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Abstract—Silicon photonics leverages microelectronic fabri-
cation facilities to achieve photonic circuits of unprecedented
complexity and cost efficiency. This efficiency does not yet translate
to optical packaging, however, which has not evolved substantially
from legacy devices. To reach the potential of silicon photonics, we
argue that disruptive advances in the packaging cost, scalability
in the optical port count, and scalability in the manufacturing
volume are required. To attain these, we establish a novel photonic
packaging direction based on leveraging existing microelectronics
packaging facilities. We demonstrate two approaches to fiber-to-
chip interfacing and one to hybrid photonic integration involving
direct flip-chip assembly of photonic dies. Self-alignment is used
throughout to compensate for insufficient placement accuracy of
high-throughput pick and place tools. We show a self-aligned peak
transmission of —1.3 dB from standard cleaved fibers to chip and
of -1.1 dB from chip to chip. The demonstrated approaches are
meant to be universal by simultaneously allowing wide spectral
bandwidth for coarse wavelength division multiplexing and large
optical-port count.

Index Terms—Integrated optoelectronics, optical fiber commu-
nication, packaging, optical polymers, flip-chip devices.

I. INTRODUCTION

PTICAL devices employed in fiber optical communica-
tion have had a notable impact by enabling an increas-
ingly connected world. However, their cost has been a barrier

Manuscript received January 30, 2016; revised June 22, 2016; accepted July
14,2016. Date of publication July 20, 2016; date of current version October 13,
2016.

T. Barwicz, Y. Martin, J.-W. Nah, M. Khater, S. Kamlapurkar, S. Engel-
mann, and Y. A. Vlasov are with the IBM T. J. Watson Research Center, York-
town Heights, NY 10598 USA (e-mail: tymon@us.ibm.com; ymartin @us.ibm.
com; jnah@us.ibm.com; mkhater@us.ibm.com; swethak @us.ibm.com; suen-
gelm@us.ibm.com; suengelm @us.ibm.com; yvlasov@us.ibm.com).

Y. Taira was with IBM Research—Tokyo, Saiwai-ku 212-0032, Japan. He is
now with the Keio University, Kohoku-ku 223-8522, Japan (e-mail: yoltaira@
icloud.com).

T. W. Lichoulas and E. L. Kimbrell are with the AFL Telecommunica-
tions, Ducan, SC 29334 USA (e-mail: ted.lichoulas@afiglobal.com; eddie.
kimbrell @aflglobal.com).

N. Boyer, A. Janta-Polczynski, and P. Fortier are with the IBM Bromont,
Bromont, QC J2L 1A3, Canada (e-mail: nboyer@ca.ibm.com; ajantapo@ca.
ibm.com; pfortier @ca.ibm.com).

H. Numata is with the IBM Research—Tokyo, 7-7 Shin-Kawasaki, Saiwai-ku
212-0032, Japan (e-mail: hnumata@jp.ibm.com).

S. Takenobu is with Asahi Glass Co., AGC Electronics, Kanagawa-ku 221-
8755, Japan (e-mail: shotaro-takenobu@agc.com).

R. Leidy was with the IBM Microelectronics Division, Vermont 05452 USA,
He is now with the Global Foundries, Essex Junction, VT 05452 USA (e-mail:
bobleidy @us.ibm.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTQE.2016.2593637

Discrete

Silicon chip(s)
components
Assembly { = fiber connector(s)
= Jaser(s)
= assembly
Testing = final test
() (®)

Fig. 1. Schematic representation of the cost structure of (a) legacy optical de-
vices and (b) silicon photonic devices. The total cost of silicon photonic devices
is substantially lower than of legacy devices and is dominated by anything but
the Si chips. To fulfill the potential of Si photonics, disruptive improvements in
cost and scalability of its packaging are required.

to their use in a wider spread of applications. Cost is more than
a commercial concern as it can define the accessibility of a
technology. The success of microelectronics is largely owned
to its cost-efficiency in addition to its scalability in both circuit
complexity and manufacturing volume. To seek these charac-
teristics in photonic circuits, silicon photonics leverages exist-
ing microelectronics wafer facilities, with decades of micro-
electronics planar processing optimization, for photonic chip
fabrication [1]-[3].

Silicon photonics has changed the cost structure of optical
devices. As schematically shown in Fig. 1, the cost of legacy
devices made of discrete components was roughly evenly dis-
tributed among components, assembly and the various stages of
testing. Photonic integration, in general, reduces the number of
components and hence the cost of their individual packaging,
assembly and testing. Silicon photonics, in particular, brings
higher yield and lower chip cost to photonic integration. Com-
plex photonic circuits are effectively pre-assembled by lithog-
raphy on chips that are fabricated at very low cost. Testing can
be done on wafer scale with relieved requirements permitted by
higher fabrication reliability. The result is the cost of a silicon
photonic device being limited by anything but the complex sil-
icon photonic circuit. Components or assembly steps that were
of no substantial cost relevance before can be cost-limiting now.

To fulfill the potential of silicon photonics, we argue that dis-
ruptive improvements in photonic packaging cost, scalability
in optical port count, and scalability in manufacturing volume
are required. Photonic packaging has changed little from legacy
optical devices with heavy reliance on manual assembly and
active alignment. In this paper, we present an overview of a new
direction in single-mode photonic packaging. To improve cost
and scalability disruptively, we propose to leverage existing
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TABLE I
100 GB/S ETHERNET STANDARDS AND AGREEMENTS

Name Number of wavelengths ~ Wavelength spacing ~ Number of fibers
LR4 4 4.5 nm 2

PSM4 1 N/A 8
CWDW4 4 20 nm 2

CLR4 4 20 nm 2
Detailed information can be found in [4]-[7].

TABLE II
A FEW 400 GB/S ETHERNET PROPOSALS

Name Number of wavelengths ~ Wavelength spacing ~ Number of fibers
LR8 8 4.5 nm 2

PSM4 1 N/A 8
4x100G 4 20 nm 2
8x50G 8 4.5-10 nm 2

Additional information and proposals are found in [8]-[9].

microelectronics packaging facilities for photonic assembly.
This is analogous to silicon photonics already leveraging mi-
croelectronic wafer fabrication facilities to improve notably the
cost and scalability of photonic circuit fabrication.

Enabling photonic packaging in existing microelectronics
packaging facilities does not come without challenges. First,
the placement uncertainty of high-throughput pick and place
tools can be as large as +/— 10 pm, which is highly inadequate
for single-mode photonics where even the large mode of a
standard cleaved fiber requires an alignment to at least 1-2 ym
for acceptable coupling efficiency. This first issue is addressed
by mode engineering and self-alignment schemes. The aligned
optical connections are taken at maximum mode delocalization
to maximize alignment tolerances with self-alignment bridging
the rest of the gap from the +/— 10 um placement accuracy.
Second, the handling capability of high-throughput pick-
and-place tools is limited to what is generally required for
microelectronic chip placement: vacuum picking with pressure
sensitive movement in the vertical direction only. This second
issue is addressed by modifying photonic components and cus-
tomizing vacuum pick tips and chip holders. These customized
elements are then introduced into standard high-throughput
tools to enable them for photonic assembly.

We reduce photonic packaging to two key challenges: optical
inputs and outputs (I/Os) on silicon photonic chips and hybrid
photonic integration. Optical I/Os generally refer to optically
connecting single-mode fibers to chips as fibers remain the op-
tical wires of choice. The spectral bandwidth and number of
connections required can be deduced from driving applications
and standards in development [4]-[9]. The key characteristics
of various 100 Gb/s ethernet (GE) standards and agreements are
shown in Table I [4]-[7] with a few 400 GE proposals shown
in Table II [8], [9]. For a universal approach, a bandwidth of at
least 73 nm is required for compatibility with coarse wavelength
division multiplexing [6], [7] and is generally defined at 1 dB
penalty. A port count of up to 8 fibers is needed for core applica-
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Fig. 2. Photonic packaging approaches compatible with existing high-
throughput microelectronic packaging facilities. (a) Parallelized 12-fiber as-
sembly to photonic chips. (b) Compliant polymer interface between standard
12-fiber connectors and photonic chips. (c) Self-aligned direct flip-chip bonding
of photonic dies for hybrid photonic integration.

tions [5]. Emerging applications, such as communication hubs
and on-chip fiber switches [10], can require port counts of up to
tens of fibers per chip but port counts of hundreds of fibers per
chip are not currently anticipated in volume applications.

Hybrid photonic integration is the assembly of multiple, op-
tically connected, photonic chips. The most obvious example
is integration of light sources with silicon photonic circuits.
Other applications, such as hybrid integration of non-linear op-
tical devices with silicon photonic circuits, can be foreseen as
well. Hybrid integration is required for technologies that can-
not be monolithically integrated and is desired for technologies
that cannot be cost-efficiently, monolithically integrated. As il-
lustrated in microelectronics, multi-chip configurations can be
preferred even if technology permits full integration on one chip.
For instance, integrating memory and logic on one microelec-
tronic chip is possible but a multi-chip configuration is preferred
and enabled by low-cost assembly of chips with gradually in-
creasing intimacy to minimize the downside of the multi-chip
configuration [11], such as lower memory interface bandwidth
and higher memory interface power.

We demonstrate multiple photonic packaging approaches that
are compatible with existing high-throughput microelectronics
packaging facilities. These are shown in Fig. 2. We show two
approaches to optical I/Os and one approach to hybrid photonic
integration. Optical I/Os are addressed with parallelized fiber
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Fig.3. Schematic representation of parallelized 12-fiber assembly to photonic
chips combined with direct flip-chip bonding of secondary photonic dies, such
as II-V light sources. An exploded view is shown in (a) and an assembled view
is shown in (b). A fiber stub with cleaved fiber ends is assembled to a V-groove
array integrated on chip with high-throughput pick-and-place tools. A polymer
lid facilitates fiber handling.

assembly and the compliant polymer interface. Hybrid photonic
integration is addressed with direct flip-chip bonding of photonic
dies, which can be combined with any of the two approaches
to optical I/Os. Self-alignment is used throughout with mode
engineering to maximize alignment tolerances within typical
manufacturing constraints. We report self-aligned coupling ef-
ficiencies reaching —1.3 dB from standard cleaved fiber to chip
and —1.1 dB from chip to chip. All approaches shown here are
universal as they enable both wide spectral bandwidth and large
optical port count.

II. PARALLELIZED FIBER ASSEMBLY

A conceptual view of parallelized direct fiber assembly is
presented in Fig. 3. A fiber stub, including a short mechanical
transfer (MT) ferrule and a standard cleaved fiber ribbon, is
assembled, with high-throughput pick-and-place tools, to a
matching V-groove array integrated on the Si photonic chip. A
polymer lid can be pre-assembled to the cleaved fiber ribbon
to enable vacuum pick-tip handling of fibers, as required by
high-throughput pick and place tools. The lid further ensures
the fibers are positioned within the ~40 pm re-alignment
range of the V-grooves on chip. Parallelized fiber assembly
can be combined with direct flip-chip bonding of secondary
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Fig.4. Self-alignment in parallelized fiber assembly. (a) Cross-sectional opti-
cal micrograph across a 12-fiber ribbon assembled to a V-groove array integrated
on the photonic chip. All fibers are properly seated warranting vertical and lat-
eral alignment. (b) Schematic of the sliding base used for butting of fibers in
high-throughput pick and place tools where a pressure sensing movement can
be exerted in the vertical direction only. (c) Total fiber-core to waveguide cou-
pler misalignment for 10 000 random error combinations. This Monte Carlo
analysis demonstrates the manufacturability of fiber self-alignment with a 3o
misalignment below +/— 1.3 pm [12].

photonic dies to enable the integration of III-V light sources
or other materials. Both the fiber and the secondary die
assembly can be used with flip-chip electrical connections by
providing required clearances through laminate cutouts. The
examples shown here use 12-fiber arrays due to the popularity
of 12-fiber connectors. However, an arbitrary number of fibers
can be used as long as they are arranged in a one-dimensional
array.

The V-groove array integrated on the Si photonic chip permits
the vertical and lateral self-alignment of individual fibers to their
corresponding waveguide couplers. A cross-sectional micro-
graph across an assembled 12-fiber ribbon is shown in Fig. 4(a).
To achieve alignment in the third dimension, to butt fibers on
waveguide couplers, handling limitations of high-throughput
tools must be overcome. As mentioned above, these tools have
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pressure sensitive movement capability in the vertical direction
only. Insertion of fibers into grooves followed by fiber butting
would require sequential pressure sensing movements in two
directions. To overcome this limitation, we employ an angled-
sliding base under the chip that transforms trigonometrically
a portion of the vertical placing movement into a fiber butting
force. As shown in Fig. 4(b), this achieves both V-groove
placement and fiber butting in one vertical pressure-sensing
motion.

Once the fibers are in adequate contact with the V-grooves,
the resulting alignment between fiber core and waveguide cou-
pler depends on the accuracy of the fiber and the V-groove.
A Monte Carlo analysis of residual misalignment with 10 000
random fabrication error combinations is shown in Fig. 4(c).
It includes typical fiber tolerances on diameter, core concen-
tricity, and ellipticity as well as V-groove manufacturing toler-
ances on lithography, hardmask opening, and anisotropic etch
chemistry. It demonstrates the manufacturability of fiber self-
alignment with a 3 ¢ residual misalignment below +/— 1.3 pym.
Such alignment is well suited to coupling of standard cleaved
fibers with 9-10 ym mode diameter. However, a significant
coupling penalty could be experienced with small mode fibers
at this misalignment level, making V-groove self-alignment
with small mode fibers problematic. As mentioned above, it is
preferred to use the largest mode possible at the aligned con-
nection and hence to go through the additional complexity of
expanding the mode on chip to match a standard fiber. Addi-
tional details on the fiber assembly procedure and the Monte
Carlo analysis can be found in [12].

For a universal approach, in plane coupling of fibers is
preferred to achieve the wide spectral bandwidth required for
compatibility with CWDM schemes. Despite recent enhance-
ments [13], diffractive vertical couplers remain inherently
limited in bandwidth with significant transmission penalty
at two-polarization operation [14]. Our waveguide coupler is
shown in Fig. 5. It is a metamaterial converter formed of a single
silicon layer embedded in a suspended oxide membrane. Silicon
posts, of period significantly below the diffraction edge, act as an
engineered optical material to form a fiber coupler with greater
mode shape control and fabrication tolerances than inversed
tapers. The mode is first transformed by adiabatic non-linear ta-
pering of the silicon posts. A butt-coupling junction is then used
to move into a hybrid waveguide, which is adiabatically trans-
formed into a standard silicon waveguide. The metamaterial is
similar to a subwavelength grating [15] although we prefer the
metamaterial terminology which implies index homogenization
without diffraction while subwavelength gratings techni-
cally include mainstream diffractive devices such as Bragg
gratings.

To enable appropriate mode matching between the fiber
coupler and a 9-10 pm fiber mode, one must allow mode
expansion beyond the standard 2-3 pm buried oxide thickness
of silicon on insulator wafers. This is done by undercutting
the silicon handle under the mode converter. This undercut is
then filled with low-index adhesive at assembly. The resulting
optical performance with self-alignment is presented on Fig. 6
for a metamaterial converter in the O-band [16]. We show a
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Fig.5. Metamaterial waveguide converter interfacing a standard cleaved fiber
to a common silicon wire waveguide. A top-view optical micrograph of an
S-band converter is shown in (b) with the positions of the cross-sectional diagram
of (a) and the top-view electron micrographs of (c¢)—(f). The fiber is inserted in
the V-groove and butted on the fiber coupler, which is made of a single silicon
layer embedded in a suspended oxide membrane. The substrate is undercut
to enable sufficient mode expansion for efficient coupling to 9-10 pm fiber
modes. The undercut is filled with low-index adhesive at fiber assembly. The
metamaterial is similar to a subwavelength grating [15].
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Fig. 6. Optical performance of an O-band metamaterial converter with fiber
self-alignment in V-grooves. A peak transmission of —1.3 dB is seen with 0.8 dB
penalty over a 100 nm bandwidth and all polarizations. Polarization-dependent
Fabry—Perot fringes were filtered out for clarity and the resulting curve su-
perimposed on raw data. They were attributed to a lithographic defect at the
metamaterial to hybrid waveguide junction creating a reflection point. More
information is found in [16].

—1.3 dB peak coupling efficiency to a standard cleaved fiber
with 0.8 dB maximum penalty over a 100 nm bandwidth and
all polarizations. This converter was fabricated in a microelec-
tronic wafer foundry. The fibers were placed into the V-grooves
manually with isopropanol employed as index matching fluid.
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Fig. 7. Schematic representation of the compliant polymer interface in
(a) exploded view and (b) assembled view. A polymer ribbon with lithographi-
cally defined waveguides is assembled to a custom ferrule and enclosed with a
ferrule lid. This sub-assembly is then picked and place onto a photonic die. The
result is a standard fiber connector interface that can be combined with stan-
dard flip-chip electrical connections and direct flip-chip assembly of secondary
photonic dies.

Optical performance of metamaterial converters centered on the
S-band is reported with manual and automated fiber assembly
in [17].

III. COMPLIANT POLYMER INTERFACE

The mechanically compliant polymer interface employs litho-
graphically defined optical waveguides on a polymer ribbon
for fiber-to-silicon optical interfacing. The concept is shown in
Fig. 7. A thin ribbon with lithographically defined waveguides
is picked and placed onto a modified ferrule and enclosed with a
ferrule lid for thermo-mechanical stability. This sub-assembly is
then picked and placed onto a photonic die with matching optical
and self-alignment interface. Both the ribbon to ferrule assem-
bly and the ribbon to photonic die assembly are compatible with
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Fig. 8. The optical path through the compliant polymer interface is shown in
the waveguide cross-sections of (a)—(d). Their location is shown in (e), which
is a top-view with the ferrule lid removed for waveguide routing clarity. Stan-
dard fibers in an MT ferrule are butt-coupled to the polymer waveguides of
(a), which are then adiabatically transformed into the routing waveguide of
(b). An adiabatic crossing is used for transitioning from the polymer to a Si
nanotaper, as shown in (d). Self-alignment structures at the ferrule-to-ribbon
interface are shown in the optical micrograph of the polished ferrule facet of
(f). Self-alignment structures at the ribbon-to-chip interface are shown in the
cross-sectional optical micrograph of (g). The polymer ribbon backing of (f) and
(g) is optional as described in [22].

high-throughput pick-and-place tools. As with parallelized fiber
assembly, the result is a standard optical fiber interface attached
to a photonic die with flip-chip electrical connections. A 12-fiber
MT interface is shown here but other standards can be used as
long as an arbitrary number of optical ports is disposed in a 1D
array. The compliant polymer interface can be combined with
direct flip-chip assembly of secondary photonic dies. One key
difference with parallelized fiber assembly is the flexible region
in the polymer interface providing mechanical decoupling be-
tween the fiber connector and the chip, which is expected to im-
prove the package’s thermo-mechanical reliability. Another dis-
tinction to fiber assembly is the lower thickness of the polymer
ribbon, which could be used with flip-chip electrical connections
without requiring laminate cutouts for additional clearances.
The optical design of the polymer interface is shown in
Fig. 8(a)—(e). The ferrule lid was removed in the schematic
of Fig. 8(e) for waveguide routing clarity. Standard fibers in an
MT ferrule are connected to the left edge of Fig. 8(e) and butt-
coupled to polymer waveguides. The standard pin-and-hole self-
alignment of MT ferrules warrants polymer waveguide to fiber
alignment at the MT connection. As the polymer waveguide cou-
plers are mode-matched to standard fibers, the polymer-to-fiber
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MT interface has similar alignment requirements to a standard
fiber-to-fiber MT interface. From the fiber coupler, the polymer
waveguide cross-section is adiabatically transformed to a higher
confinement waveguide for routing and adiabatic coupling to
chip. A simple pitch conversion is used here but any routing is
possible. The cladding of the polymer waveguide is lithographi-
cally discontinued just prior to the photonic chip edge to expose
the polymer waveguide core for adiabatic coupling to the chip.
An optical UV adhesive acts as the effective optical cladding in
that region. A non-linear silicon adiabatic taper creates an adia-
batic crossing between the polymer and the silicon waveguide.
The polymer waveguide cross-section is kept constant through-
out the adiabatic transition with only the silicon side being ta-
pered. As part of the mode transformation from the fiber mode
to the silicon is accomplished in the polymer ribbon, the mode at
the adiabatic crossing is sufficiently confined for a typical 2-pm
oxide lower cladding to be used with no undercut required to
prevent substrate leakage. The details of the polymer interface
optical design with extensive tolerance analysis are shown in
[18]. The polymer material used is described in [19], [20].

Two-dimensional self-alignment is used at both the ferrule
to polymer ribbon interface and the polymer ribbon to chip
interface. Self-alignment in the directions transverse to the
waveguides (vertical and lateral) is required but typical high-
throughput tool placement accuracy in the direction longitudinal
to the waveguides is accommodated by design. The correspond-
ing self-alignment structures are shown in Fig. 8(f) and (g),
respectively. Slanted ridges in the precision injection molded
ferrule are combined with grooves in the ribbon’s lithographi-
cally patterned polymer cladding for ferrule to polymer ribbon
self-alignment. Multiple vertical alignment references are used
with ridges disposed in between the waveguide couplers in over-
sized polymer grooves not to over constrain the system later-
ally. The details of ferrule to ribbon assembly are presented in
[21], [22]. We demonstrate a re-alignment accuracy to better
than 1.5 pm. At the other end of the polymer ribbon, two poly-
mer ridges are used with two matching slanted silicon grooves
for polymer ribbon to chip self-alignment. Computational tol-
erance analysis shows that up to a 2 pum lateral misalignment
can be tolerated at the adiabatic crossing [18]. We go beyond
this optical requirement by demonstrating in [21] a lateral self-
alignment to +/— 1-2 pm from the 4+/-10 pm initial alignment
provided by high-throughput tools. The adhesive thickness, in
between the polymer waveguide and the chip, is preferred to
be of no more than 1 pm throughout the adiabatic crossing. A
thicker adhesive near the chip edge is desired to prevent mode
scattering due to the abrupt cladding index change experienced
at that location. We demonstrate such adhesive profiles in [23]
by using a combination of a pneumatic base for overall assem-
bly pressure uniformity and a non-planar pick-tip to increase
adhesive thickness near the chip edge.

The optical performance of the compliant interface is shown
in Fig. 9. As seen in Fig. 9(a)-(b), automated assembly was
used at the chip to polymer interface but a ferrule was not
assembled to the ribbon requiring active alignment between
a standard MTP fiber connector and the polymer ribbon end.
Consequently, the spectral performance of Fig. 9(c) includes
all sources of loss of the compliant interface concept but for
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Fig. 9. Optical performance of the compliant polymer interface. (a) and (b)

show the device measured here. Automated assembly was used at the ribbon
to chip interface but active alignment was used at the ribbon to fiber connector
interface as a ferrule was not assembled to the ribbon to enable passive MT
connection. Accordingly, the compliant interface loss of (c) includes all loss
sources but for possibly underestimating fiber-to-polymer alignment loss by up
to 0.5 dB. We demonstrate a peak fiber-to-silicon transmission of —1.6 dB with
0.6 dB penalty over a ~100 nm bandwidth and all polarization, an improvement
over our previous results of [24].

possible additional polymer to fiber misalignment. The resulting
additional loss is expected to be under 0.5 dB. We demonstrate
a peak transmission of —1.6 dB, between a standard fiber and a
full width Si waveguide, with 0.6 dB penalty over a ~100 nm
bandwidth and all polarizations. This is an improvement over
the —2.4 dB peak transmission and the 1.5 dB penalty, over a
100 nm bandwidth and all polarizations, reported in [24]. The
improved performance was attained by increasing the polymer
waveguide confinement at the adiabatic crossing to reduce chip-
edge scattering and by refining the polymer ribbon fabrication
process [25]. The current design is centered at 1.55 pm but the
compliant interface is expected to show similar performance
if centered at 1.31 ym. Two counteracting effects differentiate
operation at the 1.31 and 1.55 pum bands. On one hand, most
optical polymers show lower propagation loss at 1.31 gm. On
the other hand, the 15% shorter wavelength accentuates the
fabrication and alignment tolerance penalty.

IV. SELF-ALIGNED FLIP-CHIP PHOTONIC ASSEMBLY

We address hybrid photonic integration by self-aligned,
direct, flip-chip bonding of photonic dies. The size of the
achievable mode for chip-to-chip coupling requires some con-
sideration. As discussed above, a large fiber-matched mode
can be cost-efficiently integrated on a silicon photonic plat-
form by leveraging wafer processing originally developed for
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Fig. 10. Conceptual schematic of self-aligned, direct flip-chip assembly of
photonic dies. (a) Perspective view indicating the cross-sectional orientation of
(b)—(g). The sections of (b), (d), and (f) are taken across the waveguide couplers
while the sections of (c), (e), and (g) are taken along the waveguide couplers.
The secondary photonic die is picked with a high-throughput tool and placed
with a purposeful offset on a primary photonic die or wafer. At anneal, the solder
surface tension pulls the secondary chip into optimal alignment defined by the
butting of lithographically patterned alignment stops. The result is a scalable
optical, electrical and thermal connection to the primary photonic die.

fabrication of micro-electro-mechanical structures. However,
enabling technologies, such as bulk microfabrication process-
ing, are not available in all material systems and a realistic expec-
tation should be that such large modes would not be universally
achievable on secondary photonic dies. As a consequence, one
must work with the assumption that only a smaller mode will be
universally achievable at chip-to-chip coupling. The result is a
stringent requirement on alignment accuracy. The 1-2 ym align-
ment requirement of optical I/Os is replaced by the necessity of
sub-micron alignment here.

Our solution to self-aligned photonic die assembly with sub-
micron accuracy is presented in Fig. 10. The cross-sections of
Fig. 10(b), (d) and (f) are taken across the coupling waveguides
while the cross-sections of Fig. 10(c), (e) and (g) are taken
along the coupling waveguides. A secondary photonic die is
picked and placed on a silicon photonic die with a purpose-
ful offset from its desired final position. This offset must be
sufficiently large to prevent die positioning tolerances and die
fabrication accuracy to result in the lateral stop landing on top
of a standoff or the secondary die edge landing on the top-
corner of the silicon photonic chip recess. The assembly is then
annealed resulting in the solder melt displacing the secondary
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Secondary photonic die

Lateral stop on flipped chip
Butting l
Standoff on Si photonic die

Si photonic die

Fig. 11.  Cross-sectional optical micrographs of a self-aligned direct flip-chip
assembly. (a) Dark-field micrograph of a lateral stop, on a secondary die, butted
on a standoff, on the Si die, acting as both a vertical and lateral position ref-
erence. At butting, the fabrication accuracy of alignment stops defines residual
misalignment. A simple ridge is used as the stop here but the optimal shape
depends on fabrication capabilities. (b) An SnAg pad after re-alignment. A
residual offset is desired to maintain pressure on the alignment stops. Other
solders, such as AuSn, can be used as well.

photonic die towards solder pad alignment to minimize solder
surface energy. The force exerted by the solder on the chip can
be two orders of magnitude larger than gravity. Lithographi-
cally defined stops intercept the solder-induced movement to
position the secondary die for optimal optical coupling. Once
the stops are in contact, the alignment accuracy is defined by
the stops patterning accuracy. With well-chosen stop fabrica-
tion options, three-dimensional self-alignment with sub-micron
accuracy can be achieved in high-volume production. The stand-
offs, along with properly defined regions on the secondary die,
provide vertical alignment, the lateral stop provides alignment
in the direction lateral to the coupling waveguides, and the sec-
ondary die’s butting on the edge of the silicon photonic recess
defines the alignment stop in the direction longitudinal to the
coupling waveguides. The solder pads used for self-alignment
further provide electrical connections to the secondary photonic
die and its thermal sinking. This flip-chip assembly can be per-
formed either to a silicon photonic die or to a silicon photonic
wafer, prior to it being diced.

The concept of solder-induced self-alignment has been dis-
cussed in research environments for decades [26]-[28]. What is
novel here is the level of three-dimensional accuracy sought and
the tackling of tolerancing issues that can negate the secondary’s
chip movement and, in turn, the assembly yield. For example,
conventional solder re-alignment designs show excessive sensi-
tivity to solder volume plating tolerances. This is described and
resolved in [29] and [30], respectively.

Cross-sectional micrographs of self-aligned flip-chip assem-
blies are shown in Fig. 11. A simple ridge is shown here, as
the lateral stop on the secondary die, but other structures have
been investigated and may be preferred based on fabrication
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Fig. 12.  Chip-to-chip coupler design. For a universal approach across various
material systems we choose butt coupling with an elongated mode echoing the
larger uncertainty on lateral positioning than on vertical positioning of chips.
A structure resembling a strip-loaded waveguide is implemented on the Si
chip re-using a common material stack of CMOS-integrated photonics [2]. A
cross-sectional schematic is shown in (a). Mode profiles with a nanotaper and a
metamaterial taper are shown in (b) and (c), respectively. They are matched to
InP rectangular coupler waveguides with >95% mode overlap.

capabilities. The lithographic layers chosen for the alignment
references are of particular importance to the stops accuracy
and, in turn, to residual misalignment. As shown in Fig. 11(b),
a residual solder pad offset is desired after full re-alignment. It
warrants a strong re-alignment force at butting and can mitigate
creep concerns, a key reliability issue, as displacement of the
chip away from the butted position would come at a notable
cost in the thermodynamic free energy of the system through
its surface energy component. Various solder materials can be
used. Our work focused on SnAg as it is the solder of choice in
microelectronics and the anticipation of lower creep concerns
here suggests that a hard solder, such as the expensive AuSn,
may not be required. Nonetheless, AuSn and other solders could
be used as well.

The optical chip-to-chip interface is shown in Fig. 12. For
a universal approach between potentially widely different die
materials, we chose a butt coupling interface. Adiabatic cou-
pling between chips has been proposed and can provide gains in
alignment tolerances [31]. However, adiabatic crossings inher-
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Fig. 13.  Optical performance of self-aligned flip-chip photonic connections.

The experimental setup is shown in (a). A secondary photonic die with integrated
loopbacks was flip-chip assembled using solder-induced self-alignment. The
coupler of Fig. 12(b) was used here with an optically equivalent SiON layer
replacing the BPSG layer. A spread of mode converter lengths provided 37.5,
75, 150, and 250 um long converters at ports A, B, C, and D, respectively.
The chip-to-chip loss is shown in (b) and corresponds to the roundtrip loss
normalized to the reference waveguide loss and then divided by two to account
for two chip interfaces per roundtrip. Raw data is superimposed with data where
the Fabry—Perot fringes from the lensed-fiber interfaces were filtered out. A
peak chip-to-chip transmission of —1.1 dB is shown for the TE polarization with
0.1 dB penalty over a 100 nm bandwidth.

ently require the crossing of the effective indices of the wave-
guide employed [32]. This can be accomplished in most circum-
stances with nanotapers or metamaterial waveguides as long as
the claddings show similar refractive indices. In the universal
case, however, the claddings can be of substantially different
indices making an adiabatic crossing impossible. An example is
the difficulty in crossing the effective index of a channel wave-
guide in a silicon oxide or polymer cladding with the effective
index of a waveguide in a III-V cladding.

Fabrication tolerances indicate that the residual vertical mis-
alignment is generally smaller than the residual lateral misalign-
ment. Hence, we choose a correspondingly asymmetric mode
for the coupling interface. Its implementation on the silicon
photonics side is shown in Fig. 12(a) and reuses a common
material stack found in CMOS integrated photonic approaches
[2]. An elongated mode resembling a strip-loaded waveguide
is used here. A silicon nanotaper or metamaterial taper can be
employed based on the mode size achievable on the secondary
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die. The larger the mode, the larger the alignment tolerances.
Other options are available as well [33]. The modes of Fig. 12(b)
and (c) were matched to a typical InP laser coupler and a wide
multimode InP laser coupler, respectively.

The optical chip-to-chip coupling performance with self-
aligned, direct, flip-chip assembly was demonstrated using
silicon photonic secondary dies. The experimental setup is
presented in Fig. 13(a) with optical spectra in Fig. 13(b). The
assembly is similar to the micrograph shown in Fig. 3(c). The
filtered spectral response on port B shows a peak transmission
per chip interface of —1.1 dB with 0.1 dB penalty over a 100 nm
bandwidth. This loss includes spot-size conversion on both the
primary and secondary die as well as mode mismatch and resid-
ual alignment loss. The coupler mode of Fig. 12(b) was used
on both sides of the interface although the mode was vertically
flipped on the secondary die resulting in a small 1.3% mode
mismatch. A spread of non-linear adiabatic transition lengths
from coupler to routing waveguide was used among the ports
with lengths of 37.5, 75, 150, and 250 pm on ports A, B, C, and
D, respectively. The transmission penalty on port A is attributed
to the shortness of the spot-size convertor while the penalty
on port C relates to a visible facet defect on the secondary
die. The Fabry—Perot fringes in the raw data are dominated by
reflections at the lensed-fiber interface to the primary photonic
die. Isopropanol was used as index matching fluid between the
primary and secondary die for optical characterization. Its index
of ~1.37 is lower than optimal for reflection management.
An optical underfill would be used instead at manufacturing.
This demonstration was done with measurements centered
around a wavelength of 1.55 pm. However, this design could
be effortlessly scaled to the 1.31 pm O-band.

V. CONCLUSION

We have demonstrated a novel direction in photonic pack-
aging based on leveraging existing high-throughput microelec-
tronic packaging facilities to bring disruptive improvements in
photonic packaging cost, scalability in optical port count, and
scalability in manufacturing volume. This strategy is analogous
to silicon photonics leveraging microelectronics fabrication fa-
cilities to achieve photonics circuits of unprecedented com-
plexity and cost efficiency. For a complete solution, we have
demonstrated two approaches to optical I/0Os and one to hybrid
photonic integration. Self-alignment has been used throughout
to bridge the gap between the 10-um placement inaccuracy
of high-throughput pick-and-place tools and the micron-level
accuracy required by single-mode silicon photonics. We have
shown self-aligned peak transmission reaching —1.3 dB from
standard cleaved fiber to chip and —1.1 dB from chip to chip.
The approaches demonstrated here aim to be universal by simul-
taneously enabling wide spectral bandwidth and large optical
port count.

For completeness, we are pursuing two approaches to opti-
cal I/Os offering non-overlapping risks and rewards. The choice
between the two is application dependent. On one hand, direct
fiber assembly currently shows higher peak coupling efficiency
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and brings the certitude of known optical fiber reliability from
decades of field deployment. On the other hand, the polymer
interface is expected to show better thermo-mechanical robust-
ness and its chip interface is simpler to integrate with standard
microelectronics fabrication flows. A number of additional fac-
tors are also to be considered such as differences in cost scaling
with optical port count between the two solutions.

Our current focus is on demonstrating yield and environment
reliability with adequate statistics. Our preliminary reliability
and yield assessments, through materials study, Monte Carlo
analysis, and experimental self-alignment data, demonstrate the
soundness of the concepts but additional experiments are re-
quired to meet industry standards.
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