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Abstract—To advance on-chip optical interconnections, mem-
brane distributed-reflector (DR) lasers with low threshold current
and high-efficiency operation at one side output were realized.
First, a membrane distributed Bragg reflector (DBR) laser with
80-µm-long active section and 50-µm-long DBR section was fabri-
cated to clarify the DBR reflectivity. An external differential quan-
tum efficiency of 35% for the output from the front facet was ob-
tained, and the DBR reflectivity was estimated to be 75%. Next, a
membrane DR laser with 61-µm-long distributed feedback section
and 50-µm-long DBR section was fabricated. A threshold current
of 0.48 mA, external differential quantum efficiency from the front
side waveguide of 26%, and light output ratio from the front to
the rear sides of 13 were obtained. The lasing spectrum showed a
single-mode operation with a side-mode suppression-ratio (SMSR)
of 40 dB. Finally, small-signal direct modulation was carried out
and a modulation current efficiency factor of 7.9 GHz/mA1/2 and
7 GHz/mA1/2 were, respectively, obtained for the 30-µm-long and
61-µm-long devices.

Index Terms—Membrane laser, distributed-reflector laser,
semiconductor laser, optical interconnects.

I. INTRODUCTION

THE performance of large scale integrated (LSI) circuits has
dramatically improved since the scaling law was proposed

in 1974 [1]. However, in recent years, issues such as signal delay
and Joule heating have become problematic [2], [3], and threaten
the future progress of LSI. In order to overcome these problems,
replacement of the electrical global interconnects with optical
interconnects has been proposed and widely studied [4]–[6]. In
the case of optical interconnects on LSI, the available energy
cost to send one-bit signal in the system is estimated to be
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Fig. 1. Schematic image of membrane photonic integrated circuits on LSI.

less than 100 fJ/bit [7]. Therefore, a light source with ultra-low
power consumption is necessary for the realization of on-chip
optical interconnects.

In terms of low-power-consumption operation, vertical-cavity
surface-emitting lasers (VCSELs) [8]–[11], micro-disk lasers
[12], [13], and photonic crystal lasers [14]–[17] were reported.
Although VCSELs are suitable for low power consumption with
sufficient light output power, 45°-tilted micro-mirrors are re-
quired for in-plane integration [18]. While micro-disk lasers and
photonic crystal lasers are very attractive for ultra-low threshold
current operation due to their strong optical confinement effect
into a very small active region, very strong optical confinement
leads to lower optical output power. In the optical interconnects,
the required optical power level at the receiver side is in the
order of several tens μW for signal speeds faster than 10 Gbit/s
with bit-error-rates (BER) lower than 10−9 .

We proposed and demonstrated membrane distributed feed-
back (DFB) lasers as well as membrane distributed-reflector
(DR) lasers as light sources with low power consumption op-
eration [19]–[22] for membrane photonic integrated circuits
(MPICs) on Si as shown in Fig. 1. Because the membrane struc-
ture consists of a thin semiconductor core layer sandwiched
by low refractive-index cladding layers, similar to high-index-
contrast waveguides, the optical confinement factor of the ac-
tive region is approximately three times higher than that of
conventional in-plane semiconductor lasers. Therefore, it leads
to not only an enhancement of the optical modal gain but
also that of index-coupling coefficient of the grating structure,

1077-260X © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



HIRATANI et al.: HIGH-EFFICIENCY OPERATION OF MEMBRANE DISTRIBUTED-REFLECTOR LASERS ON SILICON SUBSTRATE 3700108

and these will result in extremely low threshold current oper-
ation without sacrificing the differential quantum efficiency. In
MPICs, III-V materials are used for both active and passive
devices. The use of a III–V active layer on a Si-based passive
waveguide was reported as another approach to form the pho-
tonic integrated circuits on Si substrates. Although the differ-
ential quantum efficiency was quite low due to difficulty in
coupling to the Si waveguide in initial devices [23], DFB type
lasers on Si substrate with improved light output characteristics
and low threshold current of around 10 mA were realized [24],
[25]. Furthermore, high-speed modulation up to 40 Gbit/s was
realized for integrated InP/SOI DFB lasers [26]. However, the
operating energy was estimated to be a few pJ/bit, which seems
to be much higher than that required for on-chip optical inter-
connection. Although these devices are suitable for wavelength
division multiplexing (WDM) systems for short-reach commu-
nication inside data centers, it is difficult to apply for on-chip
optical interconnections in terms of operating energy. Another
design to reduce the active region volume is required for low
energy operation.

After the first room-temperature continuous-wave (RT-CW)
operation of a membrane DFB laser under optical pumping in
2001 [27], various current-injection-type membrane lasers such
as membrane DFB lasers directly bonded on an SOI substrate
[28]–[30] were reported. RT-CW operation of membrane-type
Fabry-Perot (FP) lasers grown on semi-insulating (SI) InP sub-
strate was achieved with a threshold current of 11 mA for a
cavity length of 720 μm, where an external differential quantum
efficiency (DQE: ηd ) of 33% was obtained while the internal
quantum efficiency (IQE: ηi) was estimated to be only 40% [31]
by using the lateral current injection (LCI) structure [32]. Then
IQE was improved to 70% (DQE of 59%) for a similar cavity
size by increasing the separation between quantum-wells for
better carrier injection in the LCI structure [33]. As for the fab-
rication of the membrane DFB cavity structure, surface grating
structures on an additional a-Si top layer [34], [35] or InP top
layer [36], [37] were reported, however the threshold current
was in the order of 10 mA or so under a pulsed condition.

RT-CW operation of a membrane FP laser bonded on Si sub-
strate was demonstrated [38], with a threshold current of 2.5 mA
(cavity length of 350 μm and the stripe width of 0.7 μm) and IQE
of 75% by reduction of thermal resistance. Then RT-CW opera-
tion of membrane DFB lasers were demonstrated and the thresh-
old current was reduced to 0.39 mA and 0.23 mA by adopting
a narrow stripe (0.2 μm) geometry [39] and by a short cavity
(50 μm) structure [40], respectively. Integration of the mem-
brane DFB laser with a p-i-n-photodiode (PIN-PD) was also
demonstrated [41]. Recently, high-speed direct modulation char-
acteristics of a membrane DFB laser with a modulation current
efficiency of 9.9 GHz/mA1/2 were reported [42], and low bias
current 10 Gb/s data transmission with a bit-error-rate (BER) of
1 × 10−9 was achieved using an optical amplifier [43].

However, these devices have poor light output characteristics.
The DR structure, which improves the light output efficiency
[44]–[47], was introduced, and an asymmetric light output char-
acteristic with the ratio from the front to the rear sides of 6.7 was
achieved [48]. Energy cost analysis of the membrane DR lasers
was also carried out, and a suitable cavity structure was pro-

Fig. 2. (a) Schematic structure and (b) cross section of membrane DR laser.

posed in terms of the energy cost [49]. Furthermore, although
a membrane DR laser integrated with a spot size converter for
data center use was reported [50], [51], further reduction of
threshold current is required for on-chip light sources.

In this paper, the characteristics of membrane DR lasers are
shown in order to realize low threshold current and high effi-
ciency operation. First, the design of the membrane DR laser
is shown in Section II. Next, static characteristics of membrane
DR lasers are shown in Section III. The characteristics of mem-
brane distributed-Bragg-reflector (DBR) lasers are also shown
in order to estimate the reflectivity of the DBR formed in the
membrane structure. In Section IV, direct modulation charac-
teristics, the bias current dependence of a small signal response,
as well as 10 Gbit/s large signal modulation, of the membrane
DR laser are presented.

II. DESIGN AND FABRICATION

In this section, the design of membrane DR laser and the fab-
rication process are shown. Fig. 2 shows a schematic structure
and its cross section along the cavity direction of a membrane
DR laser which has a DFB section with an active layer, a DBR
section with surface grating structure on the passive waveguide,
and passive waveguides connected to the back and front of the
laser. In the membrane structure, a lateral current injection (LCI)
structure with a lateral pin junction was adopted. This DR struc-
ture realizes high reflectivity for the lasing wavelength by setting
the periods of DFB section and DBR section properly. We set
the DFB period to match the shorter wavelength side mode
of the stop band of the DFB section to the center wavelength
(the Bragg wavelength) of the DBR section. The reflectivity of
the DBR was designed to be higher than 95% for the DBR sec-
tion longer than 90 μm [48]. In this calculation, the waveguide
loss of the passive section was assumed to be 12 cm−1 including
the material absorption loss.

Here, the energy cost for data transmission under the condi-
tions of 10 Gb/s operation, corresponding to a 3 dB bandwidth
of 7.7 GHz, and a light output power of 0.16 mW, which is
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Fig. 3. Energy cost for data transmission as a function of DFB section length
for various index-coupling coefficients κi .

required for on-chip light sources [22], [49], was estimated for
various index-coupling coefficients κi as shown in Fig. 3. We
did not treat the thermal properties, as investigated in our pre-
vious work [52]. The calculation was carried out for a stripe
width of 1 μm and a DBR section length of 100 μm by using
the transfer matrix method (TMM) [53], where the IQE and
waveguide loss of the DFB section were assumed to be 75%
and 21 cm−1, respectively. The reflection loss between the DFB
section and the DBR section was neglected because a reflection
of −42 dB was estimated by the finite difference method (FDM)
and the eigen-mode expansion method (EME) calculation [54].
In order to estimate the operating energy, it was assumed that
the resistance of the p-InP is dominant. The p-InP resistivity of
0.035 Ω�cm and a distance between the p-electrode and active
region of 1.2 μm were used [49]. The result shows that the low
energy cost operation of less than 100 fJ/bit can be expected
for the short cavity structure with a DFB section length of less
than 50 μm. Furthermore, it is possible to reduce the energy cost
by using a shorter cavity structure with a higher index-coupling
coefficient κi . In the case of κi = 4000 cm−1, the energy cost
(at 10 Gbit/s and 0.16 mW output) can be reduced to 40 fJ/bit
with a DFB section length of 19 μm.

Next, the fabrication process is briefly explained. The ini-
tial wafer structure was almost the same as that used in pre-
vious work [48]. The difference was the doping concentra-
tion of the p-InP upper cladding layer which was reduced to
5 × 1017 cm−3 in order to reduce the waveguide loss, and p+ -
GaInAs (100 nm) and p+ -GaInAsP (20 nm) were used for better
contact resistance. The etch stop layers and the 270-nm-thick
core layer including strain-compensated GaInAsP five quantum-
wells (5QWs) were grown on n-InP substrate by gas-source
molecular-beam-epitaxy (GS-MBE). The process contains for-
mation of the laser structure, benzocyclobutene (BCB) bonding,
evaporation of electrodes, and formation of the surface grat-
ing. In the formation of the laser structure, a GaInAsP passive
waveguide layer was selectively regrown and a pin junction
was formed by two step selective regrowths of n-InP and p-
InP. Next, 1-μm-thick SiO2 cladding was deposited, and the
laser wafer was bonded up-side down on a Si substrate by BCB
bonding. After the bonding, the membrane structure was ob-
tained by removing the InP substrate side and etch stop lay-
ers, and the contact layer was formed, where Au/Zn/Au/Ti/Au
(25 nm/50 nm/300 nm/25 nm/250 nm) for the p-electrode and

Fig. 4. Schematic structure of fabricated membrane DBR laser.

Fig. 5. Current-light output and current-voltage characteristics of membrane
DBR laser.

Ti/Au (25 nm/250 nm) for the n-electrode were evaporated. The
p-electrode was annealed at 370 °C for 1 m. Finally, the surface
gratings at both DFB and DBR sections were formed by electron
beam lithography and wet chemical etching by using a solution
of HCl:CH3COOH:H2O2 :H2O = 2:20:1:30 at 10 °C for 2 s.

III. STATIC CHARACTERISTICS

First, the membrane DBR laser was fabricated for the estima-
tion of the reflectivity of the DBR. The schematic structure of
the fabricated membrane DBR laser used for this measurement
is shown in Fig. 4. The surface grating was formed at only the
DBR section, and the front facet was formed by cleaving at the
active section. A device with stripe width of 1.1 μm, active sec-
tion length of 80 μm, and DBR section length of 50 μm was used
for evaluation of the light output characteristics. Fig. 5 shows the
current-light output and current-voltage characteristics, where a
threshold current of 1.7 mA, external differential quantum effi-
ciency (DQE) from the front facet ηdf and rear facet ηdr of 35%
and 3%, respectively, and maximum light output of 0.8 mW
were obtained thanks to the introduction of the rear DBR. A
threshold voltage Vth of 1.4 V and differential resistance dV/dI
of 360 Ω were obtained.

The DBR reflectivity RDBR has the relation

Pf

Pr
=

ηdf

ηdr
=

1 − Rf

1 − RDBR

√
RDBR

Rf
, (1)

where Pf/Pr is the light output ratio and Rf is the reflectivity at
the front facet [55]. Estimation of the actual external differential
quantum efficiency from the rear DBR of η′

dr is required because
the fabricated device has a 370-μm-long waveguide backside of
the DBR. The external differential quantum efficiency from the
rear DBR is expressed by η′

dr = ηdr · eαL/(1 − Rr) = 6%.
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Fig. 6. Current-light output and current-voltage characteristics of membrane
DR lasers with (a) 30-μm-long DFB section and 100-μm-long DBR section and
(b) 61-μm-long DFB section and 50-μm-long DBR section.

Here, an Rr of 22% and waveguide loss of 12 cm−1 was as-
sumed. Therefore, the reflectivity of the DBR was estimated to
be 75% by using (1). From the theoretical analysis, the reflec-
tivity of the DBR with a DBR length of 50 μm was estimated to
be 98%. The difference between these values can be attributed
to a scattering loss at the surface grating.

Next, membrane DR lasers with DFB section lengths of
30 μm and 61 μm were fabricated. Fig. 6(a) shows the current-
light output and current-voltage characteristics of the fabricated
device with a stripe width of 1 μm, and a grating period of
296 nm for both the DFB and DBR sections. This design comes
from a slightly lower refractive index of the DBR section com-
pared with that of the DFB section. For the measurement, the
facets were formed by cleaving the waveguide section to create
the front and rear facets without any coating. For stable single
mode operation, anti-reflection coating is required in order to
suppress the effect of facet phase and Fabry-Perot resonance
between the cleaved facet and front side of the DFB section.
However, the reflection can be suppressed by the taper structure
between the laser and waveguide on MPICs. The length of the
front waveguide was 60 μm. A threshold current of 0.42 mA
(corresponding threshold current density of 1.4 kA/cm2), ex-
ternal differential quantum efficiency from front facet and rear
facet, ηdf and ηdr , of 19% and 2%, light output ratio of 9.5,
and maximum light output power of 0.19 mW were obtained.
Furthermore, a threshold voltage Vth of 1.1 V and differen-
tial resistance dV/dI of 740 Ω were obtained. The reason for
low voltage operation is the reduction of contact resistance and
sheet resistance thanks to the diffusion of Zn to the p-InP layer
by the introduction of the Au/Zn/Au electrode. Next, the fab-

Fig. 7. Power conversion efficiency of the membrane DR laser.

Fig. 8. Lasing spectrum of membrane DR laser at bias current of 2.88 mA.

ricated membrane DR laser with 61-μm-long DFB section and
50-μm-long DBR section was measured, as shown in Fig. 6(b),
where a threshold current of 0.48 mA (corresponding thresh-
old current density of 790 A/cm2), ηdf of 26%, and maximum
light output power of 0.36 mW were obtained. This device has
no front waveguide, which means the device is cleaved at the
active DFB section. The ηdf value is around 2.5 times higher
than that reported in our previous work [48]. These improve-
ments are considered to be caused by better matching between
the DFB mode and the Bragg wavelength of the DBR section.
Fig. 7 shows the power conversion efficiency of the membrane
DR laser with a 61-μm-long DFB section. A maximum power
conversion efficiency of 6.9% was obtained at a bias current of
1.2 mA. There is still room for improvement by the increase
of internal quantum efficiency and the reduction of operation
voltage.

The lasing spectrum of this device at a bias current of 2.88 mA
(Ib = 6 Ith ) is shown in Fig. 8. The single mode operation at
lasing wavelength of 1542 nm with a side-mode suppression-
ratio (SMSR) of 40 dB was obtained. A clear 41-nm-wide stop
band was observed and used to estimate an index-coupling co-
efficient κi of 1840 cm−1 .

In this section, the membrane DR lasers with around 2.5 times
higher DQE than that in previous report were shown, which may
be attributed to the matching of the DFB lasing mode and the
Bragg wavelength of the DBR section. The adoption of Au/Zn
alloying for the p-side contact resulted in low bias voltage oper-
ation, which is important for low power consumption operation.
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Fig. 9. Small signal response of membrane DR lasers with (a) 30-μm-long
DFB section and 100-μm-long DBR section and (b) 61-μm-long DFB section
and 50-μm-long DBR section.

IV. DYNAMIC CHARACTERISTICS

In this section, direct modulation characteristics such as the
small signal response and 10 Gbit/s large signal modulation
characteristic of the membrane DR laser are given. First, the
small signal measurement was performed using a vector network
analyzer (VNA). A modulation signal was applied to the device
using a 40-GHz-band high-speed signal-ground (SG) RF probe
with 100 μm pitch. The light output from the front facet was
coupled to a spherical-lensed single-mode fiber. The collected
optical signal output was amplified by an erbium-doped fiber
amplifier (EDFA), and then the amplified spontaneous emission
(ASE) light was filtered by a tunable bandpass filter. The optical
signal was finally detected by a 12 GHz PIN-photoreceiver.

Fig. 9 shows the small signal response S21 for the membrane
DR lasers with DFB section lengths of 30 μm and 61 μm.
It was confirmed that the relaxation oscillation frequency fr
and 3 dB bandwidth f3dB increased with an increase of the
bias current, and the maximum 3 dB bandwidth was 12.8 GHz
at a bias current of 2.31 mA for the device with 30-μm-long
DFB section and 9.7 GHz at a bias current of 2.72 mA for the
device with 61-μm-long DFB section. These 3dB bandwidths
are sufficient for 10 Gb/s operation.

Fig. 10 shows the relaxation oscillation frequency fr as a
function of the square root of bias current above the thresh-
old for devices with DFB section lengths of 30 μm and
61 μm. Slope efficiencies of fr (modulation current efficiency
factor: MCEF) for the device with 30-μm-long DFB section
and the device with 61-μm-long DFB section length were
7.9 GHz/mA1/2 and 7 GHz/mA1/2 , respectively. These MCEF
were much higher than the 3.0 GHz/mA1/2 of conventional

Fig. 10. Relaxation oscillation frequency fr as a function of square root of
Ib − Ith for devices with DFB section lengths of 30 μm and 61 μm.

Fig. 11. Bit-error-rate as a function of average received power.

(vertical current injection type) GaInAsP/InP DR lasers [56],
thanks to the strong optical confinement effect as well as small
active region of the membrane structure. The MCEF of the
30-μm-long device is higher than that of the 60-μm-long de-
vice due to the small active region. However, the value of
7.9 GHz/mA1/2 for the 30-μm-long device was slightly smaller
than the 11 GHz/mA1/2 of the previously reported membrane
DFB laser with the same active region volume of 0.9 μm3

[43]. The reason for this is low differential gain due to the
twice-higher threshold current density of 1.4 kA/cm2 than that
(700 A/cm2) of the membrane DFB laser. To enhance this
MCEF, low threshold current density operation is required by
the introduction of a higher index-coupling coefficient structure.

Finally, large signal direct modulation was performed with the
device with a 61-μm-long DFB section. For large signal direct
modulation, the EDFA was not used. An electrical data sig-
nal with a pseudo-random bit sequence (PRBS) having a word
length of 231 − 1 was generated by a pulse pattern generator.
The output was monitored and attenuated before the photore-
ceiver. Fig. 11 shows the bit error rate (BER) as a function of
the average received power of the 10 Gbit/s non return to zero
(NRZ) signal. The bias current for the device and modulation
voltage swing were set to 3 mA and 0.8 Vpp , respectively. A
minimum BER of 5.4 × 10−6 was obtained. In order to inves-
tigate the reason for the high BER, a signal eye pattern was
observed. Fig. 12 shows the eye pattern at an average received
power of −11.4 dBm. The eye opening is unclear due to the
noise. The reason for the noise is reflection back to the cavity
due to the rear waveguide. An anti-reflection facet coating can
improve this noise property. At this bias condition, the energy
cost of the device is estimated to be 980 fJ/bit which is not close
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TABLE I
SUMMARY OF STATE OF THE ART OF DFB/DR LASERS ON SI SUBSTRATE

Structure Area [μm2] Threshold current [mA] DQE [%/facet] Max. output power [mW] Modulation speed [Gb/s] Energy cost [fJ/bit] Institution

DFB∗ 800 8.8 ∼7 3.75 12.5 ∼11000 UCSB, USA [24]
DFB∗ ∼1100 17 ∼15 6 40 ∼5000 U Ghent, Belgium [26]
DFB‡ 73 0.9 ∼11 0.93 25.8 171 NTT, Japan [57]
DR† 40 0.6 ∼21 ∼0.65 25.8 132 NTT, Japan [50], [51]
DFB‡ 30 0.21 5 ∼0.05 10 230 Tokyo Tech., Japan [43]
DR‡ 67 0.48 26 0.36 10 980 Tokyo Tech., Japan (This work)

∗The light output from active region was coupled to Si waveguide. †The light output from active region was coupled to InP waveguide. ‡The front facet was cleaved at active region.

Fig. 12. Eye pattern of 10 Gbit/s NRZ signal with a 231−1 pattern (inverted
pattern).

to the required 100 fJ/bit. The reason for this is higher bias
current compared with previous work [43] due to the noisy sig-
nal pattern.

The performances of DFB/DR lasers prepared on Si substrate
are summarized in Table I. As mentioned in the introduction,
DFB lasers coupled to Si waveguide have high energy cost in
terms of application for on-chip optical interconnection. In con-
trast, the membrane lasers coupled to InP waveguide realized
very low operating energy. In this study, the highest DQE was
obtained by DR lasers (DFB laser integrated with DBR). Fur-
ther reduction of operating energy can be expected by not only
suppression of reflection but also reduction of threshold current
as well as increase of DQE.

V. CONCLUSION

A membrane distributed-reflector (DR) laser with low
threshold current and high efficiency operation was investigated
as a promising light source for use in on-chip optical intercon-
nections.

First, theoretical analysis of threshold current and external
differential quantum efficiency of the membrane DR laser was
carried out. The result shows that the DFB section length from
30 to 50 μm is suitable to obtain both low threshold current
and high external differential quantum efficiency for the output
power required from the minimum receivable power of a PIN-
PD at 10 Gbit/s operation.

Next, membrane DBR laser and DR lasers were fabricated
and evaluated. The membrane DBR laser with an active section
length of 80 μm and DBR section length of 50 μm showed
high external differential quantum efficiency of 35% at the front
facet side, where the DBR reflectivity was estimated to be 75%.
For the membrane DR laser with 61-μm-long DFB section and
50-μm-long DBR section, a threshold current of 0.48 mA, exter-
nal differential quantum efficiency at the front waveguide side
of 26%, and light output ratio of 13 were obtained. From the

lasing spectrum, single mode operation with an SMSR of 40 dB
was obtained.

Finally, the modulation characteristics of membrane DR
lasers were measured. In the small signal measurement, a mod-
ulation current efficiency factor (MCEF) of 7.9 GHz/mA1/2 and
7 GHz/mA1/2 for the devices with 30-μm-long DFB section and
61-μm-long DBR section were respectively obtained. Further-
more, BER of 5.4 × 10−6 was obtained. Although error-free
operation was not obtained, the introduction of anti-reflection
coating can improve the noise property. This shows the mem-
brane DR laser can achieve high-speed modulation with low
bias current due to the strong optical confinement effect in the
thin semiconductor membrane structure.

These results show the membrane DR laser is a powerful
candidate for on-chip light sources, in terms of low power
consumption and high-speed data transmission. The operation
energy can be improved by the introduction of a high-index-
coupling coefficient structure with a small volume of the active
region.
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