IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 23, NO. 3, MAY/JUNE 2017

8800212

Breaking the Femtosecond Barrier
in Multi-Kilometer Timing
Synchronization Systems

Ming Xin, Member, IEEE, Kemal Safak, Michael Y. Peng, Aram Kalaydzhyan, Patrick T. Callahan, Member, IEEE,
Wenting Wang, Oliver D. Miicke, and Franz X. Kartner, Fellow, IEEE

(Invited Paper)

Abstract—To observe electronic dynamics in atoms, molecules,
and condensed matter taking place on an attosecond time scale,
next-generation photon science facilities like X-ray free-electron
lasers and intense laser beamlines require system-wide attosecond-
level synchronization of dozens of optical and microwave signals up
to kilometer distances. Here, we present for the first time a timing
synchronization system that can meet the strict timing require-
ments of such large-scale facilities. We discuss some key enabling
technologies including master-laser jitter characterization, local
timing synchronization, new designs of attosecond-precision tim-
ing/phase detectors, and analyze fundamental noise contributions
in nonlinear pulse propagation in fiber links. Finally, a complete
4.7-km laser-microwave network with 950-as timing jitter is real-
ized over tens of hours of continuous operation.
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1. INTRODUCTION

YNCHRONIZATION is an integral part of our world as
S it is widely used in many aspects of our daily life such as
congestion resolution in intelligent transportation systems [1],
time codes in film making [2], flash sync in digital cameras [3],
MIDI clock in electronic music [4], and data packet switching
in optical communications [5]. Timing precision of each syn-
chronization technique ranges from several seconds to a few
picoseconds, and maintaining this precision is a prerequisite to
make our world more harmonious and more beautiful. With the
ever increasing demands in science and technology, higher tim-
ing precision at the femtosecond (fs) and even attosecond (as)
level has recently become desirable in large-scale networks for
many advanced applications.

The first example is the telescope arrays employed in astron-
omy [6]-[10]. In order to obtain the surface details of distant
astronomical objects, especially to explore exoplanets in the
habitable zone, ultrahigh angular resolution such as 107° arc-
second (corresponding to 50 km spatial resolution at 1-light-
year distance) for cosmic imaging will be needed in the near
future. To achieve this goal, the telescope array needs to work at
terahertz or even optical wavelength [10] with hundreds-of-km
scale. Then fs/as-precision synchronization among these tele-
scopes are required to perform an accurate phase correlation of
the ultrafast detected signals.

Gravitational waves have been directly detected by the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
recently [11], [12] after a one-century search. However, de-
veloping new methods to make the detection more efficient is
still necessary. An atomic-clock-based detector [13], [14] is one
candidate, which is sensitive to the relative velocities of the ref-
erence masses, rather than the relative distance as in LIGO. In
this scheme, a synchronized clock network with attosecond or
even sub-attosecond precision is required, which will greatly in-
crease the detection possibility and accelerate the development
of gravitational-wave astronomy, if it can be realized. However,
the required level of precision is an enormous challenge for
current synchronization techniques.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Besides these applications discussed above, attosecond-
precision synchronization is most urgently required in free-
electron lasers (FELs). Recently, several X-ray FELs (XFELs),
such as the European XFEL [15] in Hamburg, FERMI [16]
in Italy, SwissFEL in Switzerland and Linac Coherent Light
Source (LCLS) [17] and LCLS 1II [18] in Stanford are built or
being built worldwide with lengths ranging from a few hundred
meters to several kilometers. All these facilities aim to gener-
ate attosecond X-ray pulses [20] with unprecedented brightness
to film chemical and physical reactions with sub-atomic-level
spatio-temporal resolution [21], [22]. Significant progress in the
spectroscopy of attosecond-level molecular dynamics, including
the time-domain observation of intramolecular charge transfer
[23] and the discovery of ultrafast Auger processes altering the
chemistry of matter on an attosecond time scale [24], [25], has
been made in the past few years. However, the current XFELs
are still not using their full potential for sub-atomic-level movie
applications due to the lack of an attosecond-precision tim-
ing control to avoid blurring of the individual pictures in time.
As illustrated in Fig. 1, in order to generate attosecond X-ray
pulses and perform attosecond-precision pump-probe experi-
ments, all the optical/microwave sub-sources inside an XFEL,
including the electron gun, injector laser, microwave references
of the linear accelerator and bunch compressor, seed laser and
pump lasers at the end station, need to be synchronized si-
multaneously with attosecond relative timing jitter. Therefore,
a multi-km attosecond-precision synchronization technique is
imperative to unleash the full potential of these billion-dollar
photon science facilities.

Generally, a synchronization system consists of a timing ref-
erence providing extremely stable timing signals, a target sig-
nal that needs to be synchronized, a timing detector that can
measure the timing difference between the target signal and
the reference, and a control box to lock the timing of the tar-
get to that of the reference. If the target device is far away
from the reference, a timing link is also necessary to deliver the
timing signal from the reference to the target. Without excep-
tion, the attosecond-precision synchronization technique also
requires these key elements.

Bunch
ompressor
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The timing reference source in attosecond synchronization
can be an atomic clock [26], [27], a continuous-wave (CW) laser
[28], [29] or a mode-locked laser [30], [31]. The state-of-the-
art technique in each solution can provide an attosecond-jitter-
equivalent instability for 1s observation time. In contrast to the
other two solutions, the mode-locked laser can simultaneously
provide ultralow-noise optical and microwave signals, and the
ultrashort optical pulses in the time domain can be directly
used as time markers for precise timing measurements. So it
is an ideal timing source for synchronization applications such
as telescope arrays and XFELs, where the target devices are
mode-locked lasers and microwave sources.

Another advantage of using mode-locked lasers is that it can
provide very high sensitivity during timing detection, thanks
to its high pulse peak power. For example, we have developed
balanced optical cross-correlators (BOCs) [32], [33] and bal-
anced optical-microwave phase detectors (BOMPDs) [34], [35]
for optical-optical and optical-microwave timing detection, re-
spectively. Both of them can achieve attosecond precision and
>1-ps dynamic range at the same time. In contrast, it is difficult
to build comparable timing detectors with atomic clocks or CW
laser sources, due to their single-frequency property.

Usually the control box can be realized by a feedback loop,
which needs to be carefully designed to avoid any feedback-
induced noise. For remote synchronization, the timing link can
be either optical fiber [36]-[41] or free space [42], [43]. Free-
space-based links are limited by the ground buildings and also
suffer from atmospheric turbulences. But it may be suitable
for space applications such as gravitational-wave detection.
Optical-fiber-based timing links, on the other hand, are very
flexible for installation and can be easily fitted into telescope
arrays and XFELs.

In this work, we focus on the XFEL application, since it
possesses currently the most urgent timing challenge. But the
techniques we present here can also easily be adapted to other
applications in the future. Based on the discussions above,
the best synchronization solution for XFELs, as depicted in
Fig. 1, should use a mode-locked laser (master laser) as the tim-
ing reference, and optical fiber links to distribute the timing sig-
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Fig.2. Master-laser jitter characterization setup (PBS, polarization beam split-
ter; DBS, dichroic beam splitter; DM, dichroic mirror; PPKTP, periodically-
poled KTiOPOy; PI, proportional-integral controller; SSA, signal source
analyzer).

nals to different remote laser/microwave sources. We have been
working on this approach over the past decade [38] and already
breached the 10-fs precision level [44]-[46], which is more
than an order of magnitude better than the best results achieved
with traditional microwave signal distribution schemes [47],
[48]. In order to meet the strict timing requirements of XFELs,
a novel attosecond-precision timing synchronization system is
developed based upon our previous work, and presented in the
following of this paper. In Section II, we first show the timing
jitter characterization of the master laser. Then local synchro-
nization results and new BOMPD/BOC designs are reported in
Section III. Link stabilization, link-induced timing jitter and
the link feedback model are discussed in Section IV. Finally,
a complete 4.7-km laser-microwave network with attosecond
precision is presented in Section V before we conclude in
Section VI.

II. MASTER-LASER JITTER CHARACTERIZATION

Since the master laser in Fig. 1 serves as timing reference of all
the optical/microwave sub-sources, it must exhibit attosecond-
level timing jitter, which needs to be accurately characterized.
In conventional jitter characterization of mode-locked lasers,
the laser output is first detected by a photodetector and then
the phase noise is converted into an amplitude change by a
mixer [49] for baseband power spectrum measurement. This
scheme, which is adopted by state-of-the-art signal source ana-
lyzers (SSAs), suffers from amplitude-to-phase (AM-PM) noise
conversion during photodetection [50], [51]. Here we use a dif-
ferent characterization method based on BOC [52], [53], which
is intrinsically immune to AM-PM noise by directly convert-
ing the timing difference of two optical pulses into a voltage
signal. The BOC characterization has achieved extremely low
noise floors down to 1072 fs?/Hz for offset frequencies up to the
Nyquist frequency of mode-locked lasers [31], [54].

The master-laser jitter characterization setup is given in
Fig. 2. The output of two identical lasers (master and slave,
with 216.667 MHz repetition rate, 50 mW average power,
170 fs pulse width and 1553 nm center wavelength) were com-
bined by a polarization beam splitter (PBS) and launched into
a BOC, which consists of a single 4-mm-long periodically-
poled KTiOPO, (PPKTP) crystal operating in a double-pass
configuration with appropriate dichroic beam splitter and mir-
ror (DBS, DM) and a low-noise balanced photodetector (BPD).
The BOC output was fed back to the slave laser’s PZT (with
a sensitivity of 17.4 Hz/V) through a proportional-integral (PI)
controller so that the two lasers’ repetition rates were locked to
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Fig. 3. (a) Coefficient C'y; at different feedback gain values; (b) Simulated

BOC output jitter spectral density at different feedback gain values. The peaks
around 30 kHz in (a) and (b) originate from the PZT resonance of the slave
laser.

each other. Finally, the BOC output was sent to an SSA for jitter
characterization.

Based on the BOC locking model in [45], [46], [55], the
timing jitter spectral density at the output of the BOC satisfies

JE =20u 3 + Cn IR+ T} @)

where Cyy = [1/(1+ H)|?,Cx = |H/(1+ H)|?, H is the
total complex transfer function of the feedback loop, Jys is
the free-running jitter of the master laser, the factor 2 stems from
the assumption that the master and slave lasers have identical but
uncorrelated jitter, Jy is the electronic noise from the feedback
loop, and Jp is the BPD noise directly coupled into the SSA. In
order to use the measured value Jy to estimate .J,;, we should
let H~ 0. Then C); ~ 1, Cy = 0, an upper limit estimation
of Jjs can be given
Ty~ 3T~ sON TG — 3 T < 273 @
Using the feedback parameters from the experiments, we
calculate C; at different feedback gain values, as shown Fig.
3(a). When the gain is at —20dB, C'; is almost 1 above 1 kHz.
Furthermore, in Fig. 3(b), we assume that J3, has a 1/ slope
(black dashed line), J]%, has a 1/fslope (blue dashed line) and J123
is a constant (red dashed line), so that we can easily analyze how
each noise source affects Jo . It can be seen that as feedback gain
increases, Jo approaches Jy from 10 Hz to 1 kHz, and above
50 kHz, Jo is always limited by Jp since Jp dominates
the noise sources. While below 50 kHz, more and more
low-frequency components of J3 coincide with 2J7, when
gain decreases. So in terms of measurement, we can decrease
the feedback gain as much as possible (e.g., —20 dB), then we
can obtain the accurate master-laser jitter between 1 kHz and
20 kHz and an upper-limit estimate above this frequency range.
The master laser measurement results are displayed in Fig. 4.
The top panel shows the jitter spectral density at different feed-
back gains. As predicted by the simulations, the jitter spectrum
is limited by the detector noise floor (grey curve) above 30 kHz.
Between 1 kHz and 30 kHz, as the gain decreases, the spectrum
approaches the real laser jitter. We choose the lowest gain value
(about —15dB) at which the locking is still stable enough to per-
form a measurement, and obtain 330 as integrated timing jitter
from 1 kHz to 1 MHz, as shown in the bottom panel of Fig. 4.
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This value gives a very good upper-limit estimate of the mas-
ter laser’s jitter. So this laser is definitely capable of providing
the reference in an attosecond-precision timing synchronization
system.

In practice, the timing precision of a BOC is either limited
by the detector electronic noise or the optical shot noise. Us-
ing some typical experimental parameters, as listed in Fig. 5,
this limitation can be estimated. We assume that the two input
optical pulse trains of a BOC have the same average power,
which are given on the horizontal axis of Fig. 5, then the BOC
noise floor introduced by shot noise and electronic noise are cal-
culated, respectively. The free-space-coupled BOC (as used in
Fig. 2) is shot-noise limited above 200 mW input optical power
otherwise it is limited by the electronic noise (blue/red solid
curves in Fig. 5). With 1 kW input power, we can even achieve
one-zeptosecond timing precision at 100 MHz bandwidth. By
replacing the free-space BOC with an integrated version [56],
[57], the sum-frequency generation (SFG) efficiency can be in-
creased by at least ten times, as a result the shot/electronic noise
floor can be further decreased by 10/20 dB (blue/red dotted
curves in Fig. 5).

III. LOCAL SYNCHRONIZATION
A. Local Optical-Optical Synchronization

After characterizing the master-laser jitter, it is necessary to
test its local synchronization performance before installing it
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in a distributed network. The local optical-optical synchroniza-
tion experimental setup is shown in Fig. 6. Similar to that in
laser characterization, the repetition rates of the slave and mas-
ter lasers were first locked together with an in-loop BOC, then
another out-of-loop BOC was used to evaluate the jitter perfor-
mance after synchronization. Both of the two BOCs have the
same structure as that shown in Fig. 2. In the feedback loop, the
output of the in-loop BOC was first filtered by a PI controller.
Then the PI output was separated into two paths: the first path
was directly sent to the slave laser’s PZT without amplification
to compensate fast jitter above 10 Hz; the second path was sam-
pled by a data acquisition (DAQ) card, analyzed by a Labview
program to generate a DC voltage to compensate slow jitter be-
low 10 Hz, and a voltage amplifier was used to extend the com-
pensation range. This feedback design can effectively optimize
the locking bandwidth and compensation range simultaneously.

To minimize the thermally-induced timing fluctuations, the
two lasers, two BOCs and other free-space optics were mounted
on a temperature-stabilized breadboard with a Super-Invar sur-
face sheet. With temperature fluctuations controlled below
+0.05 K, the effective timing instability of free-space beam
paths due to thermal expansion is only +1 as/cm. Lead foam
was placed beneath the setup to damp table vibrations. A two-
layer enclosure with acoustic heavy foil for the inner layer and
high-density polyethylene (HDPE) for the outer layer was built
to provide acoustic isolation for all optical components. A hu-
midity insulation material covering the outer enclosure was also
used to protect the setup from environmental humidity changes.

Fig 7(a) shows the out-of-loop jitter spectrum from 1 Hz to
1 MHz. The total integrated jitter over this frequency range is
only 450 as. A long-term drift measurement was taken and
the peak-to-peak drift in 10 hours is 400 as, which gives
a root-mean-square (RMS) drift of 71 as (see Fig. 7(b)).
The Fourier transform of the drift data is also calculated in
Fig. 7(c). The integrated drift from 200 pHz to 1 Hz is only
50 as. These results indicate that optical synchronization using
BOC can easily achieve attosecond precision. Furthermore, they
also provide a precision limit that we can approach in the remote
timing synchronization.

B. Free-Space-Coupled BOMPD

The optical-to-microwave synchronization can be realized by
the BOMPD technique, and local synchronization experiments
have been demonstrated in our previous works [35], [S8]. How-



XIN et al.: BREAKING THE FEMTOSECOND BARRIER IN MULTI-KILOMETER TIMING SYNCHRONIZATION SYSTEMS

Frequency (Hz)

_31 10 100 1k 10k 100k 1 l\go
z " g _
g N 600 S5 8
g _10 5
83,10 400 5 =
o o+
2 10° 200 S
g ge
S =
10-11 el 0
(@
400 . .
=
5 A200
£8 o
E 200
= RMS drift =71 as
W v 2 3 4 5 6 7 8 9 10
Time (hours)
(b)
2 . m
- 10 1202 @
LS EwW
8% 107 80 =T
-3 3=
E 3 10° 40 S92
£ 2 [<J3)
[l i 2
'010_10; H 0 = §
10u 100y 1m 0.01 0.1 1 kS
Frequency (Hz)
(©
Fig. 7. Local optical-optical synchronization measurement results. (a) Out-

of-loop jitter spectrum; (b) long-term timing drift (sampling rate: 2 Hz);
(c) timing drift spectrum.
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ever, the non-optimized design of BOMPD limits its local syn-
chronization precision to the femtosecond level, which can only
become worse in the remote case. In order to meet the km-scale
attosecond-precision requirement in XFEL microwave synchro-
nization, we have developed a new BOMPD configuration,
free-space-coupled BOMPD (FSC-BOMPD) [19], as shown in
Fig. 8.

The principle of this FSC-BOMPD can be explained as fol-
lows. An optical pulse train with a repetition rate fr from a
mode-locked laser is launched into the FSC-BOMPD through
the optical input port. The optical power is then separated into
three paths: signal, bias and reference, with free-space compo-
nents, such as PBS, half-wave plates and quarter-wave plates.
Compared with the fiber-coupled approach [35], [58], this effi-
ciently reduces the long-term drifts caused by the environment.
Each path contains a free-space delay stage that enables pre-
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cise phase tuning without backlash, microwave reflection and
loss when compared with RF phase shifters. In the signal path,
the optical signal is coupled into a Sagnac interferometer (SGI)
through a collimator. If the pulse is sufficiently short, the optical
pulse train power at the SGI input can be approximated by

Py(t) = PuTr Y (14 Agiy (1) 6(t —nTr — A, (1)

3)
where () is the Dirac delta function, T = 1/ fg is the period
of the pulse train, P,, Agr;n(t) and A;(t) are the average
power, power fluctuations and timing jitter of the pulse train,
respectively.

In the bias path, a self-referenced signal (M + 0.5) f is de-
rived from the optical pulse train after a photodetector (PD),
bandpass filter (BPF) and a frequency divider, and sent to the
phase modulator of the SGI together with the RF input signal
at frequency fy =~ N fp. Usually M is a very large number, the
multi-GHz modulation in the phase modulator can ensure unidi-
rectional phase modulation, which eliminates the repetition-rate
dependence of the SGI, thus improving its robustness and long-
term stability. The driving signal of the phase modulator can be
written as

(p(t) = VE) sin [2’/Tf()(t + At())]

+ Vysin [2m(M 4+ 0.5) fr(t + Aty) + Ag]  (4)
where V), and At are the amplitude and timing jitter of the RF
input signal, respectively. V}, is the amplitude of the RF signal
from the bias path. A¢ and At,, are the fixed relative phase and
relative timing jitter between the pulse train and the RF bias
signal, respectively.

Under quadrature bias condition, we have

Vp sin(A¢) = 7/2 5)

We suppose the frequency of the RF and optical input signals
are locked with each other by the FSC-BOMPD, then f; =
N fr. Using (3)—(5), the output optical power after circulating
in the SGI can be expressed as
P(t) = (1 - a)Pu(t)sin® (p/2)

e - 02 .

= TPaTR Z {1 +V, (2 sin A¢ + 6, cos Aqﬂ

n=-—0oo

1-a —
X (]_ + AR]N)(S(t — TLTR) + TPaTR Z Voo

n=-—oo

X (14 Agrrn)d(t — nTg)e/™/rt (6)
where « is the loss of the SGI, 0, = 2w fy(Aty + Ay) is the
relative phase error between the SGI and RF input signals, and
0, = 2w (M + 0.5) fr Aty is the phase fluctuations of the bias
path.

The SGI output is filtered by a BPF at 0.5 fr, so as to perform
a frequency down-conversion with the signal in the reference
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path. Since the 0.5 f; frequency component only appears in the

second term on the right-hand side of (6), the phase fluctuations

0y from the bias path cannot affect this down-conversion process.
Finally, the error signal after down-conversion is

C

Ve=73

(1 — a)PaTRWI,%QG(]. —+ ARIN) COS(’/TfRAtT) (7)

where V., is the amplitude of the RF signal in the reference
path, At, is the relative timing jitter between the reference and
the SGI path, and C is a constant coefficient related to the elec-
tronics during down-conversion. Since the down-conversion is
performed as the lowest possible frequency 0.5 f5, the thermally
induced phase changes in the reference path can be minimized.
For example, if fr = 216 MHz, a 3-mm length change from
the reference path can only introduce 2x 107> relative change
to V.. Similarly, since usually Agr;y < 1, in contrast to other
BOMPDs [59], [60], V. is also insensitive to optical input power
fluctuations. Thus, V. is mainly determined by 6., the relative
timing jitter between the RF and SGI input signals. The free-
space optical paths before the SGI are well isolated from en-
vironmental changes, so that the FSC-BOMPD can accurately
detect the timing jitter between the RF and optical input signals
without introducing systematic errors.

C. Polarization-Noise-Suppressed BOC

In order to further improve the noise performance during
timing detection, we also developed a new timing detector,
polarization-noise-suppressed BOC (PNS-BOC) [19], as shown
in Fig. 9. In a BOC, ideally the input pulses (', and Er,) are
aligned along the two principal axes of the type-II PPKTP crystal
for maximum SFG. Due to finite polarization extinction ratios
in the optical elements upstream from the BOC, there will be
undesired pulse components (Er s and Er)) projected along the
undesired polarization axes. In the PNS-BOC, a linear material
with large birefringence is placed before the BOC. This material
adds a significant delay to the undesired components such that
they do not overlap and interfere with the SFG process in the
PPKTP crystal. In our setup, a BBO crystal is used to provide
the required birefringence, whose cut angle is carefully selected
to make sure that it cannot generate any nonlinear process.
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Fig. 10.  General link stabilization setup [19] (SM, silver mirror; A/4, quarter-
wave plate; FR, 45° Faraday rotator; MDL, motorized delay line; FS, fiber
stretcher; 3.5-km PM-DCEF link, 3.5 km polarization-maintaining dispersion-
compensated fiber link; PM-EDFA, polarization-maintaining erbium-doped
fiber amplifier).

IV. LINK STABILIZATION
A. 3.5-km Timing Link Stabilization

Timing link stabilization is crucial for remote timing syn-
chronization, and may become the jitter-limiting factor if not
carefully optimized. Fig. 10 shows a general link stabilization
setup using polarization-maintaining (PM) fiber. The link input
signal is first divided into reference and link path pulses. The
reference path length is set as short as possible (e.g., 4 cm) to
minimize timing errors introduced by environmental noise. A
fiber mirror is placed at the end of the link to partially reflect
the link pulses’ power back for stabilization. To ensure that the
forward and backward link transmission accumulates the same
amount of jitter, the link pulse must travel along the same po-
larization axis during round-trip propagation. Therefore, a 45°
Faraday rotator before the fiber link is necessary to introduce a
90° round-trip polarization rotation to direct the reflected link
pulse towards the BOC. In the control module, the output volt-
age of the PI controller is divided into two paths. The first path
compensates for fast noise in the link and usually consists of
a high-voltage amplifier that drives a PM fiber stretcher. The
second path compensates for long-term environmental drift; a
DAQ card is usually used to sample the timing error, and control
commands can be sent to a motorized delay line (MDL) through
a Labview program.

A 3.5-km link stabilization experiment is demonstrated using
the setup in Fig. 10. The output of the master laser used in
Sections II and III was separated into two paths, the pulses in
one path was sent to the link input port of Fig. 10, and the
pulses of the other path were compared with the link output
power with an out-of-loop BOC in free space, to evaluate the
link stabilization performance. The out-of-loop jitter spectrum
is given in Fig. 11(a), the total integrated jitter from 1 Hz to
1 MHz is about 340 as, which are mainly contributed by the
master laser’s inherent jitter and the feedback loop. The link
was continuously locked over 96 hours yielding an RMS drift
of 570 as (see Fig. 11(b), red curve). We also performed another
long-term measurement by replacing the out-of-loop free-space
BOC with a fiber-coupled integrated one [57], and obtained 500
as RMS drift (see Fig. 11(b), black curve) over 84 hours. The
two long-term measurements show similar magnitudes of drift
over tens of hours, while the drift in a 1-hour period with a
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Fig. 11.  3.5-km timing link stabilization results. (a) Out-of-loop jitter spec-
trum; (b) two independent long-term timing drift measurements using a free-
space BOC (red) and a fiber-coupled integrated BOC (black).

fiber-coupled BOC is a little worse because the fiber is more
sensitive to environmental changes [46].

B. Link-Induced Timing Drift and Jitter

As indicated by Fig. 11(b), there are ~2.5-fs peak-to-peak
timing drifts in the link stabilization, which cannot be elim-
inated by replacing the out-of-loop BOC. The noise source
for the long-term drift must be targeted before we tackle any
further optimization. In fact, in the timing stabilization setup
of Fig. 10, long-range compensation is performed by a free-
space MDL with long delay arms; e.g., a 10-cm range is re-
quired to correct for £1.5-K temperature change in a 3.5-km
link. Movement of the delay stage introduces inevitable beam
misalignments that cause link power fluctuations. These fluc-
tuations induce temporal shifts in the pulses’ center-of-gravity
(COQG) through a composite effect of link residual second-order
dispersion (SOD), third-order dispersion (TOD) and nonlinear-
ity. Although a COG shift appears as a deterministic shift in
the zero-crossing position of the in-loop BOC characteristic
(i.e., the BOC output voltages with respect to the initial delay
of the two input pulses), the link stabilization feedback will
unknowingly track this shift and erroneously introduce it into
the link path, causing a timing error at the link output.

To confirm this link-induced effect, we performed simula-
tions using typical parameters from the experiments. Self-phase
modulation, self-steepening and the Raman effect are consid-
ered in the link. Both the nonlinear Schrodinger equation [61]
for the link transmission and the coupled field equations [62]
for the SFG process in the BOC were solved using the split-step
Fourier method with adaptive step length. The BOC character-
istic was calculated for each round-trip link pulse against a new
laser reference pulse. The timing offset of the zero-crossing po-
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Fig. 12.  Timing drift introduced by link power fluctuations (in (a), the input
power is +8 dBm and B2 = —0.13; in (b), B2 = —0.13 and B3 = 18.7) [19].

sition in the BOC characteristic was identified as timing error.
The parameters B2/B3 were used to represent the link residual
SOD/TOD normalized by the SOD/TOD of 1-m standard PM
1550 fiber. Fig. 12(a) shows that residual TOD can induce up to
5 fs timing error for +8-dBm link power with 5% fluctuations.
Fig. 12(b) indicates that +10-dBm link power is the threshold
before significant amplitude-to-timing conversion occurs due
to severe nonlinear pulse distortions that may result in 4 fs of
timing error from £5% power fluctuations.

In our experiments, the timing links were constructed employ-
ing a section of standard PM 1550 fiber, followed by a section
of PM dispersion-compensating fiber. Due to a little difference
between the ratios of SOD to TOD coefficients in each fiber,
when the SOD of a 3.5-km link was completely eliminated,
26-m worth of TOD from PM 1550 would remain uncompen-
sated. Based on Fig. 12(a), this residual TOD can introduce a
drift of at least 2 fs for +5% link power fluctuations, which
agrees with the results in Fig. 11(b). In order to eliminate these
power-fluctuations-induced drifts, the link power must be sta-
bilized. As shown in Fig. 10, this can be realized by sending
the third feedback signal (dashed blue line) to the PM-EDFA
through internet to adjust its pump current.

Besides the long-term drifts, the fast jitter of an optical pulse
train can also be enhanced during fiber link transmission. We
also developed a model to investigate this effect. In the model,
the master equation of a fast-saturable-absorber mode-locked
laser was solved using the fourth-order Runge—Kautta in the inter-
action picture (RK4IP) method [63]. Laser timing jitter was gen-
erated by adding amplified spontaneous emission (ASE) noise
during each iteration of RK4IP, whose amount corresponds to
the measured jitter of the master laser in Section II. The calcu-
lation was repeated for a train of laser pulses in the presence of
pulse timing jitter and each pulse was solved by similar proce-
dures in the link-induced drift simulation.

In Fig. 13, pulse center-frequency fluctuations are converted
into timing jitter via residual SOD and TOD. This jitter contri-
bution, often called Gordon-Haus jitter [64], can amount to 0.15
and 0.3 fs for uncompensated SOD equivalent to 2 and 3 m of
standard PM fiber, respectively.

In Fig. 14, spontaneous emission noise is converted into tim-
ing jitter and its impact is further enhanced by link nonlinear-
ities. The introduced jitter is bounded at 0.13 fs for average
power levels below +12 dBm (corresponding to a pulse peak
power of P = 430 W) but escalates to 1.4 fs at +14 dBm
(Ppeax = 682 W). This jitter needs to be carefully minimized
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Fig. 15. Timing-link feedback model (Hp, Hg, Hp1, Hp 77, the transfer
function of in-loop BOC, BPD transimpedance amplifier, PI controller and fiber
stretcher; 77, the single-trip link transmission time; Hy p /H| g, the equiva-
lent transfer functions of the link-induced timing jitter for forward/round-trip
transmission; E'p , E'p r, the electronic noise of the BPD in the in-loop BOC and
the PI controller; J7, master laser’s inherent jitter; ./, integrated environmental
jitter imposed on the link for single-trip link transmission; J¢, equivalent tim-
ing delay generated by the control loop for compensation; Jr 1 /Jo 1., detected
timing jitter by the in-loop/out-of-loop BOC); s = jw, complex frequency.

in practice because it easily reaches the fs-level before a visible
distortion of the BOC characteristic can be observed, as shown
in the inset of Fig. 14.

C. Link Feedback Model

In order to investigate how link-induced noise can affect the
performance of the timing distribution system, we also devel-
oped a feedback model for the timing link. A flow diagram of
this model is shown in Fig. 15.
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Fig. 16. (a)—(c) Coefficients for environmental noise, electronic noise and
inherent jitter of the master laser for different feedback gains as indicated; (d)
the coefficient for the link-induced jitter for different symmetry values k.

Based on this model, the out-of-loop timing jitter Jo is
described by

Jor =CgJg +CyJn +CrJr +CrHrpJr ®)

where
_ Ep Ep;
v = Hp * HpGpHp
1+ H[1—exp(—sTy)]
Crp =
1+ H[1+ exp(—2sT})]
H exp(—sTy)
Cy =
1+ H[1+ exp(—2sT})]
1+ H[1—exp(—sTy)]
Cr = T T o2ty )] P T) — U
k+ H [k —exp(—2sTy) (1 — k)]
— — T
1 T+ A+ op(—2sTy)] O P(eTr)
H = HpGpHprHpzr
HypJi
= JLET 9
Hprdr ©

As (8) indicates, Jp has 4 main contributions: the envi-
ronmental noise imposed on the link, the electronic noise of the
system, the master laser’s inherent jitter and the link-induced jit-
ter, with coefficients Cg, Cy, Ct and C'p, respectively, where k
is a variable in the range [0, 1] that represents the degree of sym-
metry of link-induced jitter between the forward and backward
link propagations.

The coefficients C; (i = E, N, I, L) for a 3.5-km link can
be calculated using the transfer functions of the experimental
equipment. Fig. 16(a)—(c) show the calculated coefficients |Cg |,
|Cn|, |Cr]| for different PI controller gain settings. High gain
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Fig. 17.

is necessary to efficiently suppress the environmental noise be-
low 1 kHz (see Fig. 16(a)). However, the electronic noise from
the BPD in the BOC and the PI controller rises with increasing
gain (see Fig. 16(b)). Furthermore, large gain peaks appear in
Fig. 16(a)—(c) at frequencies n/47T}, (with odd integer n) as well
as around the resonant frequency of the fiber stretcher (about
18 kHz), if the feedback gain is too high. Therefore, to op-
timize the system performance, a medium gain (e.g., 20 dB)
needs to be adopted. With 20 dB feedback gain setting, |C;| in
Fig. 16(c) exponentially increases from 0.02 at 1 kHz to 4.6 at
~16 kHz, which means that the inherent jitter of the master
laser can appear in the out-of-loop measurement through the
feedback loop.

Also using a 20 dB gain value, |C},| for different symmetry
values k is calculated in Fig. 16(d). If the link-induced jitter from
the forward and backward link transmission is almost identical,
like in the case of the Gordon-Haus jitter in Fig. 13, then k
is about 0.5, and |C,| is increased from 0.12 at 1 kHz to 2 at
14.6 kHz (see Fig. 16(d)). In the case of the nonlinearity-induced
jitter shown in Fig. 14, if the backward link transmission power
is much higher than for the forward path, the majority of the
jitter is coming from the backward trip, k is almost 0. In Fig.
16(d), |Cy,| is about 0.5 at 1 kHz and approaches 1.5 at 16 kHz.
On the other hand, if the forward power is greater than for the
backward path, k is close to 1, and |C | increases from 0.5 to
2.4 within [1 kHz, 14 kHz]. Above all, the link-induced jitter in
Figs. 13 and 14 can transfer to the link output through the
feedback loop, either partially, completely or even with
amplification.

V. LASER-MICROWAVE NETWORK

Employing all the techniques discussed in Sections II-IV,
an attosecond-precision laser-microwave network [19], [65] is
demonstrated using the setup shown in Fig. 17. The repetition

Optical fiber Electrical path

(a) Laser-microwave network (VCO, voltage-controlled oscillator); (b) Out-of-loop characterization setups [19].

rate of the master laser was locked to a microwave reference with
a 10-Hz feedback bandwidth to suppress long-term drifts. The
timing signal from the master laser was distributed through a
network that contains two independent fiber links of 1.2-km and
3.5-km length operated in parallel. The link outputs were used
to synchronize a remote laser (e.g., serving as a pump laser at
the FEL end station in Fig. 1) and a voltage-controlled oscillator
(VCO) (e.g., serving as a microwave reference of the FEL linear
accelerator in Fig. 1) simultaneously. PNS-BOCs were used for
each locking loop and a feedback precision of ~2 as for the
laser locking PNS-BOC is achieved with a low-noise BPD. The
residual SOD and TOD of the links were compensated with
additional dispersion-compensating fiber to suppress the link-
induced Gordon-Haus jitter and to minimize the output pulse
durations for high signal-to-noise ratio (SNR) in the BOCs. The
link power was adjusted to minimize the nonlinearity-induced
jitter as well as to maximize the SNR for BOC locking. To
eliminate power-fluctuation-induced drift, a feedback signal was
sent to the EDFA to control its pump current (as shown in
Fig. 10). The FSC-BOMPD, which was employed for optical-
microwave locking, can provide a >10x improvement for long-
term timing stability compared with a fiber-coupled design.

Three characterization setups are adopted (see Fig. 17(b)):
two timing link monitoring signals (TLM1 and 2) were sent
to an out-of-loop BOC to evaluate the link network perfor-
mance; the master laser monitoring signal (MLM) and the re-
mote laser output signal (RLO) were sent to another BOC to
characterize the remote laser synchronization; finally, the remote
microwave output (RMO) and RLO were compared with an out-
of-loop FSC-BOMPD. The third setup is of great significance
since it directly measures the true relative timing jitter between
a remotely synchronized mode-locked laser and a microwave
source, which has never been reported before.

The measurement results are shown in Figs. 18-21. Stabi-
lization of the 4.7-km link network is operated continuously for
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52 hours. The residual timing drift between TLM1 and 2 below
1 Hz amounts to only 200 as RMS (see Fig. 18, red curve). The
relative timing drift instability is 2 x 10~'7 at 1s averaging time
7 and reduces to 2 x 102 at 7 = 10*s (see Fig. 19, red cir-
cles). The equivalent phase noise at 10.833 GHz is lower than
—110 dBc/Hz at 1 Hz offset and drops below —145 dBc/Hz
above 20 kHz (see Fig. 20, red curve); whereas the total inte-
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grated timing jitter from 6 pHz to 1 MHz is only 580 as (see
Fig. 21, red curve).

Remote laser synchronization is achieved successfully for
over 44 hours without interruption. The residual timing drift
is less than 100 as RMS (see Fig. 18, blue curve), which is
an order-of-magnitude improvement over previous results [45],
and corresponds to a relative timing instability of 9 x 107 at
10° s (see Fig. 19, blue triangles). The integrated jitter is only
200 as in the range of 7 pHz—1 kHz and 680 as for 7 pHz—
1 MHz (see Fig. 21, blue curve).

Finally, the whole laser-microwave network shows an un-
precedented long-term precision of 670 as RMS out-of-loop drift
over 18 hours (see Fig. 18, black curve). Compared with pre-
vious frequency-comb-based microwave transfer results [66],
this setup includes an additional fiber link and a remote laser
synchronization system, yet it still achieves more than an order-
of-magnitude improvement. The relative timing jitter between
the two remotely synchronized devices within the full fre-
quency range from 15 pHz to 1 MHz is only 950 as RMS (see
Fig. 21, black curve). To the best of our knowledge, this is the
first attosecond-precision demonstration of remote optical-to-
microwave synchronization as well as the first demonstration of
a synchronous laser-microwave network.

VI. CONCLUSION

In summary, we have successfully achieved long-term-stable
attosecond timing precision across a 4.7-km fiber link network
between remote optical and microwave devices. For shorter link
lengths (e.g., ~300 m), because of lower required link opera-
tional power and smaller residual link dispersion, a better timing
precision can be expected. Our technique can be easily trans-
ferred to multi-wavelength-laser networks [67], [68] with the
help of two-color BOC [69], [70], and large-scale microwave
networks with prad precision [71]. The attosecond-precision
laser-microwave network will enable next-generation FELs and
other science facilities to operate with the unprecedented tim-
ing precision, thereby unfolding their full potential. This will
drive new scientific efforts towards the making of atomic and
molecular movies at the attosecond time scale, opening up many
new research avenues in structural biology, drug development,
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chemistry, fundamental physics and material science. Besides,
this technique will also accelerate developments in many other
fields requiring the highest level of synchronization such as
ultrastable clocks, gravitational-wave astronomy and coherent
optical antenna arrays.
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