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Abstract—III–V semiconductors monolithically grown on Si
substrates are expected to be an ideal solution to integrate highly
efficient light-emitting devices on a Si platform. However, the lattice
mismatch between III–V and Si generates a high density of thread-
ing dislocations (TDs) at the interface between III–V and Si. Some
of these TD will propagate into the III–V active region and lead to
device degradation. By introducing defect filter layers (DFLs), the
density of TDs propagating into the III–V layers can be significantly
reduced. In this paper, we present an investigation on the devel-
opment of InGaAs/GaAs strained-layer superlattices as DFLs for
1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on
a Si substrate. We compare two broad-area InAs/GaAs quantum-
dot lasers with non-optimized and optimized InGaAs/GaAs DFLs.
The laser device with optimal DFLs has a lower room-temperature
threshold current density of 99 A/cm2 and higher maximum oper-
ation temperature of 88 °C, compared with 174 A/cm2 and 68 °C
for the reference laser.

Index Terms—Molecular beam epitaxy, quantum dots, semicon-
ductor lasers, silicon photonics.

I. INTRODUCTION

IN ORDER to achieve fast chip-to-chip and system-to-system
optical communication with Si photonic integrated circuits,

Si–based efficient and reliable light emitting sources are re-
quired. A Si–based light-emitting source has long been consid-
ered the “holy grail” of Si photonics because of the challenges
involved. Bulk Si and Ge have an indirect bandgap, and thus are
not efficient light-emitting materials [1], [2]. Until now, novel
approaches including hybrid/monolithic integration of III–V/Si,
stimulated Raman scattering and Ge/Si laser, have been devel-
oped for silicon-based lasers. However, Si Raman lasers are
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restricted by the need for off-chip optical pumping [3], [4],
while Ge/Si lasers suffer from extremely high threshold current
density (>300 kA/cm2) and high optical loss [5].

Recently, the heterogeneous integration of III–V semicon-
ductors on Si platforms has demonstrated lasers with milliwatt
power output and high operating temperature (>100 °C) by us-
ing wafer-bonding techniques [6]. However, the issues of yield
and reliability for this approach still remain. III–V materials
monolithically grown on Si substrates have been proposed as
an ideal solution for photonic integration on Si, i.e., by grow-
ing GaAs or InP buffer layers directly on Si substrates [7], [8].
The major issue for this method is the formation of threading
dislocations (TDs) due to the lattice and thermal expansion co-
efficient mismatch between the III–V materials and Si [9] and
antiphase domains (APDs) due to the polar to non-polar epi-
taxial growth [10]. APDs can be eliminated by growing III–V
materials on off-cut Si substrates and using a two-step growth
method [11]. For the epitaxial growth of III–V materials on Si
substrates, optimization of the buffer layers, including the GaAs
buffer layer and defect filter layers (DFLs), plays a crucial role
in reducing the threading dislocation density from 1010 cm−2

at the GaAs/Si interface to 106 cm−2 at the active region [12],
[13]. Yang et al. demonstrated the pulsed operation of a 1.1 μm
InAs/GaAs quantum dot (QD) laser on a Si substrate by using
QD DFLs [14] and Nakamura et al. have used AlGaN/GaN
strained-layer superlattices (SLSs) as DFLs to achieve a multi-
quantum-well laser on GaN [15].

QDs possess unique properties that can lead to lasers with
ultra-low threshold currents, temperature insensitivity and re-
duced sensitivity to TDs [16]–[22]. Therefore, a combination
of high efficacy DFLs and III-V QDs has been considered to
be the most attractive approach for achieving III–V/Si lasers.
Indeed, based on this technique, Wang et al. reported the first
1.3-μm InAs/GaAs QD lasers monolithically grown on Si sub-
strates [23], while Chen et al. and Jiang et al. demonstrated
the first InAs/GaAs QD SLDs monolithically grown on Si and
Ge substrates [24], [25]. Likewise, continuous-wave operation
of InAs/GaAs QD lasers monolithically grown on Ge/Si sub-
strates have been reported recently [26]–[29].

To obtain practical lasers on Si, further reduction in dislo-
cation density in the III-V buffer layer is required, and hence
more efficient DFLs are needed. In this paper, we report the
optimizations of the DFLs by adjusting growth conditions and
structures of InGaAs/GaAs SLSs. The optimization involves
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Fig. 1. Schematic diagram of InAs/GaAs QD monolithically grown on Si substrate with InGaAs/GaAs SLSs DFLs.

in-situ thermal annealing, variation of indium composition in the
SLSs, and variation of GaAs thickness in the SLSs. Finally, the
performance of two InAs/GaAs QD lasers monolithically grown
on Si substrates under non-optimized and optimized conditions
was compared. The optimization of DFLs leads to significant
improvements of QD lasers, including reduction of threshold
current density from 174 to 99 A/cm2 and increase of maximum
operation temperature from 66 to 88 °C.

II. GROWTH STRUCTURE

The QD structures were grown by solid-source molecular
beam epitaxy (MBE). As shown in the schematic image in Fig. 1,
five layers of InAs/GaAs QDs were monolithically grown on n-
doped Si substrates (1 0 0) with 4° offcut oriented to 〈0 1 1〉
after introducing a 1 μm GaAs buffer layer and three sets of In-
GaAs/GaAs SLSs. Before the growth, oxide desorption of the Si
substrate was performed at 900 °C for 30 min. The 1 μm-GaAs
buffer layer was grown in two steps: low temperature growth of
30 nm GaAs with a growth rate of 0.1 monolayers/s (ML/s) at
380 °C followed by high temperature growth of 970 nm GaAs
grown with 0.7 ML/s. The two-step growth helps to confine
most of the TDs at the interface region. To further reduce the
threading dislocation density, the three sets of InGaAs/GaAs
DFLs were grown after the first 1 μm GaAs buffer. Each set
of DFLs consisted of five periods of InGaAs/GaAs SLSs and
separated by a 350 nm GaAs spacer layer. To improve the ef-
fectiveness of InGaAs/GaAs DFLs, we introduced two different
growth methods for the DFLs. As shown in Fig. 2, in the growth
method I, a GaAs spacer layer was grown during the period of
heating up to 610 °C right after the deposition of InGaAs/GaAs
SLSs at 420 °C. In contrast, in growth method II, GaAs spacer
layer was grown after in-situ annealing of the SLSs at 610 °C.
Additionally, the efficacy of indium composition x and GaAs
thickness in the SLSs has also been studied by using x = 0.16,
0.18 and 0.20 for indium compositions and 8, 9 and 10 nm for
GaAs thickness.

For the growth of the active region, five InAs/InGaAs dot-in-
a-well (DWELL) layers were grown [30]. About 3 MLs of InAs
with 0.1 ML/s growth rate were deposited on 2 nm of InGaAs
and then capped by 6 nm of InGaAs and 5 nm of GaAs. The QDs
were grown at 510 °C while each layer of InAs/GaAs QDs was

Fig. 2. Two different growth methods of DFLs. Growth method I: The GaAs
spacer layer was grown during the ramp-up of temperature from 420 to 610 °C
and then cooled down to 420 °C for subsequent growth of InGaAs/GaAs SLSs
growth; Growth method II: The GaAs spacer layer was not grown during the
ramp-up of temperature from 420 to 610 °C, and deposited only at a stable tem-
perature of 610 °C and then cooled back to 420 °C for subsequent InGaAs/GaAs
SLSs growth.

separated by 45 nm of GaAs spacer layer. The DWELLs were
embedded between two 100-nm GaAs layers grown at 580 °C
and 50-nm AlGaAs layers grown at 610 °C. The QD density is
around 3.8 × 1010 cm−2 as presented in Fig. 3.

III. EFFECTS OF INGAAS/GAAS DFLS ON THE MATERIAL

QUALITIES OF III–V MATERIALS GROWN ON SI SUBSTRATES

In Table I, QD densities and photoluminescence (PL) peak
intensities are compared for each step of optimizations includ-
ing modifying growth methods of GaAs spacer layer, indium
composition and GaAs thickness in InxGa1−xAs/GaAs DFLs.
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Fig. 3. AFM image of InAs/GaAs QDs monolithically grown on Si substrate,
with density around 3.8 × 1010 cm−2.

TABLE I
THE QD DENSITIES AND PL PEAK INTENSITIES OF SAMPLES GROWN WITH

DIFFERENT GROWTH METHODS, INDIUM COMPOSITIONS

AND GAAS THICKNESSES

Sample Growth
methods

Inx Ga1−x As GaAs
thickness

PL peak
intensity (a.u)

FWHM
(nm)

A I x = 0.18 10 nm 1.2 40.5
B II x = 0.18 10 nm 4 40.3
C II x = 0.16 10 nm 2.6 39.8
D II x = 0.20 10 nm 2.2 42
E II x = 0.18 9 nm 3.9 40.4
F II x = 0.18 8 nm 2 46.1

Growth methods I and II have been applied to samples A and
B, respectively. For the samples B, C and D, the indium compo-
sition in InGaAs/GaAs SPL has been varied from x = 0.16 to
0.20. Samples B, E and F have been grown using 8, 9 and 10 nm
of GaAs inside each InxGa1−sxAs/GaAs SLS, respectively.

The PL measurements were performed using 635-nm solid-
state laser excitation at room temperature. The PL spectrum in
Fig. 4(a) shows that sample B has three times stronger emission
of ground state than sample A. Sample B’s separation between
ground state and excited state is 60 meV, which is slightly larger
than 56 meV of sample A. The PL measurements show an
improved optical property of sample B using growth method II
compared with sample A using growth method I. The reason
for this improvement in PL intensity can be understood in term
of the improved material quality after using in-situ annealing
of SLSs. After the growth of InGaAs/GaAs at low temperature,
the annealing of SLSs and high temperature growth of GaAs
increase the dislocation motions, which helps the dislocations to
meet and eliminate each other. As a result, less non-radioactive
recombination is expected in the QD region due to reduced
density of TDs.

Fig. 4. PL spectra of different samples measured at room temperature:
(a) sample A (growth method I) and sample B (growth method II), (b) sam-
ples B, C, and D with indium composition of 18%, 16%, and 20%, respectively,
(c) samples B, E, and F with GaAs thickness of 10 nm, 9 nm and 8 nm,
respectively.

As presented in Fig. 4(b), sample B exhibits PL intensity
that is approximately 30% and 40% greater than samples C
and D, respectively. This proves that the indium composition
of 0.18 in InxGa1−xAs/GaAs SLSs contributes the best crystal
quality compared with the other indium compositions used. The
remarkable improvement observed in PL intensity is due to a
good balance between generation of strain-induced defects and
annihilation of dislocations. A higher indium composition in
InGaAs/GaAs SLSs is able to increase strain and block more
TDs from propagating. On the other hand, the larger strain could
introduce new TDs, and hence undermine the dislocation filter-
ing efficiency of SLSs and degrade the structural and optical
qualities of epilayers.

Cross-sectional transmission electron microscopy (TEM)
measurements have been performed to examine the crystal qual-
ity further and compare the effectiveness of the DFLs of each
sample. As shown in the bright-field TEM images in Fig. 5(a), a
large number of dislocations appear at the interface of GaAs/Si.
Most of the dislocations are trapped in the first 200 nm due
to self-annihilation. However, there are still a considerable
number of TDs propagating towards the active region. After
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Fig. 5. (a) dark-field TEM cross-sectional TEM image of three layers of
InGaAs/GaAs SLSs DFLs. (b) Bright-field TEM cross-sectional image of DFLs
on GaAs buffer layer and Si substrate.

introduction of the DFLs the annihilation of TDs has been sig-
nificantly enhanced. As shown in Fig. 5(a) and (b), the majority
of TDs have been blocked by three sets of DFLs. As a result,
the material quality and then device performance are largely
dependent on the efficiency of DFLs.

To examine the efficiency of different types of DFL, we have
measured dislocation density just above each layer of DFL using
TEM measurements. We define the efficiency of DFL as the
fraction of TDs it removes, which can be expressed as [31]

Efficiency = 1 − n(experiment)
n(predict)

(1)

where n(experiment) is the number of dislocations counted just
above the DFL and n(predict) is the number of dislocations
predicted by the equation describing “natural” decrease in ρTD
[32]. The dislocation density ρTD with natural decay is related
to the thickness h and can be expressed as

ρTD = Ah−0.5 (2)

where A is a constant fitted by the counts of TDs at three po-
sitions in the GaAs buffer layer: 300, 600 and 900 nm. The
efficiencies of each type of DFLs are presented in Fig. 6. For the

Fig. 6. Plots of sample A, B, C and D’s efficiency of filtering dislocations at
each set of DFLs.

first set of DFL, the efficiencies of four samples A, B, C, and D
range from 40% to 50%. After the first set of DFL, samples B,
C and D show a stronger increase in efficiency compared with
sample A. This is due to the in situ thermal annealing and high
temperature GaAs spacer layer growth, which successfully in-
crease the dislocation motion and hence the opportunities for the
elimination of TDs. Moreover, sample B with In0.18Ga0.82As
in the SLSs show the highest filtering efficiency for the sec-
ond and third sets of DFLs. The highest efficiency observed in
sample B confirms a good balance between generation of strain-
induced defects and annihilation of dislocations. Compared with
the other samples, the significant reduction in the efficiency of
the third DFL of sample C with only 16% indium in SLSs indi-
cates inefficient interaction between strain relaxation and TDs
when only a low density of threading dislocation is presented.
Therefore, the sample B with 18% indium composition in In-
GaAs/GaAs DFLs and growth method II has been proved to be
the most effective in reducing the density of TDs.

To gain further insight into the effects of DFLs, we have also
compared different thicknesses of GaAs in the InGaAs/GaAs
SLSs. From Fig. 4(c) it can be observed that samples B and E
have similar PL spectra but the intensity for sample F is signif-
icantly lower. This clearly shows that the 8-nm GaAs (sample
F) thickness is too small and the accumulated strain degrades
the material quality, leading to a drop in the PL intensity by
nearly a half. The PL of samples B and E are comparable be-
cause the thicker GaAs spacers provide enough buffer for strain-
induced generation of detects while maintaining suitable strain
relaxation of the In0.18Ga0.82As/GaAs SLS for interacting with
TDs. This is in good agreement with the TEM measurements
of the samples with the same thickness but different indium
compositions.

IV. LASER FABRICATION AND PERFORMANCE

To further investigate the effect of InGaAs/GaAs SLSs DFLs,
full laser structures have been grown and processed. The GaAs
buffer layer and InAs/GaAs DWELL active region were grown
under the same conditions as previously; samples A to F. We
have grown two laser samples R1 and R2 that were based on the
DFL growth conditions of samples A and B, respectively. After
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Fig. 7. Sample R1 (a) and R2 (b) Single facet output power against
current density for 3-mm-long InAs/GaAs QD laser grown on Si with
In0 .18 Ga0 .82 As/GaAs DFLs under pulsed mode (1% duty cycle and 1 μs
pulse width) at room temperature. (c) Laser spectrum at room temperature with
emission at 1280 nm.

four sets of DFLs, n and p type 1.2-μm-thick AlGaAs cladding
layers were grown on the bottom and then on top of the active
region.

The broad-area laser devices were fabricated. The 50 μm wide
ridges were created by standard lithography and wet etching
techniques. We etched down the ridges to 200 nm below the
active region, so as to improve the carrier confinement. We
deposited InGe/Au and Ti/Pt/Au on the GaAs n and p contact
layers, respectively. Both n and p contact layers are face-up. The
cavity length of the devices is 3 mm and no facet coating was
applied.

Measurements of single facet output power against current
density for two Si-based InAs/GaAs QD lasers are presented

Fig. 8. Temperature dependence of the threshold current density under pulsed
operation of laser sample R1 and R2.

in Fig. 7(a) and (b). During the measurements, the laser de-
vices were mounted epi-side up with a sub-mount temperature
of 18 °C without active cooling. The lasers were electrically
pumped under pulsed conditions of 1% duty cycle and 1 μs pulse
width. The threshold current densities of R1 and R2 are 174
and 99 A/cm2, respectively. The lower threshold current den-
sities from sample R2 proves that the optimized InGaAs/GaAs
DFLs improve the laser performance in terms of lower threshold
current density, which is due to the elimination of the major-
ity of TDs within the GaAs buff spacer layer. The maximum
operation temperature of R2 is 88 °C, which is higher than
R1’s maximum operation temperature of 68 °C. In addition,
compared with the previous reports, sample R2 shows lower
threshold current density than InAs/GaAs QD lasers on Si sub-
strate using InAlAs/GaAs SLSs which had a threshold current of
194 A/cm2 [13].

Fig. 7(c) shows the room-temperature lasing spectrum, which
has been measured for an injection current of 105 A/cm2. It
clearly shows that the laser is emitting at 1.28 μm, which
matches the PL spectrum. Fig. 8 shows the temperature depen-
dence Jth for laser samples R1 and R2. R2 shows an improved
characteristic temperature T0 = 40.2 K, compared with sample
R1 with T0 = 27.3 K for the temperature range 18 to 68 °C.
The poor performance of T0 for R1 at the higher temperature
range could be due to the increased non-radioactive recombina-
tion rate at high temperature range, due to the higher threading
dislocation density compared with R2. The temperature stability
of lasers can be improved by using p-type modulation doping to
enhance the confinement of holes at high temperature [33].

V. CONCLUSION

In conclusion, we have investigated the optimization of In-
GaAs/GaAs SLSs DFLs by modifying (i) the GaAs spacer layer
growth conditions, and (ii) the indium composition and GaAs
thickness in InGaAs/GaAs SLSs. The effect of DFLs has also
been studies in laser devices. The work confirms that the design
and growth of DFLs play a critical role in the success of QD
lasers monolithically grown on Si. Particular attention should
be paid to enhancing the motion of TDs and well-controlled
strain relaxation. Finally, with optimized DFLs in this work, an
InAs/GaAs QD laser with a low threshold current density, high
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operating temperature, and improved characteristic temperature
has been demonstrated on a Si substrate. These results provide
an essential step to the further improvement of the performance
of InAs/GaAs QD lasers monolithically grown on a silicon plat-
form.
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