mini-batches, while carrying added noise due to
their smaller sampling across the entire dataset, result in small
steps and the system can easily converge to a true direction [70].
Several studies have been carried out to investigate the effects
of mini-batches size on the NNs performing traditional deep
learning tasks. In [71] proposed using small mini-batches to
introduce noise in the gradient estimation and push the gradient
away from sharp local minima; the authors of that Ref. also
demonstrated that the optimal batch size for the CIFAR-10
dataset is 80. In [72], it was empirically demonstrated that the
large mini-batch sizes lead to the convergence at sharp local
minima, resulting in a poor NN’s generalization, whereas the
smaller mini-batches lead to flatter local minima, allowing the
NN to achieve a better generalization. However, to the best of our
knowledge, no research has been conducted to study the effect
of mini-batch size on the performance of NN-based regression
equalizers in optical transmission.

The motivation for this study is that the mini-batch in the
NN performing optical channel equalization has more physical

Fig. 13. Q-factor of 8- and 16-QAM simulated signals equalized by the
biLSTM trained with different mini-batch sizes: 8, 16, 32, 64, 128, 1024, and
2048. The simulated transmission setup is described in the main text.

meaning than it does in other “traditional” machine learning
tasks, such as computer vision. Recall that different transmitted
symbols in the constellation correspond to different optical field
intensities, depending on the modulation format. This can be
seen by looking at the 16-QAM received constellation diagram,
Fig. 12, where the outermost points are the most distorted ones.
This happens because the fiber nonlinearity is proportional to the
cube of the optical field amplitude, so the most distant points
(having the largest amplitude) experience the most nonlinear
effects. Because the NN’s parameters are updated after each
mini-batch, the training process can be more efficient if each
mini-batch contains training samples that cover the whole range
of possible constellation amplitudes, to encompass different
distortion levels. If this hypothesis is correct, there should be
a relationship between the mini-batch size and the modulation
format’s cardinality, also affecting the NN’s performance. This
section reports tests and simulations to explain the aforemen-
tioned connections.

Table III shows the Q-factor of optical signals equalized by
the MLP and biLSTM MSE-regression equalizers for a range
of modulation formats: 8-, 16-, 32-, 64, 128-QAM9 and mini-
batch sizes: size 8, 16, 32, 64, 128, and 2048. In this section,
simulations were performed for the SSMF 16×60 km link at
5 dBm launch power and 34.4 GBd symbol rate. When the size
of the mini-batch increases, we observe a progressive growth
in the Q-factor after equalization. Let us consider the case of
biLSTM, which gives the best equalization quality. When the
mini-batch size is increased for the 8- and 16-QAM, the Q-factor
after the biLSTM-based equalization dramatically improves.
For example, comparing the post-equalization Q-factors in the
16-QAM scenario, for mini-batch sizes 8 and 2048, the 3 dB
improvement can be seen for the largest mini-batch over the
smallest one. This behavior of mini-batch vs. Q-factor gain for
biLSTM is illustrated in Fig. 13 for 8-QAM and 16-QAM. Note
that increasing the mini-batch size above 2048 does not provide
any further improvement: the Q-factor reaches some kind of

9Note that to generate the 8-QAM constellation we used the standard Matlab
function qammod; the same constellation shape was used in [74]–[77].
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Fig. 14. Signal constellations (simulation results) for different batch sizes after equalization using the biLSTM equalizer for 8- and 16-QAM. The transmission
system is described in the text. The Q-factor of each constellation is also shown to highlight the improvement in QoT.

plateau (saturates) after the batch size of approximately 1000.
When using a higher constellation cardinality, 128-QAM, the
improvement rendered by the biLSTM equalizer increases from
3.54 to 4.27 dB when changing from the mini-batch size from 8
to 2048. We note that, from Table III, for the 128-QAM with
the MLP equalization, the difference between the Q-factors
corresponding to the lowest and highest mini-batch sizes is
approximately 1.3 dB, which is bigger than the difference for the
biLSTM. The increase in Q-factor backs up the claim that the
NNs can learn more efficiently when given the training samples
covering all nonlinearity levels in the constellation.

Together with the improvement in Q-factor (up to some
limiting value) following the growth of the mini-batch size, we
can see the interrelation between the constellation distribution
after equalization and the mini-batch size used in training. The
constellations for the 8- and 16-QAM systems for different
mini-batch sizes utilizing the biLSTM equalization, are given
in Fig. 14. In this figure, we can observe that utilizing a small
batch size for 8-QAM drives the NN-based equalizer to fall into
the previously discussed “jail window” pattern rather than into
the Gaussian-type distribution, but the latter can be obtained
when we use larger mini-batch sizes. In the 16-QAM case, the
signal constellations after NNs with small mini-batches became
noticeably distorted, the “jail window” elements are clearly seen.
At the same time, for the larger mini-batches, the 16-QAM
constellations show little distortion with clear concentrations
at the center of each constellation point.

The degradation of constellations from circular clusters into
the “jail window” pattern when training with small mini-batch
sizes, is actually a new and intriguing phenomenon: to our
knowledge, there have been no studies relating the equalizer’s
performance deterioration to the size of the training mini-
batches. Generally, as we have already seen, several factors
can contribute to the patterning effect of the “jail window”. In
this section, we addressed the specific situation, where the “jail

window” occurred solely due to the batch size effect, and so we
were able to understand how and why the batch size relates to the
“jail window” patterning. In a more general case, different con-
tributions amalgamate, resulting in the “jail window” pattern;
the latter is always an indication that something is not good
with the training or with the NN system itself. This is actually
evident from the results in Fig. 14(a) to (d). In case (a), where
the learned weights resulted in the “jail window,” the Q-factor is
around 10 dB, while in case (d), where the learned weights did
not generate the “jail window,” we measured the Q-factor to be
around 13 dB. Therefore, we expect that when the “jail window”
pattern is present, even though the performance metric value can
be rated as “satisfactory,” in the training we have most likely
reached just a local minimum, and some better equalization
results can be achieved with more appropriate training or by
using a modification of the NN architecture.

To explain further the degradation of signal constellations
further, when training the biLSTM equalizer with small mini-
batch sizes, we investigated the weight distribution inside the
NNs. More precisely, we compared the weight distributions
in the last linear layer (output layer) of the biLSTM, and the
distribution in the forward LSTM layer, for two values of the
training mini-batch size: 16 and 2048, using an 8-QAM system
as an example. Fig. 15 shows that the weights, when training with
small mini-batches, range over a considerably larger interval
than we have when training the NN with larger mini-batches.
From Fig. 15(b), we can see that the final layer weights were
significantly saturated when the NNs were trained with small
mini-batches10. The saturation is indicated by the presence of
large value weights and typically degrades the performance

10Well trained NNs usually have the weights’ distribution being close to the
Gaussian distribution with a small variance. When this variance is too large, say
more than one, as we show in Fig. 15, it usually indicates a saturation of weights,
which, in the NN terms, means our disregarding some important input features.
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Fig. 15. Weight distributions of the biLSTM equalizer’s forward and output layers, corresponding to the mini-batch size of 16 (red) and 2048 (blue).

of the NN. At this point, we hypothesize that the presence of
large weights makes the output of the NN strongly dominated
by a few weights with a large value. This is a widely known
phenomenon in deep learning when training NNs to perform
regression tasks [52], [78]. The NNs featuring large weights
tend to have the regression output converging to a few values
that are hard-coded from the input. In the case of optical signal
equalization, this effect deteriorates the signal constellations into
a “jail window”.

To carry out the analysis further, let us examine the number
of outlier weights in the linear layer. As it can be seen in Fig. 15,
the weights greater than one can be considered outliers. We
found that in the case of 8-QAM, the real parts of the recovered
symbols have twice as many outlier (larger than 1) weights as
the imaginary parts (298 for the latter case in comparison with
153 for the former)11 When we increased the outlier weight
threshold value criteria from 1 to 4, we found just four weights
on the neuron representing the real value of the constellation,
while the neuron for the imaginary part had just two. This is the
exact ratio between the number of continuous straight “lines”
(each “line” is made up of equalized constellation points) in the
amplitudes of the in-phase and quadrature, as seen in Fig. 14(a).

We propose the following explanation for the aforementioned
patterning effects. When employing small mini-batch sizes with
a small cardinality constellation, there exists a noticeable prob-
ability that many points in the batch belong to just a single
amplitude level. As a result, the NN tends to learn the inverse
channel function at this particular nonlinearity level and is
more likely to hard-code some inputs to this obvious amplitude
output. This issue is less likely to occur with high-cardinality
modulation formats since it is less probable that the batch
would contain a lot of samples belonging to the same amplitude
level. However, even in high modulation formats, we could see
the “jail window” pattern when using the MLP equalizer, but
now with less intensity12. One possible explanation for why

11This effect persists in the case of symmetric 16-QAM and other constella-
tions when the “jail window” occurs, such that it is not relevant to the asymmetry
of the 8-QAM constellations used in our study.

12We observed that the “jail window” pattern is modulation format dependent.
An interesting discussion on the fact that non-linear MSE equalizers realize a
stair function can be found in [55]

the optical signals recovered by the MLP equalizer are more
prone to constellation degeneration than in the case of the
biLSTM equalizer, is that the feed-forward structure (e.g. the
MLP) makes it easier to hard-code input data to the output.
At the same time, the recurrent-type structures (e.g. the LSTM
type) allow parameters to be shared across the NN model [52],
making the hard-coding effect more difficult to emerge. Here,
however, we want to remark on the performance of the MLP
and LSTM equalizers. Both Sections III and VII demonstrated
that the LSTM equalization produces a better result than the
MLP equalizer. The LSTM, which can be deemed as a nonlinear
infinite impulse response (IIR) filter, can represent the inverse of
a nonlinear channel more accurately than equalizers that use an
MLP structure; the latter is actually a non-linear finite impulse
response (FIR) filter [79]. IIR filters, unlike FIR filters, do not
require that the system has finite memory, giving the LSTM-type
equalization an advantage. Theoretically, the MLP may also
achieve such a high degree of performance when the input
accounts for large enough memory; but, due to the overfitting of
the MLP structure13, this turns out to be extremely difficult to
achieve. On the other hand, because the large-memory handling
LSTM structures are simpler than MLPs, the overfitting there
does not occur, or at least, is much less pronounced.

After considering the deteriorating effects attributed to the
presence of large-value weights, we advocate the use of a
well-known regularization technique, L2 regularization, as a
feasible way of minimizing the degradation in the equalized
signal constellations. The idea behind L2 regularization is to
penalize large weights and favor smaller weights throughout the
model [78]. From a Bayesian statistics standpoint, the addition
of L2 regularization is equivalent to performing a maximum a
posteriori estimation with a Gaussian prior; the traditional MSE
loss function corresponds to a maximum likelihood estimation
when the likelihood has a Gaussian distribution. This means that
after the learning, our equalization transfer function (likelihood)
has been re-weighted to reflect a prior, making it much more
difficult to have hard-coded correlations between the input and

13To recover the nonlinear channel, the MLP would need a complicated
structure with large memory. However, such a redundant architecture is equally
susceptible to learning the training dataset, which leads to overfitting [14].
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Fig. 16. 8-QAM signal constellations after the NN-based simulated channel
equalization when training with mini-batch size equal to 16 without (a) and with
(b) L2 regularization.

output (recall that the hard-coding is one of the reasons causing
the “jail window” pattern). The following equation represents
the L2 contribution to the regularized loss function L(y, ŷ):

L(y, ŷ) = MSE(y, ŷ) + λ

n∑
i=1

w2
i , (6)

where the first addend is the initial MSE loss function, λ is the
regularization parameter that must be optimized,14 n is the total
number of weights in the NN topology, and wi is the i-th weight
in the NN topology.

Fig. 16 shows the signal constellations of the 8-QAM signal
equalized by the NNs trained with the mini-batch size of 16,
with and without regularization. We observe that when using
the regularization, the degradation of signal constellations can
be prevented. It is worth pointing out that although regularization
can render better constellations, the equalizing performance is
still badly affected by the small mini-batch sizes: even with
regularization, we cannot match the performance of the NNs
trained with large mini-batches. Thus, while the large weights
contribute to the degeneration of constellations, this is not the
only detrimental effect caused by a small mini-batch size. This
observation suggests that the most important problem with small
mini-batch sizes can relate to the insufficient number of unique
amplitude levels that are present in each mini-batch, as we
suggested above.

Fig. 16(a) and 16(b) demonstrate the signal constellations at
the epoch with the highest Q-factor. It was observed that when
training the NNs after this level, the performance degeneration
took place even with the regularization. Although most of the
weights after the regularization turned out to have a relatively
low value, there still exist significantly larger outliers. We sur-
mise that these outliers contribute to the distortion of the signal’s
constellations. Interestingly, using large mini-batch results in a
narrower distribution of the weights, which does not feature any
significant outliers even when the regularization is not applied.
This observation strongly supports our claim that training with
an insufficiently large mini-batch brings about the performance
degradation of NN-based coherent optical channel equalizers.

14We have tested the regularization parameter from the range between 0.01
and 0.0001, but no drastic difference was observed in terms of Q-factor im-
provement. In the plots presented in this section we used the parameter value
λ = 0.001.

Fig. 17. Distribution of MLP weights for the entire model: non-regularized
(Original) and regularized cases. The insets show the respective equalized
constellations for each case.

Finally, we applied the L2 regularization to all hidden layers
of the MLP equalizer in another transmission case where the
“jail window” was really strong: it was the case (ii) described
in Section III and given in Fig. 3(b). The weight distribution of
the entire model for the MSE (marked as “Original”) and for the
MSE with the L2 regularization (marked as “Regularized”) is
presented in Fig. 17. From this result we can see that, this time,
for a higher modulation format (16-QAM), the regularization
makes the original “jail window” constellation be again a set of
“Gaussian-like” clusters, see the corresponding insets in Fig. 17.
However, even though the regularization produced a visually
different constellation output, the original and regularized model
revealed almost identical performance in terms of the eventual
Q-factor: the original one gave 7.89 dB, regularized −7.61 dB.
This fact shows that regularization is not the solution to make the
model learn further15, but it rather helped us to identify which
element in the NN-model was responsible for the “jail window”
pattern.

VIII. COMPUTATIONAL COMPLEXITY ANALYSIS: NUMBER OF

PARAMETERS VERSUS NUMBER OF MULTIPLICATIONS

One of the most critical elements in implementing a deep
NN in an end-product is the signal processing latency associ-
ated with the signal passing through the NN. The majority of
real-world applications demand a really short inference (pro-
cessing) time [81], [82], ranging from a few milliseconds to a
second. However, evaluating a NN’s inference time, or latency,
accurately and efficiently, can be a difficult problem [83]. The
consequences of latency evaluation errors can lead to poor
decisions about the implementation of NN. At the same time,
the device’s power consumption and the required hardware size
for the NN implementation are no less important characteristics;
the latter is also related to the NN’s CC. Additionally, we note

15Using the L2 regularizer can also make the NN model be a single point
attractor in the space of its weights, where the attractor is located at the origin.
In such a case, any information that was inserted into the NN model dies out
exponentially fast. As described in [80], this can hide long-term memory traces
that impact the learning process in our task.
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TABLE IV
SUMMARY OF LATENCY VALUES FOR DIFFERENT HYPERPARAMETERS SETS

that the latency is actually architecture dependent. For instance,
we can implement an MLP in a fully parallel way, which would
provide the lowest latency but the highest power consumption.
Alternatively, we can implement a single multiplier unit and
process the multiplications sequentially. This would result in
the lowest power consumption and the highest latency, such
that we always ought to seek the desirable balance between
the power consumption and latency. In this paper, to better
understand the relevance of latency and our CC metrics, we
measure the average latency to recover one symbol using a
Colab CPU (4vCPU at 2.0 GHz with 26 GB RAM) for sequential
NN architectures.16 In this section, we will analyze the number
of real multiplications per recovered symbol (RMpS) as a CC
metric. Technically, if well-defined, this CC metric can help
in the assessment of a solution’s design appropriateness before
going to the hardware level. In the following, we will identify
three aspects that should be considered when evaluating the CC
of any NN-based equalizer.

First, we address two important points. i) We show that the
RMpS metric provides a good estimate of the CC by demonstrat-
ing its proportionality to the averaged latency (inference time)
for one equalized symbol in a pure sequential architecture. ii)
We show that the number of weights of the NN-based equalizer
is not a good metric for assessing the NN’s complexity. To
showcase these points, we have tested eight different topologies
for MLP and biLSTM equalizers with different levels of RMpS
and measured their one-symbol latency algebraically averaged
over 1 M recovered symbols. The results of the tests performed
in this subsection are summarized in Table IV. To account for the
number of parameters, we used the TensorFlow application for
each topology, and for the proper RMpS computation, we used
the equations introduced in [14]. The expressions for the RMpS
of the MLP having 2, 3, and 4 layers, and biLSTM equalizers
are, respectively:

CMLP2
= nsnin1 + n1n2 + n2no, (7)

CMLP3
= nsnin1 + n1n2 + n2n3 + n3no, (8)

CMLP4
= nsnin1 + n1n2 + n2n3 + n3n4 + n4no, (9)

CbiLSTM = 2nsnh(4ni + 4nh + 3 + no), (10)

16Note that with a different architecture, e.g. on GPU, TPU, different CPU,
FPGA, or ASIC, the latency can be drastically different [84].

where ns is the input time sequence size, with the memory size
ns = 2N + 1, withN being the number of neighboring symbols
considered, and ni being the number of input features, which, in
our case, is equal to 4 (the number of outputs per symbol); no is
equal to 2, n1,2,3,4 are the number of neurons in each respective
hidden layer, and nh is the number of hidden units in the LSTM
cell.

From Table IV, we see that for the same equalizer type and
similar RMpS, the averaged latency values are also very similar.
For example, for topologies 1, 2, and 3, the latency of the
MLP equalizer was around 7.8× 10−5 s, and for the biLSTM
equalizer it was around 1.2× 10−4 s. Also, we can infer that the
number of weights in the MLP is exactly equal to the RMpS.
However, this equality is true only when the equalizer is solely
composed of dense layers, as it is in the MLP case.

Regarding the number of parameters (trainable weights) in the
equalizer, two main conclusions can be drawn from Table IV.
First, for the same level of RMpS, the number of parameters
for the MLP is much larger than that number for the biLSTM
equalizer. This indicates that comparing equalizers with a dif-
ferent structure in terms of their number of parameters may be
misleading. Then, we can also see that, for the biLSTM case, the
increase in the number of parameters does not necessarily cause
the increase in RMpS (in the CC) and the latency. This is an
important observation since, theoretically, for our implemented
sequential NN models, the latency should increase with the
CC growth. For better visualization, in Fig. 18 we show the
interrelation between the latency, RMpS, and the number of NN
structure parameters. As we can see, the latency grows almost
linearly with the RMpS metric, which confirms that our metric
is a good estimate for the CC. On the other hand, we claim that
the number of parameters does not represent a good estimation
for the CC in the case of recurrent and convolutional layers,
and it is not a good metric to compare the CC across different
NN architectures. Therefore, to address the complexity analyses,
we should always consider the RMpS value, while the number
of NN parameters is relevant only if we are interested in the
memory required by the NN or in the NN’s training complexity.

The second point that we mention, refers to the memory access
cost. In the case when we have approximately the same RMpS
number, the biLSTM equalizer’s latency is almost two times
higher than that of the MLP equalizer; see Topology 7 from
Table IV with the RMpS equal to ≈ 2× 106. This effect is the
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Fig. 18. Processing time to equalize one symbol vs. RMpS comparison, and vs. the number of trainable parameters in the respective NN.

consequence of Keras’s implementation of the LSTM layer, in
which the input data are subject to additional pre-processing
operations to construct the state of each recurrent cell, and this
pre-processing requires additional memory usage.17 However,
in our expression for the CC using RMpS, we do not account
for such a memory usage impact. The cost of communication
with the memory is usually much larger than the cost of “local”
computation [85]. In this context, the term communication refers
to the movement of data between the levels of memory or
between multiple processors on a network. Therefore, when
computing the CC of our equalizers, the proposition of using
memory to save/access previous computations to reduce the
number of multiplications (RMpS) must be taken with cau-
tion, as the cost of moving data (measured in time or energy
expenditures) can (and usually does) exceed the cost of an
arithmetic operation by orders of magnitude depending on the
technology used [86], [87]. To illustrate this problem, we notice
that by using modern SRAMs [88], the read and write estimated
latencies for a 64 Kb SRAM, used for the NN, are ∼1 ns; for
the most costly operations in NN inference (processing), the
multiplications, [89] shows that a 16×16 bits multiplier can
have up to ∼10 ns estimated latency. Consider the scenario
where the multiplication in our NN model is used 100 times.
For a parallel implementation, 100 multipliers could be used
and the total latency would be just 10 ns. But, turning to the NN
implementation using the SRAM to save the multiplications,
we need to consider that SRAMs usually has one read port and
one write port, so only one parameter can be read at a time.
Therefore, the total value would be 10 ns of the multiplication
plus 1 ns to write in the SRAM, plus 100 times we read the
values of this multiplication, which eventually gives us the
estimate: 111 ns. Thus, we see that SRAM usage, in fact,
becomes the processing bottleneck that drastically increases
overall latency. This is the infamous latency versus complexity
trade-off problem in hardware implementation, where we can

17Note that the latency would naturally change when using GPUs since the
implementation of LSTM changes for such hardware.

use fewer resources of our hardware by sacrificing the latency,
and vice versa, more resources allow us to reduce the processing
time. Therefore, when going to the level of design for the NN
equalizer using some SRAM, it is not completely fair to directly
compare the reduced CC (the RMpS number) of such solutions
to the CC of some traditional DSP techniques (say, to those of
traditional digital back-propagation, the often-used benchmark),
since SRAM will also effectively add to the complexity when
implementing the particular design in hardware. Instead, we
can say that by using advanced compression techniques and
hardware technologies, a model that shares the same multiplica-
tions/parameters across its architecture and uses the SRAM to
repeatedly access them, can potentially be less complex in terms
of the hardware implementation at the expense of worse latency.

Finally, one more direction to account for when we assess the
complexity refers to NN pruning and quantization techniques
applied to the developed equalizer’s structure [90], [91]. The
purpose of quantization and pruning is to make the NN imple-
mentation in hardware more resource-efficient. In this context,
pruning refers to the practice of removing weights from the
original trained model. We utilize the number of bit operations
(BoPs) metric [92] to measure NN’s CC because the BoP
metric is especially important when evaluating the performance
of mixed-precision arithmetic in hardware implementations on
FPGAs or ASICs. As described in [92], the BoPs of a dense layer
with n neurons and input with m features can be expressed as:

BoPdense = nm (bwbi + bw + bi + �log2(m)�), (11)

where, in the context of the NN, bw is the number of bits used
to represent the weights of the NN, bi is the number of bits used
to represent the input/ activation function, and �x� is a ceiling
function. From this equation, we observe that the number of mul-
tiplications is multiplied by bwbi, and the number of additions
is multiplied by bw + bi + �log2(m)�. The latter is the actual
bit width of the accumulator needed in MAC operations (the
accumulator is a register in which the results of the intermediate
arithmetic logic unit are stored). Also, note that this expres-
sion considers a dense layer with weight-matrix multiplication
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TABLE V
OVERVIEW OF MAIN ISSUES IN DEVISING EFFICIENT NN-BASED EQUALIZERS

and bias addition, otherwise, the number of additions would
be n(m− 1). Now, considering unstructured pruning (that is,
we remove the least important connections/weights rather than
entire layers or neurons), we can include the sparsity impact in
(11) as follows:

BoPdense=nm(bwbi×(1−ηs)+bw+bi+�log2(m)�). (12)

According to the equation above, the CC grows quadratically
with bit widths and linearly with the pruning/sparsity ratio ηs,
which is the percentage of connections erased from the layer.
Now, considering the case with multiple layers, let us take, as
an example, the MLP structure with 3 hidden layers (with the
number of neurons n1/n2/n3), input features number m, and
output features number no. If we assume that the weights have
the same quantization characterized by the number of bits bw
throughout the structure, and each input/activation function with
bi bits, as well as each layer is pruned equally with the sparsity
ratio ηs, the BoPs for the MLP can be described in terms of the
RMpS metric from (8) as:

BoPMLP=CMLP3
(bwbi×(1−ηs)+bw + bi) + ACC, (13)

where “ACC” is part of the cost attributed to the accumulator
and in this case is equal tomn1�log2(m)�+ n1n2�log2(n1)�+
n2n3�log2(n2)�+ n3no�log2(n3)�.

However, regarding (13) we, first, stress that it is not applica-
ble when pruning is non-uniform:18 If another type of pruning
is used, the term CMLP3

× (1− ηs) has to be replaced by
the total number of multiplications emerging from a particular
non-uniform pruning scheme. Second, when dealing with quan-
tization, we should be aware of all quantization levels which
are used in the NN equalizer. As mentioned in [93], different
quantization levels can be applied in the activation functions,

18Non-uniform pruning means that different layers of the NN model are
pruned with different sparsity ratios.

input, and weights of each layer, and this obviously affects the
overall complexity. Therefore, if different quantizations are used
in different layers or the input, this must be counted separately,
multiplying bwbi per layer as in [91]. It is a common error
to assume that when quantizing refers to just the weights,
the complexity would drop quadratically: the CC would drop
quadratically only if we equally reduce the quantization bit width
of both the input and activation function.

Notice that, theoretically, the signal/activation function quan-
tization has a floor depending on the modulation format used
in the transmission. Recall that each M-QAM symbol denotes a
single number from a set of M symbols in the QAM alphabet.
That is, the real and imaginary components of each M-QAM
symbol are represented by a number in the range

√
M . As

a result, both real and imaginary parts’ resolution should be
significantly higher than log2(

√
M). For example, in a 64-QAM

system, the real/imaginary parts of each symbol must be repre-
sented by at least log2(

√
64) = 3 quantization levels (bits in a

quantized quantity’s representation), and the minimal number of
levels in the quantized complex symbol’s representation should
be no less than 3+3 bits in total. However, in the exemplary
case of 64-QAM, using a value close to 6 bits to represent
the NN’s complex-valued input typically results in a substantial
performance degradation because the system would virtually al-
ways make hard decisions and lose crucial equalization features.
Regarding the quantization of the weights, the bit-precision for
the weights is more flexible: it can be as low as allowed by the
performance level of the model, and such advanced techniques
as, e.g., the quantization-aware training [93] can be used to
achieve the low-bit quantization of the weights.

IX. CONCLUSION

In this paper, we revealed and studied important hidden
caveats and pitfalls that we have observed in recent publications
and our own research dealing with the applications of machine
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learning methods and, particularly, the NNs for nonlinear im-
pairments’ compensation in coherent optical communications.
We have grouped our original results here in such a way that
this paper can also serve as a guidance and tutorial in this
rapidly-growing field, drawing out the lessons learned and aim-
ing at somewhat navigating the researchers in the area. We note
that this work is not purely a traditional review insofar as we
presented a number of completely new results regarding the
difficulties in designing efficient NN equalizers. We believe that
our results can foster new concepts and artificial intelligence
techniques, allowing researchers to avoid known design process
pitfalls and misinterpretation of results or findings. We underline
again the challenges and common misconception errors that
often occur in the development of NN-based equalizers applied
in high-speed coherent optical communication systems: a poor
model generalization, dependent dataset characteristics (period-
icity), overfitting behavior and indications, performance overes-
timation, and inaccuracy in estimating the computational com-
plexity. For convenience, our findings and recommendations are
summoned up in Table V. Although this exploration of pitfalls
is, without a doubt, far from complete, we believe that we have
covered the most common problems that pose a particularly high
risk for the design of efficient NN-based equalizers and other
machine learning structures used in optical transmission lines.
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