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Abstract—CMOS single-photon avalanche diodes (SPADs) have
broken into the mainstream by enabling the adoption of imag-
ing, timing, and security technologies in a variety of applications
within the consumer, medical and industrial domains. The con-
tinued scaling of technology nodes creates many benefits but also
obstacles for SPAD-based systems. Maintaining and/or improving
upon the high-sensitivity, low-noise, and timing performance of
demonstrated SPADs in custom technologies or well-established
CMOS image sensor processes remains a challenge. In this paper,
we present SPADs based on DPW/BNW junctions in a standard
Bipolar-CMOS-DMOS (BCD) technology with results compara-
ble to the state-of-the-art in terms of sensitivity and noise in a
deep sub-micron process. Technology CAD (TCAD) simulations
demonstrate the improved PDP with the simple addition of a single
existing implant, which allows for an engineered performance with-
out modifications to the process. The result is an 8.8 µm diameter
SPAD exhibiting ∼2.6 cps/µm2 DCR at 20 ◦C with 7 V excess
bias. The improved structure obtains a PDP of 62% and ∼4.2%
at 530 nm and 940 nm, respectively. Afterpulsing probability is
∼0.97% and the timing response is 52 ps FWHM when measured
with integrated passive quench/active recharge circuitry at 3 V
excess bias.

Index Terms—Single-photon avalanche diodes (SPADs), photon
counting, depth-sensing, BCD, time-correlated single-photon
counting(TCSPC), LIDAR, three-dimensional (3-D) ranging,
FLIM, QRNG.
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I. INTRODUCTION

LARGE-FORMAT single-photon avalanche diode (SPAD)
arrays [1]–[3] are becoming ubiquitous in the time-

resolved imaging domain for their utility in applications
such as fluorescence lifetime imaging microscopy (FLIM),
LiDAR/Time-of-flight (ToF), and also emerging domains, such
as quantum random number generation (QRNG). Technology
scaling allows for an increased number of pixels, resulting
in higher spatial resolution, more data, and further enabling
the integration of complex logic functionality [4]. However,
on the detector side, the higher relative doping levels, along
with reduced annealing, cause a much higher order defect
concentration in SPADs, which results in high noise and re-
duced sensitivity. The advent of 3D-stacking in IC design has
provided a potential remedy, as a custom process for the de-
tector can be bonded to a separate CMOS IC that contains
the core circuitry [5]. These system-on-chip designs [6]–[12]
provide a best-of-both-worlds outlet. However, this can re-
sult in high cost and additional design complexity. A good
compromise between the benefits of older standard processes
with reliable SPAD performance and the 3D approach is to
develop high-performing SPADs in a standard deep sub-micron
node.

In [13], the concept of exploiting the process flow and high
power design aspects of smart power technologies, such as
Bipolar-CMOS-DMOS (BCD), was demonstrated. In that work,
SPADs with excellent performance in terms of timing and noise
characteristics were experimentally verified in a 160 nm ST
BCD technology. In this work, we push the bounds on scaling
with SPAD designs by exploiting the highly commutable GF
55 nm BCDL process. Moreover, through analytical model-
ing and TCAD simulation of the implant concentration and
depth, we iterate through two versions of the deep-junction
SPAD by only adding already available masks in order to
improve overall performance. This simple-to-understand ap-
proach, grounded in device physics, can be used by design-
ers to improve sensitivity. Experimental validation of the de-
vices shows comparable noise and sensitivity to the published
state-of-the-art.
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II. DESIGN BACKGROUND

A. Fundamentals of Deep-Junction SPADs

The fundamental operation of SPADs, process methods, and
inherent design trade-offs are well described in the litera-
ture [14]–[16]. A general description of the operating behavior
can be understood by analyzing the device cross-section, which
consists of the neutral/quasi-neutral and multiplication (space
charge) regions [17]. Furthermore, the relative geometries of
these regions are used to distinguish between ‘deep’ and ‘shal-
low’ SPADs. While shallow junctions can be advantageous for
their typically lower breakdown voltages, they suffer from lower
photon detection probability (PDP), particularly at the longer
wavelengths which are used for applications such as LiDAR.
Moreover, detectors can be discriminated between whether they
provide substrate isolation, which is desirable when integrating
circuits on the same silicon.

For monolithic-based systems, i.e. where the SPADs and
circuits co-exist on the same substrate, a way of isolating the
circuits from the SPADs can be designed using ‘deep’ or ‘buried’
n-well layers [18]. The physical construction of this buried layer
has direct consequences for the timing response. Considering
the light absorption length of the silicon, the thickness of the
n-well region contributes to the diffusion tail while the overall
resistivity of the path to the cathode contact and avalanche
spreading dynamics determines the full-width at half-maximum
(FWHM) of the timing jitter [19], [20]. Furthermore, the buried
n-well, which can be designed with retrograde doping, aids in
the design of the multiplication and space-charge regions which
is key for low-noise operation [21].

The PDP is defined by the product of the breakdown proba-
bility and quantum efficiency, as shown in (1).

PDP(λ) = Pb(λ) ·QE(λ) (1)

Quantum efficiency is a function of the surface transmission,
relative depth, and width of the space charge region. In any given
process, it may be difficult for a designer to improve the quantum
efficiency of a SPAD structure, particularly for deep junctions, as
it can substantially be limited by the capabilities of the foundry.
Nevertheless, it is possible to improve PDP across the spectrum
by engineering the photo-collector regions for higher breakdown
probability [22].

Owing to the fact that electrons have higher ionization coef-
ficients than holes for silicon, it is desirable to have electrons
drift from the depletion region to the multiplication region [23].
The premier and intuitive step for enabling this principle is
to bury the junction deep inside the silicon, allowing for the
minority electrons to be swept into the high-electric field where
an avalanche can be initiated. A well-established design tech-
nique allowing for practical realization of this deep junction is
to implant high energy Boron ions, [13], [24], [15]. This en-
sures that low-energy red/NIR photons are detected with higher
efficiency. However, while the junction depth plays an essential
role in SPAD performance, small differences in the design of the
quasi-neutral (photo-collector) region i.e. the net implant pro-
file approaching the junction can produce considerably varied
results in terms of PDP. In an ideal structure, a designer would

engineer the net doping in order to fully deplete the depth range
where photons are absorbed, allowing for the drift of generated
charge carriers to the multiplication region. This increases the
breakdown probability and allows for maximum PDP. However,
in a standard process, there are only a limited, number of masks
available, which create variations in net doping when combined.
A method through which the effect these variations have on
detection efficiency can be examined by observing the band
diagram in a TCAD simulation and, by extension, simulation
of the corresponding breakdown probability.

B. Device Physics and TCAD Simulation

The general structure of the proposed SPADs is shown in
Fig. 1. The only difference between the variants is the additional
p-well (PW) implant in SPAD2. Modelling of the junction in a
single dimension enables quick evaluation of a SPADs detec-
tion efficiency [22], [25]. Oldham et al. described the voltage-
dependent triggering probability with (2), (3) [23], where Pe

and Ph are the probabilities that an electron and hole initiate an
avalanche, respectively. The ionization coefficients are denoted
by α and β, respectively.

dPe

dPx
= − (1− Pe)α(Pe + Ph − Pe · Ph) (2)

dPh

dPx
= (1− Ph)β(Pe + Ph − Pe · Ph) (3)

McIntyre extended the analysis by formulating a history-
dependent ionization coefficient [26]. In TCAD, the McIntyre
model is used to simulate these quantities along with the band
diagram and doping profile.

The relative concentration of majority carriers (holes) in two
demonstrated deep SPADs for a section close to the surface,
which corresponds to the transition from the P+ to PW implants,
is plotted in Fig. 2 with the corresponding conduction band
diagram illustrated by Fig. 3. It can be seen that for SPAD2,
the hole concentration monotonically decreases towards the
junction after a certain depth (highlighted by point A) while there
is a region of increased concentration in SPAD1. The increase
in holes is a result of the net concentration caused by the profile
from all the implants used. We note that this depth range of
interest (A-B), is outside the high-field multiplication region,
which can be observed in Fig. 4(a) and Fig. 4(b). There are
multiple analytical manifestations that can help elucidate the
consequence of this doping variation. From the energy band
diagram in Fig. 3, there is an evident barrier created, which
inhibits electron diffusion towards the multiplication region
caused by photons absorbed close to the surface. This is in
contrast to SPAD2, where the effective photo-collector region
becomes much wider, enabling the photo-generated electrons in
the charge-neutral region to transit to the multiplication region.
The result is a greatly improved breakdown probability. In
simulation, the combined breakdown probability of holes and
electrons confirms this principle with the results displayed in
Fig. 4(c). Carriers that are injected into SPAD2 possess a higher
probability of igniting an avalanche breakdown within a wider
range of depths, which corresponds to a wider spectral response.
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Fig. 1. Cross-sections of proposed 55 nm BCD SPADs. A single implant (PW) highlights the difference between structures.

Fig. 2. Doping comparison showing decrease of hole concentration for SPAD2
in contrast with increase shown for SPAD1 level. Net relative doping levels after
all implants are placed is displayed at 5 VEX.

Fig. 3. Simulated conduction band diagram of SPADs. Inset illustrates the drift
barrier resulting from the net concentration difference between the proposed
SPADs.

It is clearly shown by simulation that the space charge regions
and electric field magnitude of the two devices are nearly iden-
tical in the multiplication region. Therefore, it is reasonable to
conclude that differences in measured PDP would, to a great
extent, arise from the doping variation in the photo-collector
region.

III. MEASUREMENT RESULTS

A. I-V Characteristics

The diode I-V curves were measured using the Keysight
B1500 A semiconductor analyzer with the resulting dark cur-
rents and breakdown voltages (∼32 V) matching well the sim-
ulation carried out in TCAD and are displayed in Fig. 5. It is
clearly shown that SPAD2 achieves higher photo-current near
the breakdown voltage, as predicted by TCAD. Light emission
testing was performed as an initial qualitative measure to ensure
the absence of edge breakdown from either of the two devices.
Micrographs of SPAD1 and SPAD2 along with the LET image
showing good uniformity around an active diameter of∼ 4.4 μm
are shown in Fig. 6.

B. Photon Detection Probability

PDP measurement results for the two proposed SPADs at
excess bias voltages of 1-7 V are displayed in Fig. 7(a) and
Fig. 7(b). These measurements were taken at room temperature
with 10 nm intervals using the continuous light technique [27].
In our setup, a monochromator and integrating sphere are used
to select a temporally coherent and uniform spatial distribution.
A reference photodiode (PD) (Hamamatsu s2281) along with
the device under test (DUT) are placed at a calibrated distance
from the light output. The output is monitored with a universal
counter (Keysight 53230 A) and by an oscilloscope to verify the
proper response of the SPAD.

A distinct performance difference, as initially postulated by
simulation, is outlined by the overall improved sensitivity of
SPAD2 along with the very low detection efficiency of blue
wavelength photons in SPAD1, which has a peak PDP of
26% (580 nm). Conversely, SPAD2 is capable of an enhanced
performance of 62% (530 nm) at 7 V excess bias and maintains
>19% PDP up to 800 nm.

A more direct comparison of the relationship between the
two SPADs’ performance across excess bias and wavelength
can be drawn by observing Fig. 8(a) and Fig. 8(b), which show
the results of the devices on the same plot for sample excess
biases and wavelengths. These graphs clearly illustrate how
the performance of the two SPADs trends towards similarity
at longer wavelengths, as lower energy photons, which are
absorbed deeper inside the silicon, ignite avalanches with a
similar probability. The standing wave pattern across the visible
spectrum is a result of a non-optimized optical stack designed
on top of the silicon.
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Fig. 4. Comparison between the simulated junction parameters of SPAD1 and SPAD2 at breakdown. Space charge and E-field highlight nearly-identical junction
parameters. Normalized values are shown at 5 VEX.

Fig. 5. I-V curves for proposed SPADs in dark and illuminated conditions at
room temperature.

Fig. 6. Light emission test images with micrographs of SPAD1 (left) and
SPAD2 (right) taken at VEX = 3 V.

C. Noise Performance

1) DCR: The noise of a single-photon avalanche diode is
characterized by its primary and secondary pulses, which com-
bined constitute the dark count rate (DCR) in the absence of
impinging photons. Thermally generated carriers and band-to-
band tunneling are the main contributors to primary pulses.
When there is either an initiated avalanche or thermal generation,
carriers become trapped in ‘deep’ levels caused by defects in the
silicon process. The release of and subsequent avalanche caused
by these carriers are the secondary pulses known as afterpulses.

An oscilloscope (Teledyne LeCroy WaveMaster 813 Zi-B)
was used to analyze the DCR. The median result for both SPADs
across 10 dies at an excess bias voltage range of 1-7 V are
plotted in Fig. 9. The SPAD2 results demonstrate ∼1 cps/μm2

at 4 V excess bias and ∼2.6 cps/μm2 at 7 V excess bias. As
both SPADs show relatively low DCR, the remainder of the
focus was the characterization of SPAD2 because of its superior
PDP. Measurements were taken for a single SPAD2 die from
-60 ◦C to 60 ◦C and the results are displayed in Fig. 10. The data
demonstrates excellent performance even at high temperature
and excess bias with a value of <10 kcps at @ 60 ◦C and VEX

= 7 V. Trap-assisted thermal generation is the main source of
noise, as the DCR shows a strong temperature dependence.

2) Afterpulsing: Characterization of the afterpulsing for
silicon SPADs is typically conducted by histogramming the
inter-arrival time between dark counts, although it can also
be indirectly obtained by estimating the lifetime and density
of traps using the time-correlated carriers counting (TCCC)
technique [28], which is typically more useful for III-V
SPADs where the afterpulsing probability can be relatively
high.

The inter-arrival histogramming technique was employed us-
ing a passive quench active recharge (PQAR) circuit, similar in
design to the work presented in [29], [30], which is integrated
on the same die at 3 V EX and 50% level of the signal swing,
and is displayed in Fig. 11. The excess bias is limited to 3 V
by the chosen high-voltage transistor inside of the pixel circuit.
In this setup, the dead time at the 50% level was ∼4.5 ns. Data
are binned at 200 ns intervals, with a total of ∼10.6 million
counts observed. The multi-exponential behavior arising from
afterpulsing is typically fitted using 3 deep-level traps [31].
The afterpulsing probability is calculated by fitting the arrival
data points after 10 μ s, which typically exceeds the maximum
trap lifetime in silicon [31], and then dividing the secondary
pulses (above the fit) by the primary pulse count (below the fit).
The calculated afterpulsing probability is ∼0.97%. This low
afterpulsing probability is consistent with the overall low
DCR rate, suggesting that there is a relatively low defect
concentration.
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Fig. 7. PDP measurements for several excess bias voltages, measured with a 220 k Ω ballast resistor at 20 ◦C for both SPAD designs presented in this work.

Fig. 8. PDP comparison between the two proposed SPADs highlighting variation across wavelength and excess bias.

Fig. 9. Normalized DCR comparison at room temperature across excess bias
values. Median value shown for 10 dies of each SPAD.

Assuming that thermal generation is the main component of
DCR, activation energies can be extracted from their temperature
dependence [32]. In our case, this is a justified premise because
of the low relative doping of the deep junction, which results in
a lower electric field at the breakdown (<1 MV/cm) along with

the strong dependence of the DCR on temperature previously
outlined in Fig. 10. The Arrhenius plot is shown in Fig. 12.
At high temperature and low excess bias, where SRH effects
are more dominant, this qualitative analysis is used to extract
the activation energies of traps. The 0.46 eV value displayed
at 1 VEX can likely be explained by phosphorus-vacancy de-
fects [33], with the change in slope illustrating how at higher
excess bias the tunneling effects become more prevalent.

D. Timing Jitter

The timing performance of SPADs can be a critical parameter
for applications requiring precise sensing. The results for the
jitter of SPAD2 are displayed in Fig. 13. The time-correlated
single-photon counting (TCSPC) acquisition technique was
utilized to obtain data using the same oscilloscope used for
the afterpulsing measurement, operating as a time-to-digital
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Fig. 10. Temperature dependence of DCR for a single randomly selected SPAD2 die illustrating strong temperature dependence of DCR.

Fig. 11. Inter-arrival histogram of SPAD2 with fitted exponential measured
at 50% level and room temperature at 3 V excess bias with integrated PQAR
circuit and a dead time of ∼4.5 ns.

Fig. 12. Arrhenius plot of the DCR for SPAD2 at the excess bias voltages of
1, 3, 5, and 7 V.

Fig. 13. Jitter measurement of SPAD2 performed with a 780 nm pulsed laser.
FWHM is 52 ps and a diffusion tail time constant of 110 ps at VEX = 3 V using
integrated PQAR circuitry.

converter (TDC). The setup used for characterization is analo-
gous to the one reported in [30]. A 1560 nm laser (NKT Onefive
ORIGAMI-08) with second harmonic generation was used to
output pulses at a wavelength of 780 nm containing a pulse-width
of 150 fs pulsed at a repetition rate of 50 MHz. A 45 GHz
optical receiver was inserted as a trigger on the 1560 nm branch.
Moreover, neutral density filters were placed for attenuating the
light intensity in order to avoid pile-up and ensure operation in
the single-photon detection regime. Utilizing the same PQAR
circuitry at 3 VEX we achieved a full width at half-maximum
of 52 ps, which is commensurate to other CMOS SPADs in the
literature that performed this measurement using integrated pixel
circuits. The exponential time constant of the diffusion tail is
110 ps. Further improvements by adding active quench/recharge
circuitry and optimizing the measurement setup are ongoing.

IV. DISCUSSION AND COMPARISON WITH THE

STATE-OF-THE-ART

A summary table outlining the relevant front-side illuminated
(FSI) SPADs demonstrated in literature is shown in Table I.
The literature is organized in chronological order to achieve a
visualization of the advancements over the course of time. In
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TABLE I
PERFORMANCE SUMMARY AND COMPARISON TO FSI STATE-OF-THE-ART

aTaken at max excess bias if not range of excess bias values not specified. cVirtual guard ring structure. dSilicon-on-insulator. eBCD. f At 20 ◦C. g180 ns dead time.
h200 ns dead time. i50 ns dead time. kNot substrate isolated. l15 ns dead time. mShallow trench isolation with passivation implants to create p-type glove structure.
nAt 1 µs dead time. o30 µm diameter. p200 ns dead time. q300 ns dead time. rSurface-isolated n-spad/p-spad junction. sWith microlens. t4.5 ns dead time with 50%
level @ 3 V EX. v Two different deep structures presented one with an epi layer and one with a pw implant. xMultiple diameters demonstrated. y3 SPAD structures
proposed.

general, the research and development focus has been to try and
achieve improved PDP and lower noise while experimenting
with a number of junction and guard ring structures. Although it
can be difficult to draw a direct comparison, given that there are
many figures of merit and technologies, some key conclusions
can be drawn from this work.

It can be seen that there have been few published designs
in process nodes lower than 100 nm. Industrial SPADs in a
40 nm process have been developed [47], although with lower
PDP than this work. SPADs in a standard 28 nm FDSOI [48],
were presented recently, however, the results do not achieve
comparable levels of performance to those displayed by Table I.
Our SPADs demonstrate the highest peak sensitivity and lowest
noise for SPADs in an advanced technology (<65 nm). A visual
comparison of the DCR and PDP for relevant works is depicted
in Fig. 14. Finally, a key exposition from our work was that
performance could be dramatically improved with only a single
additional implant close to the surface of the SPAD. TCAD was
used to explain the reasoning behind this, and the principle was
then subsequently validated in silicon.

Fig. 14. State-of-the-art comparison of noise and sensitivity performance.
DCR taken at max excess bias reported.

Engineering of the dopant profiles, improving the optical
stack, and the addition of circuitry are our main focus going
forward, which is required to improve performance. Overall,
the excellent figures achieved in our work demonstrate the
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possibility of designing high-performance SPAD-based systems
in a modern MPW technology without the need for 3D-stacking.

V. CONCLUSION

This work has reported SPADs in a 55 nm process which
demonstrates comparable noise and sensitivity characteristics
to the state-of-the-art. The SPAD photocollector region was
optimized with the addition of a single implant, resulting in
greatly improved performance. Furthermore, these SPADs are
highly amenable to the design of fully integrated SPAD-based
system-on-chips in a standard process.
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