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Abstract—A multiple quantum well laser diode utilizing an
asymmetric waveguide structure with a large equivalent spot size
of ∼3 μm is shown to give high energy (∼1 nJ) and short (∼100 ps)
isolated optical pulses when injected with <10 A and ∼1-ns cur-
rent pulses realized with a MOS driver. The active dimensions
of the laser diode are 30 μm (stripe width) and 3 mm (cavity
length), and it works in a single transversal mode at a wavelength
of ∼0.8 μm. Detailed investigation of the laser behavior at elevated
temperatures is conducted; it is shown that at high enough injec-
tion currents, lasers of the investigated type show low temperature
sensitivity. Laser diodes of this type may find use in accurate and
miniaturized laser radars utilizing single photon detection in the
receiver.

Index Terms—Semiconductor lasers, quantum well lasers, opti-
cal pulses, gain switching, laser radar.

I. INTRODUCTION

S INGLE isolated short (∼100 ps) and high energy (∼1 nJ)
laser pulses can be used in a number of applications includ-

ing automotive safety devices, 3-D imaging, laser tomography,
time imaging, and spectroscopy. Gain switching of semicon-
ductor lasers, known for their high efficiency, compactness, and
ease of current pumping, is arguably the best way of producing
such pulses [1], [2]. The gain switching regime has been sub-
ject to extensive theoretical (see, e.g., [3]–[5]) and experimental
(see, e.g., [5]–[13]) studies for a long time. It has been found
that in order to maximize both the peak power and the total en-
ergy of the optical pulse, the design of lasers for gain switching
may need to be different from that used for CW applications.
A number of specialist gain-switched or combined gain- and
Q-switched [11]–[13] laser designs have been suggested, and
pulses with an energy >1 nJ have been demonstrated. Most of
the earlier approaches used purpose-built ultrafast GaAs-based
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current pulse generators providing current pulses with an am-
plitude significantly exceeding 10 A. From the application point
of view, and it is desirable that the laser operates with Si-based,
CMOS electrical pumping pulse sources which can generate
current pulses with a duration down to ∼1 ns and an ampli-
tude up to ∼10 A, at repetition frequencies up to about 1 MHz.
We proposed [14] the use of specialized diode lasers for gain
switched operation, utilizing a strongly asymmetric waveguide
with a large equivalent spot size, defined as the ratio da/Γa

of the active layer thickness to the optical confinement factor.
Laser designs with a relatively thick bulk GaAs active layer
(da ∼ 0.1 μm) and with Γa � 0.1 have been shown theoreti-
cally [14] to be capable of producing single short (∼100 ps)
optical pulses within the spectral region of λ ∼ 0.85 μm, with
energies in excess of 1 nJ, when gain-switched with pulses with
an amplitude of about 10 A and a duration of 1–1.5 ns. Ex-
perimentally, the characteristics close to those predicted were
achieved with current pulses of an amplitude significantly lower
than that used in previous work, though still greater than 10
A, due to the lasers used having a modest injection efficiency
of about 0.5 [15]–[17]. Gain-switched laser designs with large
da/Γa have also been demonstrated by other teams [18].

To broaden the operating wavelength range, the use of Quan-
tum Well active layers was shown [19] to be beneficial in lasers
of this type. We therefore proposed the use of AlGaAs/InGaAs
multiple quantum well active layer lasers with an asymmetric
waveguide design with extremely small values of Γa , adjusted to
give da/Γa � 1 μm. Theoretical studies using phenomenologi-
cal models with active layer parameters taken from the literature
predicted the possibility of generating high energy (>1 nJ) short
(∼100 ps) single optical pulses when pumped with an injection
current pulse of an amplitude of about 10 A and a duration of
1.5–2 ns. The structures studied in [19] were intended for oper-
ation at λ ∼ 1 μm range. We note however that in LIDARs for
applications involving automotive safety and imaging, which
may use silicon single photon avalanche photodetectors [20],
[21], it is beneficial to work at wavelengths <∼ 0.8 μm, where
the responsivity of the silicon detectors is higher than at longer
wavelengths. This wavelength is however shorter than the typi-
cal operating wavelength of typical GaAs lasers. In the current
paper, we propose and realize a customized asymmetric wave-
guide laser structure for gain switching, using a GaAs/AlGaAs
multiple quantum well active layer, and characterize its perfor-
mance. Single optical pulses about 100 ps long (FWHM), with
an energy of ∼1 nJ at λ ∼ 0.808 μm, have been achieved from
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Fig. 1. Schematic of the refractive index profile and the corresponding trans-
verse mode intensity distribution in the structure analyzed. The active region is
represented as a single layer with an averaged refractive index.

lasers with a stripe width of 30 μm, using pumping pulses with
an amplitude of a few Amps and a duration of ∼1 ns from a
compact MOS driver. Temperature performance of the laser has
been investigated experimentally and theoretically. It has been
shown that the inevitable performance degradation at high tem-
peratures (either due to ambient temperature or Joule heating in
the CMOS source) can be to a significant extent overcome by a
relatively modest current increase. A prototype compact source
with a hybridly integrated electrical pulse generator and laser
has been manufactured and characterized.

II. LASER STRUCTURE

The quantum well laser structure has been grown using
Molecular Beam Epitaxy by Innolume GMBH, Dortmund.
Fig. 1 shows schematically the refractive index profile in the
structure and the calculated transverse mode intensity profile
(the structure supports a single transverse mode only). The struc-
ture belongs to the broad asymmetric waveguide category [14],
[22] in the sense that the mode overlap with the optical con-
finement layer is larger than that with the n-cladding. This may
lead to slightly higher internal losses than the alternative nar-
row asymmetric waveguide [22], but offers a higher tolerance to
fabrication imprecision (particular as regards the composition
of the n-cladding and hence its refractive index, see Fig. 1) and
hence more reproducible design due to the waveguide operating
further away from the cutoff condition. The active layer con-
sisted of five thin (4 nm thick) GaAs/AlxGa1−xAs (x ≈ 0.3)
Quantum Wells, providing the operating wavelength of 808 nm.
To help achieve a large da/Γa ≈ 3 μm, the position of the ac-
tive layer was shifted away from the mode peak towards the
p-cladding. The injection efficiency of the laser was measured
as �0.75, and the internal loss, as ≈1.5 cm−1 .

The stripe width was chosen as 30 μm, as a compromise
between the need for high power pulse generation and the need
to keep the source dimension small. The ratio of the stripe width
and the focal length of the transmitter optics defines the field-
of-view of the transmitter and this should be kept small (e.g.,
∼1 mrad) to improve the spatial accuracy and reduce the level
of background radiation seen by the receiver. The lasers were

Fig. 2. LCR transient-based laser diode driver scheme.

mounted n-side down on a ceramic sub-mount, which then was
fastened onto the driver board at a right angle with no heat sink.

III. EXPERIMENTAL

The laser diode driver was based on an LCR transient-based
pulse shape control. The principle of the driving scheme is
shown in Fig. 2. In this driver, a capacitor C is first charged to
the Vbias voltage (20 . . . 150 V) and then rapidly discharged with
a switch S1 realized with a MOS transistor [23]. In this config-
uration the current pulse width is determined by the capacitance
and the stray inductance of the current loop (�(LC)1/2). The
peak amplitude of the current pulse is proportional to the bias
voltage. Pulses with a width of ∼1 ns and peak current of ∼10
A are available with a MOS transistor switch as explained in
more details in [24]. As the current pulses driven through the
laser diode are short, the average current at a pulsing rate of,
say, 100 kHz, is only 0.5 mA. Thus a pulsing rate of 100 kHz to
about 1 MHz can be achieved.

Laser diode characterization measurements were performed
to determine the injection current pulse amplitude, the corre-
sponding optical pulse power and their relative positions in the
time domain. The current pulse amplitude was determined by
measuring a voltage drop over a damping resistor in series with
the laser diode. The optical power of the laser pulse was deter-
mined by measuring the pulse shape emission in time domain
in relation to the measured optical average power. For the time
domain presentation, the optical energy was collected with a
graded index optical fiber using a lens pair to collect the total
emission of the laser diode. An OE-converter and a real-time
oscilloscope with a bandwidth of 24 and 12 GHz, respectively,
were used in the measurements, and the given results are pro-
duced directly from the oscilloscope results without any BW
correction.

Fig. 3 shows the measured temporal optical pulse profiles
alongside the corresponding current pulses (note that the neg-
ative part of the current pulse was channeled to the shunting
diode and not applied to the laser, see Fig. 2). Note also that the
results are from separate measurements and combined on the
same graph for convenience.

The optical pulses are about 100 ps at half maximum; the
peak power reaches about 9 W for a peak current of 6 A, cor-
responding to a pulse energy of about 1 nJ. At the current
pulse amplitude in excess of 3–4 A, the optical pulses show
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Fig. 3. Output pulse (red curve) versus injection current pulse (blue curve) for
a QW laser diode with 30 μm stripe width and 3 mm cavity length; (a) pulsing
rate is 10 kHz, (b) pulsing rate is 1 MHz.

Fig. 4. Peak and average powers of the 30 μm/3 mm QW laser diode as a
function of the peak pumping current.

some relatively weak trailing pulse structure that does not affect
the FWHM pulse duration. The dependence of the peak power
and total optical output energy (including the afterpulsing struc-
ture if any) on the current amplitude can be seen more clearly
in Fig. 4.

It is seen that, while the total energy shows a relatively linear
dependence on the peak current, the current dependence of the
peak optical power is markedly sublinear. This difference can be

Fig. 5. Far field distribution of the 30 μm/3 mm QW laser diode in the trans-
verse direction (solid-measured, dashed-calculated) and in the lateral direction
(measured).

attributed to the emergence of the afterpulsing structure, taking
on some of the pulse energy; the measured FWHM duration of
the main pulse does not increase substantially with current.

Fig. 5 shows the far field of the laser emission in the transverse
(a) and lateral (b) directions. As usual in laser structures of
this type, the transverse field (the broader, red, solid curve in
Fig. 5) is determined by the profile of the single transverse mode
and relatively narrow (∼15° FWHM) in good agreement with
the calculations (the dashed curve), thus allowing the use of
a relatively compact lens in the laser transmitter design. The
lateral field is more complex, due to the multimode nature of
the emission from the simple rectangular 30 μm stripe, but still
narrower than the transverse field, with the FWHM of about
3°–4°.

The curves shown in Figs. 3(a), 4, 5 have been measured
for low pulse repetition frequencies (10 kHz). Experimentally,
frequencies up to 1 MHz have been used (see Fig. 3(b). In the
latter case, which is preferable for realistic acquisition systems
such as a LIDAR, the behavior of the laser is qualitatively similar
but the pulse amplitudes are lower due to the current heating in
the power supply. In addition, a realistic LIDAR for automotive
applications must be capable of operating in broad range of
ambient temperatures.

We have therefore investigated the temperature dependence of
the laser performance by controlling the temperature explicitly.

Shown in Fig. 6 are the pulse shapes and the correspond-
ing (identical) current pulses, for different values of ambient
temperature and measured at low repetition rate (10 kHz) to
substantially eliminate the effects of current heating. Unsurpris-
ingly, the well-known gain decrease with temperature is seen in
the dynamics, resulting in a decreased power and energy of the
pulses generated. The measurements in this figure correspond
to a relatively high value of the current amplitude, so the optical
power decrease is noticeable but not drastic.

The effect of temperature on the laser performance is more
important at modest currents, as illustrated in Fig. 7 which shows
the dependences of the peak optical power on current peak
measured at different temperature values (the middle curve,
corresponding to T = 30◦, is identical to the one in Fig. 4).
Clearly, for peak current values of less than 4–5 A, an increase in



HUIKARI et al.: HIGH-ENERGY PICOSECOND PULSE GENERATION BY GAIN SWITCHING IN ASYMMETRIC WAVEGUIDE STRUCTURE 1501206

Fig. 6. Dependence of the peak power of the 30 μm/3 mm QW laser diode
on the temperatures at a constant injection current amplitude.

Fig. 7. Dependence of the peak power of the 30 μm/3 mm QW laser diode on
the injection current at the temperatures of 0° (blue), 30° (red) and 60° (green).

temperature of 30° can shut the laser down. In practice however,
the laser is intended for operation at high currents to maximize
the output pulse energy, which simultaneously minimizes the
temperature influence.

Moreover, experiments show that the temperature induced
deterioration of the laser performance can be reversed, at the
high enough operating currents, by a relatively modest increase
in the current pulse amplitude (e.g., as can be seen in Fig. 8, an
increase in the current from 4.5 to 6 A largely recovers the peak
power deterioration caused by heating the laser by about 30 K).
As shown in the experimental result of Fig. 8, this happens with
only a modest penalty in the pulse shape.

All the qualitative tendencies seen in the experiments are
readily reproduced by rate equation simulations, using gain de-
pendence on carrier density and temperature from [25].

As an example of a practical laser diode transmitter real-
ization, Fig. 9 shows a module using a 30 μm/1.5 mm (note
cavity length difference compared to the 3 mm long laser dis-
cussed above) QW laser diode and a full-custom CMOS driver
described in [23], and its output at the pulsing rates of 10 kHz
and 1 MHz, respectively, driven with a ∼2.5 A/1ns current
pulse.

Fig. 8. Optical output of the 30 μm/3 mm QW laser diode (a) at the tempera-
tures of 22° and 60° with the same injection current pulse amplitude, and in (b)
at the temperatures of 60° with ∼30% increased pumping current amplitude.

Fig. 9. Construction and optical output of the 30 μm/1.5 mm QW laser diode
at 10 kHz and 1 MHz pulsing rates, respectively.

IV. CONCLUSION

To conclude, we have shown that lasers with an active layer
utilising thin GaAs Quantum Wells and a strongly asymmetric
waveguide allow for the generation of high energy (∼1 nJ) pi-
cosecond pulses at 808 nm, with a modest current pumping pulse
amplitude (<10 A) and a reasonably good tolerance to ambient



1501206 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2015

temperature. A prototype integrated transmitter for operating in
a laser radar scheme has been demonstrated.
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