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Reconfigurable Activation Functions in Integrated
Optical Neural Networks

José Roberto Rausell Campo and Daniel Pérez-López

Abstract—The implementation of nonlinear activation functions
is one of the key challenges that optical neural networks face.
To the date, different approaches have been proposed, including
switching to digital implementations, electro-optical or all optical.
In this article, we compare the response of different electro-optic
architectures where part of the input optical signal is converted
into the electrical domain and used to self-phase modulate the
intensity of the remaining optical signal. These architectures are
made up of Mach Zehnder Interferometers (MZI) and microring
resonators (MRR). We have compared the corresponding transfer
functions with commonly used activation functions in state-of-the-
art machine learning models and carried out an in-depth analysis
of the capabilities of those architectures to generate the proposed
activation functions. We demonstrate that a ring assisted MZI and
a two-ring assisted MZI present the highest expressivity among the
proposed structures. To the best of our knowledge, this is the first
time that a quantified analysis of the capabilities of optical devices
to mimic state-of-the-art activation functions is presented. The
obtained activation functions are benchmarked on two machine
learning examples: classification task using the Iris dataset, and im-
age recognition using the MNIST dataset. We use complex-valued
feed-forward neural networks and get test accuracies of 97% and
95% respectively.

Index Terms—Complex-valued neural networks, electro-optic
modulation, machine learning, nonlinear optics, optical activation
functions, optical neural networks.

I. INTRODUCTION

ARTIFICIAL neural networks (ANN) have seen an expo-
nential growth in recent years thanks to the development

of algorithms with a wide range of applications such as image
recognition [1], [2], speech recognition [3], mastering board
games [4] and audio signal processing [5]. In turn, the compu-
tational requirements have escalated rapidly and future progress
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may be endangered if there is not an increase in the efficiency of
the algorithms, or a movement to more computationally-efficient
architectures [6]–[8].

In this regard, specialized electronic processors like graphical
processing units (GPUs) [9], tensor processing units (TPUs)
[10] and analog-based neuromorphic devices [11] have been
investigated, improving the efficiency of generic CPUs by some
orders of magnitude. However, these solutions rely on electronic
systems and thus, have some fundamental limits in bandwidth
and energy efficiency [12].

To overcome these hurdles, photonic processors have emerged
as a promising technology for machine learning accelerators,
capable to provide high bandwidths, high parallelism, low la-
tencies and low crosstalk [13]–[15]. Different approaches based
on free space optics have been proposed in the literature, using
spatial light modulators (SLM), diffractive elements or coherent
detection [16]–[19]. Recent progress in integrated photonic tech-
nologies have open a new platform for optical artificial neural
networks (OANN) [20], [21]. A solution based on the broadcast-
and-weight protocol uses microring resonators to introduce
weights, and photodetectors to perform the optical matrix mul-
tiplication [6]. This architecture has the advantage of potential
high-density integration and parallelization exploiting spectral
diversity. However, it requires opto-electronic conversions in
each neural network layer. Furthermore, MRR based systems
present significant limitations for scaling up. They require high-
finesse MRR, which limits the number of frequency channels
available, and they present a quadratic scaling of the path length
which negatively affects the computational speed and energy
consumption [22]. Another approach performs optical matrix
multiplications with meshes of Mach Zehnder Interferometers
(MZIs), capable of implementing unitary transformations [23],
[24]. Arbitrary linear matrix multiplications can also be per-
formed using SVD decomposition [25].

Beyond the multiply and accumulate section, one of the
remaining challenges in OANN is the implementation of the
nonlinear activation function (NAF). Fig. 1 illustrates alternative
ways to perform this functionality. NAF are essential for ANN
because they allow to model target variables that have complex
relations with their explanatory variables. To tackle this problem,
ONN proposed in [17], [20], [21], photodetect the optical signal
at the end of each layer an add the nonlinear stage using digital
processors (Fig. 1a). The outputs are sent to a modulator to
produce the input of the next layer. This solution takes advantage
of the expressivity and programmability of digital processors
and re-uses the same physical layer to feature deeper neural
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Fig. 1. Schematic non-linear activation function architectures for optical neu-
ral networks employing Optical (O), Electrical (E) and digital conversions and
processing. (a) OEDEO approach, (b) Direct OEO, (c) self-modulated OEO,
(d) Optical approach, (e) This work: programmable activation function based
on self-modulated OEO. OEO Part of the input optical signal is divided and feed
into and O/E circuit where it is photodetected and conditioned. (f) programmable
activation function based on OEO link.

networks virtually; however, the analog-to-digital conversion
reduces the computational speed. To avoid delays introduced by
the digital signal processing, an alternative architecture attempts
to introduce the nonlinear function optically (ONAF). On the one
hand, optoelectronic activations convert part, or all, the optical
signal into the electrical domain and use it to modulate the re-
maining, or a new, optical signal with systems that give nonlinear
responses. In [26], absorption modulators with different active
materials are studied. A variety of ONAF are synthetized using
a doped MRR modulator in [27]. Reference [28], introduce a
novel scheme where the incoming optical signal is sent into a
directional coupler in which a small portion is separated and
converted into the electrical domain and used for modulating
the remaining optical signal using a MZI, obtaining a non-linear
device (Fig. 1c). The reconfigurability of the nonlinear activation
function is limited by the interferometric response and the elec-
trical circuitry settings. Optical bistability using optoelectronic
feedback have also been reported in [29] in a silicon photonics
platform based on ring resonators.

Finally, the third solution for the non-linear layer is em-
ploying all-optical layer, (Fig. 1d). Without exiting the optical
domain, these have the potential to offer the highest bandwidths
and speed, but, optical nonlinearities are weak, requiring high
power thresholds or high response time. A semiconductor op-
tical amplifier (SOA) based scheme have been experimentally
demonstrated to obtain sigmoid like activation function [30].
Moreover, the bistability of an injection-locked Fabry-Perot
semiconductor laser [31], induced transparency and reversed
saturated absorption [32] have been proposed. Finally, A. Jha

et al., demonstrated in [33] an all-optical reconfigurable NAF via
the free-carrier dispersion effect in ring assisted Mach-Zehnder
interferometers.

Since there is no universal activation function that can be
employed for every learning process, there is a strong interest
on achieving a reconfigurable hardware element that enables the
programming of arbitrary nonlinear responses. In this work, we
make an analysis of a collection of 9 electro-optic interferomet-
ric systems made up of combinations of MZIs and MRRs to
generate reconfigurable optical nonlinear activation functions.
The studied architectures are based on the previously described
working principle of [28], where part of the incoming signal is
converted into the electronic domain and used to feed one of the
phase shifters of the system, producing a self-phase modulation
(Fig. 1e). They are designed to work with MZI-based matrix
multipliers employing a single wavelength. The transfer func-
tions of the proposed reconfigurable systems are compared with
14 NAFs commonly used in state-of-the-art machine learning
models. The ability of the optical systems to mimic these NAFs
is measured using the root mean squared (rms) between both
functions. Previous cited works rely on two different types of
architectures. First, those which can only generate one optical
nonlinearity, which although interesting lack programmability,
and those which present programmable structures but have not
carried out an in-depth analysis of the expressivity of their ar-
chitectures. Our work presents a broad and measurable analysis
of the expressivity of the different proposed O/E/O systems
comparing their response to the most common state-of-the-art
activation functions and allows to determine which electro-optic
scheme is most suitable in terms of programmability for feed-
forward ONN.

The remainder of the article is structured as follows. In
Section II, the typical NAFs used to compare with the response
of our optical architectures are presented. In Section III, we
describe the proposed optical architectures. In Section III-A,
we present the transfer functions of the systems. In Section III-B,
the transfer functions of the proposed systems are fitted to the
data generated by the equations in Section II, using a method
based on the Levenberg-Marquardt algorithm. We used the root
mean squared error (rmse) to evaluate the expressivity of the
devices as nonlinear activation functions generators. In Sec-
tion III-C, we simulate fabrication errors and component imper-
fections of the optical systems and analyze its consequences in
the performance of the architectures. In Section IV, the ONAFs
generated by a ring assisted MZI and a two-ring assisted MZI are
tested on two machine learning benchmarks, the classification
problem based on the classification of flowers using the IRIS
dataset and the image recognition problem using the MNIST
dataset.

II. DIGITAL NONLINEAR ACTIVATION FUNCTIONS

In this section, we describe the nonlinear activation func-
tions that are used as targets for our optical interferometric
architectures. These functions, correspond to the more common
nonlinear activations implemented in digital processors. Extra
variables are incorporated into the equations to scale the output
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and displace the origin of the functions because the ONAFs
are studied in the power domain, i.e., only positive inputs and
outputs are permitted. Moreover, the added parameters allow
to calculate different representations of the same function in the
optical domain, giving the possibility to test the expressivity and
limits of our optical devices.

Hereafter, the collection of 14 functions used in our work is
presented:
� ReLU [34]:

f (z) = max (m (z − β) , 0) (1)

� Clipped ReLU:

f (z) = min (βz, α) , β ≤ 1 (2)

� ELU [35]:

f (z) =

{
α[exp (m (z − β)− 1] + c, z ≤ β

m (z − β) + c, z ≥ β
(3)

� GeLU [36]:

f (z) =

[
1

2
α (z − β)

×
(
1 + erf

(
α (z − β)√

2

))
+ c

]
/scale (4)

� Parametric ReLU [37]:

f (z) = [max (α (z − β) , (z − β)) + c]/ scale , a ≤ 1
(5)

� SiLU [38]:

f (z) =

[
α (z − β)

1 + exp (−α (z − β))
+ c

]
/scale (6)

� Gaussian:

f (z) = exp

(
−(z − β)2

2α2

)
/scale (7)

� Quadratic:

f (z) = z2 (8)

� Sigmoid:

f (z) =
scale

1 + exp (−α (z − β))
(9)

� Sine:

f (z) = [sin (αz + β) + 1] /2 (10)

� Softplus [39]:

f (z) = log(1 + exp (α (z − β)) /scale (11)

� Tanh:

f (z) = [tanh (α (z − β)) + c]× scale (12)

� Softsign [40]:

f (z) =

[
α (z − β)

1 + |α (z − β)| + c

]
/scale (13)

TABLE I
SUMMARY OF PARAMETER VALUES FOR THE ACTIVATION FUNCTIONS

∗Sigmoid is divided into two sets, Sigmoid 1 and Sigmoid 2. For Sigmoid 1, scale is
variable in (9) and for Sigmoid 2, scale = 1.

� Exponential:

f (z) = exp (β (z − 1)) (14)

α and β are variable parameters used to display different
representations of the same function. The selected values are
shown in Table I. Each of the α values is combined with all the
β values, resulting in a total of 108 representations. Parameters
c and scale are calculated automatically depending on α and β
to keep the output of the function between 0 and 1. This feature
is necessary because we have worked with normalized input
power, that is, our inputs are bounded between 0 and 1, and the
studied devices are passive, which forces the outputs to be equal
or lower than the inputs.

III. PROPOSED ARCHITECTURES

In this section, we present the proposed hardware architec-
tures to generate nonlinear functions for optical neural networks.
Our work is based in the combination of two basic integrated op-
tical devices that have been extensively studied in the literature,
Mach Zehnder interferometers [41], and microring resonators
[42]. MZIs include the combination of 2 3-dB couplers and 2
phase shifters. The control of each phase shifter enables the
creation of tunable optical couplers with independent power
ratio and phase shift tuning. Regarding the ring resonators, these
are close-path waveguides (cavities) that are accessed through
optical couplers. Moreover, if we integrate phase actuators
within the cavity and/or couplers, their response can be tuned
using external electrical signals, giving the possibility to obtain
a programmable device [43], [44].

The use of MZIs to generate activation functions in ONN
using E/O conversion was first reported by [45]. In this work, I.
Williamson et al., presented an architecture where a small part
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of the incoming signal power, around 10%, is separated from
the input signal by passing it through a directional coupler. This
signal power is then converted into the electrical domain using an
optical-to-electrical conversion circuit. First, the optical signal is
photodetected and turned into an electrical current. Second, this
current is converted into a voltage that goes through a nonlinear
signal conditioner that adds and additional nonlinear conversion
to the voltage signal. Finally, the output of the conditioner is
combined with a static bias voltage.

The resulting signal serves as a voltage supply of an optical
phase shifter that induces a phase shift on the remaining optical
signal that travels through one of the arms of an MZI. The applied
phase shift corresponds to

Δφ =
π

Vπ

[
Vb +H

(
G�α|z|2

)]
, (15)

where |z|2 is the normalized optical power extracted in the
optical monitor, α is the ratio of optical power divided in the
directional coupler, � is the responsivity of the photodetector,
G is the gain of the transimpedance amplifier,H(.) is the transfer
function of the nonlinear conditioner, Vb is the static bias voltage
and Vπ is the necessary voltage to induce a phase shift of π in
the phase shifter.

The optical signal at the output of the MZI is then a self-phase
modulation of the input signal, that is, the output signal depends
nonlinearly on the input signal. The resulting architecture is
limited in the number and type of nonlinear responses it can
synthetize.

In our work, with the aim of proposing a flexible hardware
to enable arbitrary nonlinear functions, we follow a similar
approach. The studied architectures are a combination of MZIs
and ORRs where some of its parameters, coupling coefficients
and phase shifts, can be variable. All the resulting devices are
built with a phase shifter working as described in (15). In our
case, we use a more general form in which the correspondent
induced phase shift is

Δφ = a+ b|z|2, (16)

where a and b are tunable and represent the O/E circuit parame-
ters: voltage, gain, responsivity …. A general scheme of the de-
scribed system is presented in Fig. 1e, where the aforementioned
phase shift is embedded in the programmable interferometric
device.

For the interferometric device analysis, we selected a total
number of 9 architectures, Fig. 2., to compute and compare their
capability to program the aforementioned non-linear responses.
These architectures are (a) an MZI, (b) an ORR, (c) an ORR in
add-drop configuration, (d) an ORR in add-drop configuration
with the output port coupled, (e) a ring-assisted MZI, (f) a
double ring-assisted MZI, (g) a double SCISSORS, (h) a double
CROW, (i) a double CROW in add-drop configuration with the
output ports coupled. The ki coefficients represent the coupling
coefficients of the waveguides. Coupling can be made using
directional couplers (DC), multimode interferometers (MMI),
or MZIs if the ki is defined to be tunable. The φi represent phase
shifts in the waveguide. These shifts can be implemented using
thermo-optic phase shifters, micro electromechanical (MEMS)

Fig. 2. Proposed architectures: (a) an MZI, (b) an ORR, (c) an ORR in add-
drop configuration, (d) an ORR in add-drop configuration with the output port
coupled, (e) a ring-assisted MZI, (f) a double ring-assisted MZI, (g) a double
SCISSORS, (h) a double CROW, (i) a double CROW in add-drop configuration
with the output ports coupled. Parameters ki represent coupling coefficients and
φi represent phase shifts.

phase shifters or phase shifters based in phase change materials
(PCM). Subindex r is used to indicate that the correspondent
element is part of a ring resonator.

The number of tunable parameters in the system is a col-
lection of the optical system parameters: coupling and phase
shifts, and the O/E circuit parameters: a and b. To limit the
possible final configurations and degrees of freedom in each
architecture, we allow a maximum of 4 tunable variables, or
free parameters. Depending on these free parameters, we have
different subsystems for the same architecture. The different
combination of parameters for each architecture is summarized
in Table II. The elements presented as φa,b

i denote the phase
shifters that perform the self-phase modulation as described in
(16), and therefore, consider the two parameters a and b of the
O/E circuit.

A. Transfer Functions

The generated output field in an optical device is a combina-
tion of the incoming optical field and the transfer function of the
system as follows,

zout = Htransferzin, (17)
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TABLE II
SUMMARY OF FREE PARAMETER COMBINATIONS FOR THE OPTICAL DEVICES

where Htransfer is the transfer function and describes the
complex response of the whole optical system.

The comparison between the digital and the optical generated
activation functions is made using the optical power as an input.
Therefore, our optical nonlinearities will have the form:

f
(
|zin|2

)
= |Htransfer|2|zin|2. (18)

Next, we introduce the corresponding transfer functions of
the aforementioned optical systems:
� MZI:

HMZI = −j (s2c1 exp (−jφ1) + c2s1) (19)

� ORR:

HR =
cr − γx exp (−jφr)

1− crγx exp (−jφr)
(20)

� ORR – AD drop port:

HOd =
−s1s2

√
γx exp (−jφr)

1− c1c2γx exp (−jφr)
(21)

� ORR – AD through port:

HOt =
cr1 − cr2γx exp (−jφr)

1− cr1cr2γx exp (−jφr)
(22)

� ORR – AD coupled:

HORR−cpl = −jsHOt exp (−jφ1) + cHOd (23)

� MZI – ORR:

HMO = −j (s2c1HR exp (−jφ1) + c2s1) (24)

� MZI – 2ORR:

HMO = −j (s2c1HR1 exp (−jφ1) + c2s1HR2) (25)

� Double SCISSORS:

Hsc = HR1HR2 (26)

� Double CROW:

HCR =
c1 − c12a1 − c1c12a2 + a1a2
1− c1c12a1 − c12a2 + c1a1a2

(27)

� Double CROW – AD coupled:

HCRt =
c1 − c12a1 − c1c2c12a2 + c2a1a2
1− c1c12a1 − c12c2a2 + c1c2a1a2

HCRd =
js1s12s2

√
a1a2

1− c1c12a1 − c12c2a2 + c1c2a1a2

HCR−cpl = − jsHCRt exp (−jφ1) + cHCRd (28)

where ci =
√
1− ki, si =

√
ki and γ is the loss coefficient.

x = exp(−jβL), where β = 2πneff/λ is the propagation
constant, L is the total length of the correspondent ring, neff

is the effective index of the material and λ is the wavelength
of the optical signal. The terms ai in (27) and (28) have been
introduced to simplify the equations and correspond to ai =
γixi exp(−jφi).

B. Generation of Specific Functions Through Computational
Optimization

To understand the expressivity of the optical devices under
study we map the optical transfer functions build as (18) with
the standard activation functions described in Section II. The
process is built as follows.

First, we choose one of the activation functions described in
(1) – (14). Using the correspondent equation, a 500 points array
is generated. The input of the function is a set of evenly spaced
numbers over the interval [0,1].

Second, we select the optical system to study and its response.
The optical devices are simulated using state-of-the-art fabri-
cation processes parameters. We use the standard wavelength
for telecommunications systems, λ = 1.55 μm. We consider
silicon waveguides of width and height of 500 nm and 220 nm
respectively, with propagation losses of α = 2 dB/cm and an
effective index of neff = 2.394 [46]. All the ring resonators
have the same radius of r = 300 μm to anticipate the need of
phase shifters with length in the range of several tens or hundreds
microns. Insertion losses have been neglected in our simulations.
Overall, although the impact of the insertion loss of the activation
function can be compensated through additional optical power
in the optical source, this power penalty is expected to decrease
with optimized components like low loss couplers [47], [48] and
tunable cavities [49].

The response f(|zin|2) is then fitted to the data previously
generated using a non-linear least square method based on the
Levenberg-Marquardt algorithm. The parameters to be opti-
mized during the fitting process are those shown in Table II.

Finally, using the optimized parameters, we calculate the
response of the system for the same input points of the first
step. We choose the root mean square error (rmse) between the
optical response and the activation function as a figure of merit
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Fig. 3. Activation functions generated by an MZI-ORR: (a) ReLU, (b) Clipped ReLU, (c) ELU, (d) GeLU, (e) PReLU, (f) SiLU, (g) Gaussian, (h) Quadratic,
(i) Sigmoid 1, (j) Sigmoid 2, (k) Sine, (l) Softplus, (m) Tanh, (n) Softsign, (o) Exponential. In dotted yellow, the target activation function and in solid blue, the
system’ s response.

of the quality of the optimization. The rmse formula is

√
1

n

∑n

i = 1
(yi,o − yi,a)

2, (29)

where yi,o represents the optical output power and yi,a the
corresponding activation function value.

The rms results for combinations of photonic circuits and
targeted activation functions are presented in Fig. 12. using a log-
arithmic scale, that is, rmsedB = 10log10(rmse). Each color
represents an interval. From worst to best, values of rmsedB
between 0 and −10 are represented using grey boxes. Values
between −10 and −15 use orange boxes. Light green boxes
depict values between −15 and −20, and dark green boxes
are used for values between −20 and −25, which is the lowest
achieved number.

The heatmap shows that the interferometric architectures that
include MZIs achieve better results than those build only with
ring resonators. In particular, the response of the drop port of
a ring resonator performs extremely poor, being incapable to
achieve rmse lower than −11 dB.

Moreover, interferometric architectures where MZIs and
ORRs are combined perform better than those with only one of
those devices. It is also implied that more complex architectures
give higher degree of expressivity incurring in a complexity
vs expressivity trade-off. Even though, when comparing the
ring assisted MZI (MZI-ORR) and the two-ring assisted MZI
(MZI-2ORR), the results show only slightly differences for their
best cases. An example of the obtained nonlinearities using the
MZI-ORR is shown in Fig. 3.

It is important to notice that some of the activation functions
cannot be achieved with any of the proposed architectures,
specifically some Clipped ReLU, Sigmoid and Tanh functions.
This is because for some values the output is higher than the input
and that cannot be replicated by our passive devices. Systems
made of active materials would be necessary to introduce those
activation functions [50].

On the other hand, along with the Softplus, the ReLU and its
variations are easier to reproduce by all the optical architectures
than the other activation function whose response presents more
variation in their working domain.

C. Sensitivity to Non-Idealities and Parasitic Effects

The aforementioned comparison assumed accurate precision
for the driving conditions. However, real devices have a non-
perfect behavior due to component imprecision that come from
fabrication errors, waveguide roughness, temperature variations
and crosstalk (electrical, optical, thermal). When errors of differ-
ent components accumulate, the performance of the system can
vary significantly from the desired behavior, and thus, degrade
the final results. Furthermore, an optical circuit for deep learning
is composed of different stages of matrix multiplication and acti-
vation function arrays, and it is important to maintain a common
response of the optical devices to ensure circuit scalability.

In this subsection, we study the variation of the proposed
circuit architectures responses when random noise is added
to the ideal value of the parameters of the system after the
optimization process. To do so, we add a gaussian noise to the
coupling coefficients ki, to the phase shifts φi, and to the a and
b parameters that control the self-phase modulation as follows

x → x+ N (o, σ) (30)

where N(o, σ) refers to a normal distribution with mean equal to
0 and standard deviation σ. Then, the new distorted parameters
serve to calculate the response of the system when affected
by noise. We are aware that some of the components show
correlated variations during the manufacturing processes [50],
[51]. However, we have decided to maintain non-correlated
Gaussian distributions to deal with the worst-case scenario and
ensure that the experimentally expected results are equal to or
better than those simulated.

Figs. 4-5 show the variation of the rmse when noise is added
to the MZI-ORR with free parameters φa,b

r , φ1, kr, and to the
MZI-2ORR with free parameters φa,b

r1 , kr1, φ1, respectively.
For the statistical analysis, we consider standard deviations of
the normal distribution from coupling factors and phase shifters
that represent incremental non-ideal operation within practical
values [53]: a) σ = 0.5%, b) σ = 1%, c) σ = 1.5% and d) σ =
2%. 100 points have been used in each of the simulations.

Boxes extend from the Q1 and the Q3 quartile values of the
rmsedB . The line inside the boxes represents the median, Q2
quartile. The whiskers extend from the boxes to the maximum
and minimum value of the data but limited to a maximum size of
1.5 ∗ IQR, where IQR = Q3−Q1. Data points beyond those



RAUSELL CAMPO AND PÉREZ-LÓPEZ: RECONFIGURABLE ACTIVATION FUNCTIONS 8300513

Fig. 4. RMSE (%) variation of the MZI-ORR generated activation functions
for different values of standard deviation: (a) 0.5%, (b) 1.0%, (c) 1.5% and (d)
2%.

Fig. 5. RMSE (%) variation of the MZI- 2 ORR generated activation functions
for different values of standard deviation: a) 0.5%, b) 1.0%, c) 1.5% and d) 2%.

limits are considered outliers and plotted with circles. The lower
whisker cannot extend further than the optimal value obtained
when noise is equal to zero.

We focus our analysis on the σ = 1% case, that correspond
to the state-of-the-art precision. In the functions presented, the
ReLU, ELU, Parametric ReLU and Softplus are the most robust
activation with respect to noise. In the worst scenario, they go
from percentage errors of 0.50, 0.54, 0.50, 0.47 to 0.86, 1.04,
0.76 and 0.80 respectively for the MZI - ORR architecture and
from 0.51, 0.55, 0.51, 0.49 to 0.90, 0.95, 0.83, 1.10 for the MZ
I- 2 ORR architecture.

SiLU and GeLU have slightly higher deviations from the
noise-zero case. They go from percentage errors of 0.53 and

Fig. 6. General scheme of the neural networks model.

0.50 to 1.16, 1.63 for the MZI -ORR and from 0.55, 0.49 to
1.34, 1.29.

Finally, the Sigmoid 1 and Sigmoid 2 present more sensitivity
to driving and coupling fluctuations. They go from percentage
errors of 0.32 and 1.45 to 1.64 and 2.77 for the MZI - ORR
and from 0.32 and 1.48 to 2.29 and 2.82 for the MZI – 2 ORR
architecture. The reason behind this sensitivity is that, to match
the sigmoid functions, the interferometric devices are configured
in a working region presenting higher slope (gradient) versus the
deviation of the parameters under study.

It is also important to highlight that for the studied functions,
the results given by the MZI – ORR are more robust in terms of
noise than those given by the MZI – 2 ORR architecture. The
scalability of the proposed E/O architectures in terms of optical
losses, bandwidth and SNR is addressed in Appendix B.

IV. MACHINE LEARNING EXAMPLES

In this section, we use the best E/O activation functions
obtained from the MZI-ORR and the MZI-2 ORR architecture to
solve two machine learning problems. In Section IV-A we train
a neural network to solve the classification problem of the IRIS
dataset. In Section IV-B we benchmark our optical nonlinearities
with the MNIST image classification problem.

The neural network is implemented with the TensorFlow
framework [54]. To simulate the response of an MZI mesh-based
matrix multiplier, we use complex-valued weights and biases.
Our optical nonlinear activations are programmed to work in the
optical field domain, f (zin) = Htransfer. zin. In the final stage
of the neural network, we introduce a quadratic function |.|2 that
mimics the response of a photodetector. When using one-hot
encoding, the output of the photodetector is normalized by the
sum of the output vector to create a probability distribution.
Fig. 6 shows a general scheme of the neural networks. Note that,
although some portion of the signal is converted to the electrical
domain in the nonlinear layers, the optical signal can complete
the full neural network in the optical domain till arriving to the
photodetection layer at the end.

A. Iris Dataset

The Iris dataset is one of the most common used datasets
for classification task benchmarking. It was first introduced by
R.A. Fischer in 1936 [55]. The objective of the problem is to
classify a given iris plant into one of the three subspecies: setosa,
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Fig. 7. (a) Accuracy, (b) Accuracy zoom view. (c) Losses and (d) Losses zoom
view of the MZI – ORR activation functions for the IRIS dataset.

Fig. 8. (a) Accuracy, (b) Accuracy zoom view. (c) Losses and (d) Losses zoom
view of the MZI – 2 ORR activation functions for the IRIS dataset.

versicolour or virginica. The dataset consists of 150 instances,
50 per each of the three classes, containing information of four
attributes: sepal length, sepal width, petal length and petal width.
One class is linearly separable from the other two, that are not
separable from each other.

We use a feed-forward architecture made up of an input layer
of 4 units, one hidden fully connected complex layer with 10
units and one output layer with 3 units.

The dataset is split into training and test samples using a
70:30 ratio. Input data is normalized in the [0,1] interval and
encoded in the real part of the input tensors. Imaginary part of
the input tensors is set to zero for all the examples. The output is
a 3-dimension vector with one-hot encoding. We use the Adam
optimizer with a learning rate of 0.0015 and a batch size of 32.

Figs. 7 and 8 represent the evolution of the a) accuracy and
c) losses during the training of the model using the optical
nonlinearities generated by the MZI – ORR and the MZI – 2ORR
respectively. For both architectures, except from the Clipped
ReLU activation (green line), the rest of the benchmarked optical

TABLE III
TEST RESULTS FOR THE IRIS DATASET MODEL

nonlinearities achieve high accuracies during the training. Para-
metric ReLU (purple), Softplus (yellow), ReLU (orange), GeLU
(red), and Sigmoid 1 (brown) present the best performance with
accuracies over 98%. Sigmoid 2 (pink) and SiLU (grey) results
are poorer, giving training accuracies around 95%. Clipped
ReLU results are similar to the results given by the linear (blue)
activation functions. This is because Clipped ReLU has a linear
response for input values close to the origin of the function, and
thus, has higher difficulties to segment the space in nonlinear
clusters.

Analyzing the losses curves, we can see that the Parametric
ReLU and the Softplus reach lower values in the least epochs.
They are followed by the ReLU, Sigmoid 1 and GeLU. Finally,
Sigmoid 2 and SiLU have more difficulties to achieve compara-
ble results.

The model evaluation results using the test data are presented
in Table III. Our model achieves high accuracy results for all the
optical nonlinearities except from Clipped ReLU, as expected
by the training curves, outperforming the linear model by a 10%.
These results are comparable to those obtained in previous works
[28], [56].

B. MNIST Dataset

We choose the MNIST classification problem as a second
benchmark for our optical nonlinear activations. The MNIST
dataset is a collection of 60000 training examples and 10000
test examples of grayscale handwritten digits images with 28 x
28 digits.

Each 28 x 28 image is flattened into 728 units to be the input
of the neural network as shown in Fig. 9. The magnitude of each
pixel is normalized between 0 and 1, and it is encoded in the real
part of the complex input vector. After the input layer there is
a 25 units hidden layer with complex weights and finally there
is a 10 units output layer. The output of the neural network is
one-hot encoded.

During the training, we have used the Adam optimizer with a
learning rate of 0.001 and a batch size of 256 with 500 epochs.
We use as a loss the cross-entropy between the output of the
neural network and the one-hot output vector.
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Fig. 9. Scheme of the model used to solve the image recognition MNIST
problem.

Fig. 10. (a) Accuracy, (b) Accuracy zoom view. (c) Losses and (d) Losses
zoom view of the MZI – ORR activation functions for the MNIST dataset..

Accuracy and loss evolution during training are presented in
Figs. 10 and 11 for the MZI – ORR and the MZI – 2 ORR
respectively. As in the IRIS problem, optical Clipped ReLU
results are indistinguishable from the lineal, or no linearity,
case. The remaining optical activations reach training accuracies
between 96-98%, outperforming the linear case almost a 10%.
In this task, Softplus activations achieves the higher training
accuracy, followed by the Sigmoid 1, Sigmoid 2 and PReLU
optical nonlinearities. Finally, ReLU, GeLU and SiLU give
training accuracies that are 1-2% lower than the previous ones.

In Table IV, we calculate and present test accuracies and
losses. Final performance is similar for all the optical nonlin-
earities for both architectures as obtained for the IRIS dataset.
It is important to point out that the optical activations functions
that give better results are not all the same for the IRIS and the
MNIST. This is clear example of the necessity of programmable
devices that can generate a wide variety of optical activation
functions for different learning tasks.

Fig. 11. (a) Accuracy, (b) Accuracy zoom view. (c) Losses and (d) Losses
zoom view of the MZI – 2 ORR activation functions for the MNIST dataset.

TABLE IV
TEST RESULTS FOR THE MNIST DATASET MODEL

V. CONCLUSION

The selection of the non-linear activation function is critical
for the accurate learning process in machine learning. Most of
the implementations today relay on its digital implementation
degrading the benefits of the optical stage. Alternative EO or all-
optical solutions have been demonstrated constrained to either
single or a small set of activations functions. In this work, we
have studied the capabilities of 9 optical architectures made up of
MZIs and ORRs to generate a set of optical nonlinear activation
functions with a common hardware. The general architecture is
based in a O/E/O circuit with a self-phase modulation scheme,
where a little amount of the optical input power is taken and
photodetected to use the generated current to, together with an
electrical circuit, feed one of the phase shifters of the optical
architecture.

For each of the optical systems we have defined subsystems
depending on the device parameters that are selected as tunable
variables during the activation function reconfiguration. We
analyzed up to 14 nonlinear activation functions commonly used
in digital processors. The rmse between the fitted function and
the sought activation function have been used as a measure of the
quality of the optical nonlinearities. Among all the given results
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we have selected two architectures that provide a high expres-
sivity (i.e., capability to synthetize more activations functions
with less error): the ring assisted MZI and the two ring assisted
MZI.

To evaluate the robustness of the obtained functions to compo-
nent variations we have studied the deviation of the rmse from
the optimal value by adding a gaussian noise to the coupling
coefficients and the phase shifters. We have used standard devi-
ations of 0.5, 1, 1.5 and 2 percent. We see that the ReLU, ELU,
Parametric ReLU and Softplus are the most robust functions in
terms of noise, with deviations between 0.3 and 0.4%. They are
followed by the GeLU, SiLU that give slightly higher deviations
of 0.6 and 1.1%. Finally, the Sigmoid 1 and Sigmoid 2 give the
worst results with deviations of 1.9 and 1.4%. We also highlight
that the MZI – ORR is less affected by noise than the MZI – 2
ORR architecture.

The activations that achieved better results, that is, the ReLU,
Clipped ReLU, GeLU, Parametric ReLU, SiLU, Softplus, Sig-
moid 1 and Sigmoid 2 have been used to solve two standard
machine learning tasks for benchmarking, IRIS dataset and
MNIST dataset. In both problems, the optical activation func-
tions achieve accuracies higher than 95%, which is comparable
to other results obtained in previous similar works. It has been
shown that the activation functions resulting in higher accuracies
change depending on the addressed problem, highlighting the
necessity of programmable optical devices for the implementa-
tion of the non-linear layer.

Although the future of integrated ONN seems promising,
alternative approaches relying on free-space optics offer inter-
esting trade-offs in terms of footprint, parallelization, and scal-
ability. For example, whereas integrated solutions scale linearly
with the number of outputs at each layer, O(Nout). free space
architectures have introduced activation functions that do not
scale with the number of outputs, preserving the full parallelism
of free-space optics [57], [58]. All in all, future efforts in the field
should be directed towards practical demonstrations of ONN and
benchmarking with state-of-the-art electronic-based solutions.

APPENDIX A

See Fig. 12.

APPENDIX B
SCALABILITY

The presented electro-optical systems avoid the need for
digital processing of the optical signal to apply the correspondent
nonlinear activation function. However, these types of architec-
tures present a trade-off between the bandwidth of the electronic
loop and the achievable signal to noise ratio, limiting the system
scalability and computational speed.

In the presented work, the analog electronic loop consists
of a photodetector, that detects part of the incoming optical
signal, an amplifier, and a bias signal. Noise sources will come
mainly from the photodetector and the amplifier. Photodetectors
major noise sources can be classified as thermal noise, shot
noise and dark current noise. Thermal noise mean squared
noise current can be modeled as 〈i〉2th = 4kT

RL
B, where k is the

Boltzmann’s constant, T the temperature,RL the load resistance

andB is the electrical bandwidth. Shot noise mean squared noise
current can be modeled as 〈i〉2sh = 2q�Ps B, where q is the
electron charge, � the responsivity of the photodetector and Ps

the received optical power. Finally, dark current noise can be
treated as 〈i〉2dk = 2qId B, where Id is the dark current of the
photodetector.

The SNR of the O/E system results in

SNR =
〈I2s (t)〉

〈i〉2th + 〈i〉2sh + 〈i〉2dk + 〈i〉2amp

(A.1)

Using this expression, we can calculate the minimum detected
power necessary to have a SNR= 10 dB, which is a conservative
number. Using commercially available photodetectors [59] with
� = 0.85 A/W, Id = 30 nA, B = 10 GHz, RL = 50 Ω
and reported TIAs [60] with input referred noise density of
16.7 pA/�Hz we obtain that the minimum optical power that
has to be photodetected is −21.6 dBm, or 6.96∗10-3 mW. Using
these values, we can estimate the number of layers that can be
concatenated.

We consider two different scenarios:
Tunable tap: In this case, only the minimum amount of optical

power necessary to achieve the desired value of the SNR at the
nonlinear E/O system is separated from the incoming optical
power. As the input optical power at each layer is different
due to the losses at previous layers the corresponding coupling
coefficient that divides the optical signal is tuned. The difference
between the input optical power and the output optical power is
equal to the amount of optical power separated at each layer:

L Pact =

(
Pin

N
ILL − Pout

)
(A.2)

where Pact is the minimum optical power needed at the PD to
achieve a certain SNR, Pin is the total input optical power at the
system, it is divided by N as we assume that the optical power
is equally distributed among all the outputs, Pout is the optical
power at one output after L layers and IL are the insertion losses
of the nonlinear E/O system in linear units.

Fix tap: In this case, the coupling coefficient is the same for
all the layers. After L layers, the optical power will be

Pin

N
(1− kL) =

Pin

N
ILL − Pout (A.3)

where k corresponds to the fixed coupling coefficient of the
through port, that is, (1− k) Pi is separated at each E/O
system, with Pi being the input optical power at each nonlinear
stage. Equation A.3 is not sufficient to describe this option
because we have to guarantee that the separated optical power
is always equal or higher than the necessary to achieve the
correspondent SNR. To satisfy this condition, we impose that the
separated optical power at the L layer is equal to Pact

Pin

N
(1− k) kL−1 ILL−1 = Pact (A.4)

The final achievable number of layers is set as the minimum
between the values obtained using (A.3) and (A.4).

In Fig. 13. it is shown the maximum number of layers that
can be concatenated for the different scenarios for matrices of
32×32 and an input optical power of 40 mW. The horizontal axis
represents the SNR at the output of the photonic neural network
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Fig. 12. Root mean square (rmse) between the response of the optical architectures and the activation functions. Values between 0 and −10 (grey), beetwen −10
and −15 (orange), −15 and −20 (light-green) and −20 to −25 (dark green) Results are given in dB.

which does not coincide with the SNR = 10 dB required at
the nonlinear E/O system. We have assumed at the receiver an
analog circuit similar to that used in the nonlinear architecture
and the value of the necessary power at the output,Pout, has been
calculated using the same expression relating power and SNR

presented in this section. The vertical dotted green lines indicate
the minimum SNR to achieve a certain bit resolution. We have
used n = (SNR [dB] – 1.761)/6.02, where n is bit resolution.
The IL of the E/O architecture has been assumed to be 0.3 dB
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Fig. 13. Number of maximum layers achievable for the tunable tap (blue) and
the fixed tap (orange) cases. It has been considered a matrix of size 32 x 32 with
input power of 40 mW. The nonlinear E/O system has been assumed to have 0.3
dB of insertion losses. Vertical dotted green lines represent the SNR necessary
to achieve the specified bit resolution. Loss-less components assumed in the
matrix multipliers.

TABLE V
MAXIMUM NUMBER OF LAYERS. WE CONSIDER INPUT POWER OF 40 MW,

ACTIVATION FUNCTION LOSS OF 0.3 DB, 0.3-DB MZI LOSS IN THE UNITARY

SECTION, N = 1

which is compatible with the commercially available photonic
systems.

In the previous example, only the losses corresponding to
the nonlinear E/O have been considered. We can compare these
results with the case where the losses of the MZI based optical
matrix multiplier are taken into account. We use a simple rule
where each output has gone through N interferometers with
insertion losses (ILMZI) of 0.3 dB. After L layer, insertion
losses have an impact of N·L·ILMZI on the input optical power.
Table V compares the maximum number of layers achievable
for different matrix sizes when only the nonlinear E/O stage
loss is considered and when the nonlinear E/O system and the
MZI based matrix multiplier loss are considered. The results
show that the limiting part of the scalability of the system is the
interferometric mesh.

The optical sensitivity of the system can be further improved
using PDs with higher responsivities like avalanche photodetec-
tors (APD) which increases the generated photocurrent. Thermal
and dark current noise remains the same for equal load resistance
and dark current but shot noise is enhanced. In our case, we are
working on the thermal noise dominated regime (low incident
optical power) so there is a benefit in using APD. High-speed and
low noise APD have been reported in silicon foundry compatible

systems [61]. Another alternative is the use of non-invasive
detectors [62] which will eliminate the necessity to take a portion
of the incoming light to trigger the self-made modulation.
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