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Abstract—We present a 16-Gb/s transmitter composed of a
stacked voltage-mode CMOS driver and periodic-loaded reverse
biased pn junction Mach-Zehnder modulator. The transmitter
shows 9-dB extinction ratio and 10.3-pJ/bit power consumption
and operates with 1.3 pm light. Penalties as low as 0.5 dB were
seen as compared to a 25-Gb/s LiNbOj3 transmitter with both a
monolithic metal-semiconductor-metal receiver and a reference
receiver at 16-Gb/s operation. We also present an analytic expres-
sion for relative transmitter penalty (RTP), which allows one to
quickly assess the system impact of design parameters such as
peak-to-peak modulator drive voltage, modulator figure of merit,
and transmitter extinction ratio to determine the circumstances
under which a stacked CMOS cascode driver is desirable.

Index Terms—Electrooptic modulators, integrated optics,
electrooptic devices.

I. INTRODUCTION

MOS integrated nano photonics (CINPs) could bring tra-

ditional semiconductor industry efficiency and low cost
manufacturing to the application space of optical intercon-
nects, which has the potential to enable large scale deploy-
ment of broadband communication links [1]. IBM has recently
announced its sub-100 nm CINP technology (CMOS9WG),
which includes WDM filters, germanium (Ge) photodetec-
tors (PDs), silicon modulators, optical couplers, etc., mono-
lithically integrated with analog and mixed-signal circuits [2].
IBM’s CMOS9WG photonics components are integrated into
the CMOS front end thereby minimizing extra processing steps,
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additional required mask levels, and component parasitics.
Monolithic integration can also minimize packaging and han-
dling steps, potentially reducing the end product cost. However,
technology solutions range from the hybrid approach [3]-[8],
which separates electrical and optical components on separate
chips, to a fully monolithically integrated solution [9]-[15].
A hybrid solution allows the designer to focus on optimizing
the optical and electronic functions separately, and also this ap-
proach allows picking the best chip technology for each purpose.
Drawbacks of the hybrid approach include interface related par-
asitics that can degrade performance, and final functionality can
only be tested when a pair of chips is assembled. In addition, a
co-optimization of hybrid components is more challenging due
to the disconnected optical and electrical design environments.
However, for the monolithic approach co-optimization is very
natural due to a single design environment enabled for both elec-
trical and photonic components [2]. Furthermore, maintaining
enough electrical content on the photonics chip as is necessary
for fully functional wafer level testing and chip disposition prior
to assembly invokes the concept of the “smart partitioning” of
the technology to optimize yield and minimize cost, which ul-
timately can open this technology up for use in a broader range
of applications.

In the following we report on a 16 Gb/s transmitter (TX)
with a monolithically integrated stacked voltage-mode CMOS
driver [16]-[18] and periodically loaded MZM operated with
1.3 pum light. In addition, we demonstrate a link between a
CMOS9WG TX and a separate CMOS9WG receiver that is a Ge
metal-semiconductor-metal (MSM) photo-detector monolithi-
cally integrated with a CMOS transimpedance amplifier (TIA)
and limiting amplifier (LA) [19]. All hardware was manufac-
tured in IBM’s CMOS9WG technology node. In addition, we
present an analytic expression for RTP based on the peak-to-
peak modulator drive voltage, modulator figure of merit (FOM),
and TX extinction ratio (ER), which allows us to easily assess
the system impact of these design parameters and determine
circumstances under which a stacked CMOS cascode driver
is preferred. In Section II we present our analytic expression
for RTP, and use it to consider high level TX and system
design considerations. Section III reviews our specific CMOS
and MZM designs demonstrated, and Section IV presents the
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TX characterization results with a reference receiver. Section V
describes our monolithic receiver design, and Section VI pro-
vides CMOS9WG link results. Section VII gives discussion and
conclusions.

II. TX AND SYSTEM DESIGN CONSIDERATIONS

Significant progress has been reported on the design and
manufacturing of CMOS compatible Mach—Zehnder modula-
tors (MZMs) [9]-[15], [20]-[39] and reverse biased plasma
dispersion electro-optic phase shifters [39]-[48]. However, de-
signing a monolithic TX implies limits on attainable CMOS
direct drive voltages according to the capabilities of the tech-
nology. In developing a TX design strategy it is essential to
weigh pertinent performance criteria from the full link. For ex-
ample, two significant sources of link power consumption are
the TX CMOS and the continuous wave (CW) laser drive power.
In addition, the TX CMOS and CW laser drive power are related
in that one can maintain an identical unamplified link margin
by using high laser power and lower TX drive power (gener-
ating lower optical ER), or lower laser power and higher TX
drive power (generating larger ER). Since we are implementing
a monolithic CMOS9WG technology platform, there are two
straightforward architectural choices to consider for TX circuit
design, either a current-mode CMOS driver (e.g., the VCSEL
driver in [19]) or a voltage-mode CMOS driver [16]-[18]. The
advantage of the voltage-mode CMOS driver is that it can pro-
vide about twice the peak-to-peak drive voltage (V},,) compared
to a current-mode CMOS driver, when the voltage-mode driver
uses stacking/cascoding to increase its output voltage tolerance
[16]-[18]. However, the increased voltage swing comes at the
cost of higher power consumption. In the following we con-
sider the difference in power consumption needed between the
current-mode and stacked voltage-mode CMOS TX driver de-
signs, and relate this to associated laser power consumption
expectations in order to maintain a given link margin.

A key aspect in understanding this tradeoff is to quantify
the relative penalty the TX imparts on the link, hereafter called
the RTP. In unamplified links there is a quantifiable trade-off
between the accessible MZM radio frequency (RF) V,,,, the
TX optical ER, and the optical absorption loss created by the
reverse-bias plasma-dispersion MZM. A key parameter in un-
derstanding the RTP for a given link is the MZM efficiency-loss
[47], [48] FOM defined by the product of the phase shifter prop-
agation loss and its Vrr-L product. The FOM can be written as
FOM = V7-L*aphase shifter> and has units of (V-cm)*(dB/cm)
— V-dB. The details of how these TX design tradeoffs impact
link budget depends on the transmission format used. We have
previously shown in [47] that for the non-return to zero (NRZ)
transmission format the RTP is governed by:

RTP = {NRZ ER penalty in dB} + {Modulator optical loss
indB}
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Fig. 1. (a) RTP, ER penalty, and MZM optical insertion loss for a stacked

voltage-mode CMOS drive TX with a 1.6 V},;, RF drive. This figure shows
that a minimum penalty is achieved with a ~8 dB ER. (b) A comparison of
the MZM-based RTP using current-mode CMOS with 0.8 V},, drive versus a
stacked voltage-mode CMOS drive with 1.6 V,,;,, which gives 2.6 dB reduction
in penalty from the TX.

The RTP essentially represents changes in the ratio between
the input laser power and the output TX optical modulation
amplitude (OMA), which quantifies the margin degradation in
an unamplified link due to limitations in TX ER and optical
loss from a MZM-based TX. Note that this definition of RTP
does not include additional margin penalties incurred due to TX
bandwidth limitations.

For example, if we consider the RTP from a stacked voltage-
mode CMOS TX driver design, we need to first define the ex-
pected TX RF drive V,,, and MZM FOM, which for the purposes
of this discussion are V},, ~1.6 V and MZM phase shifter FOM
= (1.67 V-cm)*(12 dB/cm) = 20 V-dB, respectively (numerical
values correspond to the monolithic TX characterized in Section
IIT below). Applying these values to Eq. (1) [see at the bottom
of this page], the RTP can be plotted as a function of MZM ER
as shown in Fig. 1(a) and (b). We note that in practice, the x-axis
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Fig. 2. (a) TX block diagram. (b) CMOS driver output stage schematic.

ER in Fig. 1(a) and (b) can be varied by changing the length of
the MZM, since V,,, and FOM are fixed. The curve marked “Op-
tical loss” in Fig. 1(a) indicates how MZM optical loss increases
as its length and ER increases. The curve marked “ER penalty”
shows how the NRZ penalty from a limited ER decreases as the
MZM is made longer and the ER increases. The RTP = “NRZ
ER penalty” + “Modulator optical loss” shows a minimum at
an ER of ~8 dB, which also indicates that the maximum attain-
able OMA is realized at this design point, assuming a fixed input
CW laser power. For unamplified links this RTP minimum corre-
sponds to the most efficient design point for the TX for the FOM
value of 20 V-dB. The resulting RF/optic interaction length for
this design is ~0.27 cm for each MZM arm. We note that as
shown in Fig 1(a) the TX penalty changes less than 0.5 dB for
MZMs designed to have ERs ranging from ~5 to >10 dB. In this
MZM design space the increase in optical loss penalty is nearly
the same as the decrease in ER penalty, and so a reasonably
broad range of MZMs designs could be implemented with min-
imal impact on link performance in unamplified optical links.

The same calculus can be performed for a current-mode
CMOS RF driver, which provides ~0.8 V,, RF drive. This
curve is shown in Fig. 1(b) and is labeled as “TX penalty with
0.8 V,,,, drive”. Fig. 1(b) compares the current-mode CMOS TX
RTP to that of the stacked voltage-mode CMOS driver TX de-
sign. This figure shows that using the current-mode CMOS drive
increases the optimum RTP by 2.6 dB. However, we note that
the optimum design for the current-mode CMOS TX is when
a ~4.5 dB ER is attained, which corresponds to an RF/optic
interaction length of ~0.33 cm in each MZM arm. Accordingly,
Fig. 1(b) indicates the current-mode CMOS TX would require
an additional 2.6 dB of input CW laser power in order to match
the link performance obtained for the stacked voltage-mode
CMOS TX design in an unamplified link.

III. TX CIRCUIT AND MZM DESIGN

The TX block diagram is shown in Fig. 2(a). The electrical
input has a 50 2 on-chip termination and a current-mode logic
(CML) amplifier to boost weak input signals to CML levels,
followed by a CML-to-CMOS converter. Cross-coupled CMOS
inverters minimize timing error between the complementary
signals. The front-end accepts single-ended or differential in-
puts. The level shifter [17] provides Lo (Vsg to Vpp) and Hi
(Vpp to Vppa) CMOS outputs, which are buffered by inverter
chains to drive the stacked output stage [18]. The stacked output
stage, Fig. 2(b), uses cascoding to limit the static voltage across
any device to Vpp while providing Vgs to Vppo output swing

RF section

1
=™ Passive
== waveguide

Integrated resistors

Fig. 3. (a) Image of monolithic TX with stacked CMOS drive and periodic
loaded MZM. The MZM has a total push-pull RF/optic interaction length of
6 mm (3 mm per MZM arm). (b) Magnified view of periodically loaded electrode
in MZM.

[16]-[18]. Electrical testing at Vpp = 1.5V, Vppo =3 V gave
2 V,,;, into 50 €2 (25  output impedance), or 4 V peak-to-peak
differential (V;,q) push-pull to 50 @ MZM electrodes. The
CMOS driver circuits were designed for a high-ER optical TX
targeting short-reach optical interconnect applications at up to
16 Gb/s (e.g., PCI Express 4.0, Fibre Channel, Infiniband). The
measurements presented below demonstrate performance out
to 20 Gb/s.

An MZM electro-optic modulator is used in the TX due to
its relatively temperature insensitive operation. The MZM has
lateral PN junctions with 4 x 10'7 cm~ peak p and n doping
concentrations (as indicated by simulations of the processing
implant conditions and thermal budget), a ~135 nm SOI thick-
ness, and 2 ym BOX appropriate for a ~1.3 pm wavelength of
operation. The pn junctions show a leakage current on the order
of nanoamps with a 1 V reverse bias, and so have a shunt resis-
tance on the order of hundreds of mega-ohms. An image of the
TX is shown in Fig. 3(a). The CMOS driver differential output
is coupled directly into a periodically loaded push-pull MZM.
The MZM incorporates unloaded RF electrode segments to in-
crease the electrode effective line impedance. The unloaded RF
segments are transmission line sections that are not connected
to pn junctions and are periodically inserted into the MZM elec-
trode. Fig. 3(b) shows the loaded sections (electrode sections
coupled to a pn-junction) are the straight horizontal electrode
segments highlighted by thick white arrows, and the unloaded
sections are the 180° turn segments denoted by the narrow white
arrows. Each MZM arm has ten 300 pm long electrode sections
loaded with optical pn-junctions (3 mm total loaded electrode
length in each MZM arm) and nine 157 psm long unloaded elec-
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Fig.4. (a)S21 electro-optic bandwidth measurement from a stand alone MZM
that was not connected to CMOS, and was nominally identical to that shown in
Fig. 3(a), (b) S11 response from the same device as used in (a).

trode sections, resulting in a ~68% loading and 4.41 mm total
electrode length. Since the unloaded electrode sections have low
capacitance their relative contributions to RF propagation losses
are small. The passive RF sections have a line impedance of
~87 ) and the loaded sections have a line impedance of
~35 , as extracted from transmission line measurements.
Therefore, the effective line impedance from the combined
loaded and unloaded sections is calculated via a weighted av-
erage to be ~52 () across the RF frequency range of interest.
The MZM has integrated terminating resistors that are nomi-
nally designed to have a 50 € resistance. However, this hard-
ware was designed using a process design kit (PDK) for bulk
90 nm CMOS that was not centered for photonics-enabled SOI
substrates. Therefore, the fabricated MZM terminating resistor
had a value of ~58 2. The MZM also has nine passive optical
waveguide sections ~218 pm long (narrow green arrows, in
proximity to the unloaded RF sections), summing to 1.967 mm
of passive waveguide in each MZM arm.

The termination mismatch between the MZM effective line
impedance of 50 and the 58 () terminating resistor at the end of
the MZM created an RF reflection back into the RF/optic inter-
action region that negatively impacted the MZM S21 electro-
optic bandwidth. Therefore, we used a focused ion beam (FIB)
to deposit a wire in parallel with the integrated terminating re-
sistor to reduce the value of the terminating resistance. The
bandwidth from a stand-alone MZM that was not connected to
a CMOS drive circuit and whose terminating resistor was mod-
ified using a FIB wire deposition is shown in Fig. 4(a). The
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Fig. 5. (a) 10.4 dB ER 16 Gb/s eye diagram with 23! — 1 PRBS, Vpp =
1.5V, Vpp2 =3V, ~1.7 V,;, from the CMOS driver, and 278 mW power
consumption from the CMOS driver. (b) 10.4 dB ER 20 Gb/s eye diagram with
231 1 PRBS, Vpp = 1.5V, Vppa =3V, ~1.7 V,,,, from the CMOS driver,
and 278 mW power consumption from the CMOS driver. The 1.7 V,;, signal
in the MZM phase shifter is consistent with the 35 2 line impedance measured
for the MZM pn-junction sections. (¢) 9.0 dB ER 16 Gb/s eye diagram with
231 _ 1 PRBS, Vpp = 1.2V, Vppa =24V, ~1.6 Vpp» and 165 mW power
consumption from the CMOS driver. For all of the eye diagrams the y-axis scale
is 160 p#W/div and the x-axis scale is 10 ps/div.

FIB deposition created an additional electrical connection with
a 200 € resistance that was in parallel with the 58 €2 integrated
terminating resistor. The 200 2 FIB wire in parallel with the
58 € integrated termination provided a final MZM terminating
resistance of ~45 (2 for this bandwidth measurement. The band-
width was measured to be ~12 GHz when a dc bias of —0.8 V
was applied, which is the bias supplied by the stacked voltage-
mode CMOS driver during operation. The S11 response from
the same modulator is shown to be < —12 dB out to ~12 GHz
in Fig. 4(b).

Fig. 5(a) and (b) show 16 and 20 Gb/s optical eye diagrams at
an operating wavelength of 1.31 um, having 10.4 dB ERs from
the monolithic TX. The CMOS directly provides the reverse
bias required for high speed operation of the MZM PN diode
phase shifters, and so no external MZM biases were needed.
The TX CMOS supply voltages were run at Vppy = 3.0 V
and Vpp = 1.5V, and at these settings the TX CMOS con-
sumed 278 mW for 20 Gb/s operation (~14 pJ/bit), whereas its
power consumption at 16 Gb/s was ~16 pJ/bit. Fig. 5(c) shows a
16 Gb/s eye diagram with 9 dB ER from the TX when reduced
supply voltages of Vpps = 2.4V and Vpp = 1.2 V were used.
For these settings the driver consumed 165 mW, or 10.3 pJ/bit.
Therefore, the power consumption is reduced by 110 mW in
conjunction with a 0.3 dB OMA penalty, when running the
CMOS at these reduced biases.

The total MZM optical insertion loss was estimated to be
~5.4 dB, which includes excess losses from several optical sub-
components. The MZM phase shifter loss and passive wave-
guide losses were measured on separate structures with three
different “cut-back” waveguide lengths, and were found to be
12.4 and 4.1 dB/cm for the 0 V biased pn-junction and passive
ridged waveguide, respectively. Therefore, we estimate there
was ~4.7 dB loss from the phase shifters, ~0.6 dB loss from
the passive ridged waveguides, and ~0.5 dB loss from each of
the thermally tunable couplers at the input and output of the
MZM arms. Each thermally tunable coupler was itself a MZM
composed of an input 3 dB directional coupler, thermo-optic
phase shifters, and an output 3 dB directional coupler.

Measurements indicated the pn-junction loaded electrode sec-
tions have a line capacitance of ~0.44 fF/ym and an RF group
index of ~3.2. Using this result in conjunction with simulations
of the unloaded RF electrode, the weighted average effective RF
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propagation constant through the MZM is estimated to be ~3.0.
The optical group index of the ridged waveguides was measured
to be ~3.64, which was extracted by determining the round trip
delay in ring devices. The high speed MZM VL product was
determined to be 1.67 V-cm by correlating eye diagram ER at
16 Gb/s to a given V,,,q drive, in MZM devices not connected
to CMOS. Using the MZM V. xL product, RF/optic interaction
length, and output eye ER we calculate the V,,, drive in the
pn-junctions was ~1.6 V,,, on each MZM arm (or 3.2 V,,, dif-
ferential drive with Vpp = 1.2 Vand Vppo = 2.4 V), 15% less
than standalone electrical measurements into a 50 €2 test system.

We next consider the relative impact the velocity mismatch,
electrode loss, and impedance matching have on the MZM band-
width. Equation (2) is an analytic expression for the bandwidth
of a traveling wave MZM [49], [50]:

e—(a(z/)L/Q) Sil’l2 (,YQL> + (i) (1 _ e—(a(u)L/Q))Z

YL\ ? a(v)L\®
(2) + (%)

2
where a(v) is the frequency-dependent microwave power atten-
uation coefficient, L is the active length of the device, and v =
27 (N, — Ny )/c where Ny, is the effective microwave index, N,
is the effective optical index, and c is the speed of light in vac-
uum. The solution to the transcendental equation M(v) = 0.5 is
what is referred to as the 3-dB electrical (ABE) bandwidth. The
impact of velocity mismatch can be better understood by cal-
culating the expected MZM bandwidth using the optical group
index of 3.64, an RF group index of 3, and an electrode length
of 4.41 mm, and assuming negligible RF propagation loss, per-
fect impedance matching, and neglecting carrier dynamics. The
resulting expected MZM bandwidth considering only velocity
mismatch was calculated to be ~47 GHz. Therefore, the major
contributors to MZM bandwidth limitation are the electrode RF
propagation losses and impedance mismatch issues within the
device and measurement environment [51], [52].

The TX circuitry characterized above was designed using a
bulk 90 nm CMOS PDK, since at the time of this particular
design a PDK calibrated to photonics-enabled SOI substrates
was still under development. More recently, we have completed
a PDK with hardware-correlated device models derived from
dedicated SOI hardware. Circuit simulations performed with the
updated models indicate that a 1.7 V,;, output from a nominally
biased stacked voltage-mode driver is a reasonable expectation
across process and environment corners.

M) =

IV. TX CHARACTERIZATION

The CMOS9WG TX was characterized using a 40 Gb/s
Discovery Semiconductor R411 reference receiver. The
CMOS9WG TX performance was compared to that of a 25 Gb/s
LiNbO; TX, realized using a 40 Gb/s EOspace LiNbO3 modula-
tor model AZ-OV1-25-PFU-SFU-130-SIB612, having a band-
width of ~30 GHz, in conjunction with a 17.5 GHz bandwidth
RF filter to limit the modulator bandwidth. Fig. 6(a) and (b)
shows bit error ratio (BER) curves versus received OMA for
both the CMOS9WG TX and the LiNbO3 TX at a bit rate of
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16 Gb/s. Fig. 6(a) shows sensitivity curves when the
CMOS9WG TX had CMOS bias settings of Vpp = 1.2 V and
Vbpe = 2.4V, illustrating that the CMOS9WG TX has a 1 dB
penalty at a BER of 1 x 1072 as compared to the LiNbO3 TX
when operated at 16 Gb/s. Fig. 6(b) shows a similar comparison
when the CMOS9WG TX had CMOS bias settings of Vpp =
1.5V and Vpps = 3.0V, and shows a 0.5 dB penalty at 16 Gb/s
relative to the LiNbO3 TX.

V. CMOS9WG RECEIVER CIRCUIT AND MSM PD DESIGN

The silicon photonic receiver circuit consisted of a CMOS
TIA and LA monolithically integrated with a MSM Ge PD
[53]. The RX block diagram is shown in Fig. 7. The RX is
an adapted version of the T-coil RX circuit published in [19],
and was designed using 90 nm bulk CMOS models, as SOI
models were not available at design time. The targeted gain and
data rate were >10 k2 and >25 Gb/s, respectively. The TIA is
realized as a pair of CMOS inverters with resistive feedback,
one active and one a replica. A differential pair steers current
into the TIA input nodes for dc offset compensation. The LA
is an 8-stage differential amplifier using T-coils for bandwidth
extension. The low pass filter amplifies the difference between
the dc levels at the LA output and returns it to the TIA for dc
offset compensation. The output stage (OUT) is an inductively-
peaked differential amplifier. The nominal supply voltage is
1.2V

The PD cathode was connected to a 1.5 V supply. The photo-
diode anode was self-biased by the receiver front-end at ~0.5 V.
At the resulting bias of ~1.0 V, the MSM PD exhibited a re-
sponsivity of 0.45 A/W and a dark current of 14.4 pA. PD
responsivities of 0.55 A/W have been demonstrated in simi-
lar designs [53]. The power consumption in the receiver was
90 mW, and so consumed ~4.5 pJ/bit at 20 Gb/s and ~5.6
pJ/bit at 16 Gb/s. The receiver showed open eyes beyond 25
Gb/s [53].

VI. CMOS9WG LINK MEASUREMENTS

Link measurements were performed with the CMOS9WG
TX and RX hardware described above, and also with a 25 Gb/s
LiNbOj; based reference TX for comparison (assembled as de-
scribed in Section IV above). Fig. 8(a) shows a schematic dia-
gram of the CMOS9WG-TX/CMOS9WG-RX link where CW
1.31 pm laser light was edge coupled into the TX chip using
active alignment with a single mode lensed fiber, giving an es-
timated facet loss of ~1.9 + 0.4 dB/facet (as measured from
a separate straight waveguide reference site). A 32 Gb/s Cen-
tellax SSB16000 pattern generator was used to directly drive
the CMOS9WG TX CMOS with a 0.4 V,, 23! — 1 psuedo ran-
dom bit sequence (PRBS) signal via 40 GHz high speed GGB
probes. The modulated light was edge coupled out of the TX
and carried to the RX chip via 10 m standard single mode fiber.
The signal was edge coupled into the RX CMOS9WG chip and
the electrical output of the CMOS9WG chip was coupled into
an Anritsu 28 Gb/s MP1800A signal analyzer BER tester via
high speed probes to generate sensitivity curves. Fig. 8(b) shows
a schematic diagram for the 25Gb/s-LiNbO3/CMOS9IWG-RX
link where the system configuration was similar, but CW light
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(a) 16 Gb/s sensitivity curves for the CMOSOWG-TX with CMOS biases set to Vpp = 1.2 V and Vppo = 2.4 V and the reference-LiNbO3-TX linked
to a reference receiver. (b) Same as in (a) except Vpp = 1.5 Vand Vppy = 3.0 V.
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was coupled into an EO-space LiNbO;3; modulator that was
driven single ended with a Centellax 32 Gb/s RF amplifier from
the output of the 28 Gb/s Anritsu pulse pattern generator.
Receiver output electrical eye diagrams from the measured
16 Gb/s links are shown in Fig. 9(a)—(d). Fig. 9(a) shows the RX
data port electrical eye from the CMOS9WG-TX/ CMOS9OWG-
RX link at ~1 x 107'2 BER, whereas Fig. 9(b) shows the
data-bar output from the same link. The CMOSOWG-TX was
biased at Vpp = 1.5 V and Vpps = 3.0 V for these mea-
surements. Fig. 9(c), shows a 16 Gb/s data port electrical eye
from the LiNbO3/CMOS9WG-RX link at ~1 x 1072 BER,
and Fig. 9(d) shows the data-bar output from the same link.
All of the 16 Gb/s eye diagrams show minimal inter-symbol
interference. A sensitivity curve with a 23! — 1 PRBS for the
CMOS9WG link at 16 Gb/s is shown in Fig. 10(a). Also shown

L~

50Q Load
(Scope, BERT)

E

(b)

(a) Schematic diagram of the RX CMOS design. (b) Picture of the monolithic CMOS and MSM PD.

in Fig. 10(a) is a sensitivity curve from the LiNbO3 based TX
linked to the CMOS9WG RX. The received OMA is calcu-
lated from the measured average received photocurrent, the
separately measured modulator ER, and photodiode responsiv-
ity. The OMA is referenced to the power in the on-chip wave-
guide at the photodiode input. Fig. 10(a) shows the CMOS9WG
link at 16 Gb/s required —7 dBm of (OMA) at the MSM detector
fora 1 x 10~!2 BER, whereas the link between the LiNbO3; TX
and CMOS9WG RX required —7.5 dBm of OMA. Therefore,
the CMOS9WG TX showed 0.5 dB penalty compared to the
LiNbO3 TX at 16 Gb/s.

Receiver electrical eye diagrams from the measured 20 Gb/s
links are shown in Fig. 11(a) and (b). Fig. 11(a) shows the RX
data port electrical eye from the CMOS9WG-TX/CMOSIWG-
RX, whereas Fig. 11(b) shows the 20 Gb/s data port electrical
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Fig. 8. (a) Schematic of CMOS9WG TX to CMOS9WG RX link, (b) schematic of reference-LiNbO3-TX to CMOS9WG-RX link.
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© ’ @

Fig. 9. (a) 16 Gb/s data port electrical eye from the CMOSIWG-
TX/CMOS9WG-RX link at ~1 x 10~!> BER with Vpp = 1.5 V and Vpps
= 3.0 V. (b) 16 Gb/s data-bar port electrical eye from the 16 Gb/s CMOSOWG-
TX/CMOS9WG-RX link at ~1 x 10~'2 BER. (c) 16 Gb/s data port electrical
eye from the reference-LiNbO3/CMOS9WG-RX link at ~1 x 10~!2 BER.
(d) 16 Gb/s data-bar port electrical eye from the reference-LiNbO3/
CMOS9WG-RX link at ~1 x 10712 BER.

eye from the LiNbO3-TX/CMOS9WG-RX link. The sensitivity
curve with a 23! — 1 PRBS for the CMOS9WG link at 20 Gb/s
is shown in Fig. 10(b). Also shown in Fig. 10(b) is a sensitivity
curve for the LiNbO3 based TX linked to the CMOS9WG RX.
At 20 Gb/s the CMOS9WG link required —5.6 dBm OMA for a
1 x 1072 BER, whereas the LiNbO; TX and CMOS9WG RX
link required an OMA of —6.6 dBm. Therefore, the CMOSOWG
TX showed 1.0 dB penalty compared to the 25 Gb/s LiNbOj;
TX at 20 Gb/s.
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Fig. 10. (a) 16 Gb/s sensitivity curves for the CMOS9WG-TX/CMOSIWG-
RX link and the reference-LiNbO3-TX/CMOS9WG-RX link. (b) 20 Gb/s sen-
sitivity curves for the CMOSOWG-TX/CMOS9WG-RX link and the reference-
LiNbO3-TX/CMOS9WG-RX link.

VII. TX POWER CONSUMPTION DISCUSSION

A 16 Gb/s current-mode CMOS TX delivering 0.8 V,,,, drive
is estimated to use approximately 100 mW of power, based on
simulations using SOI CMOS models correlated to early hard-
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(a) (b)

Fig. 11. (a) 20 Gb/s data port electrical eye from the CMOSIWG-
TX/CMOS9WG-RX link. (b) 20 Gb/s data port electrical eye from the reference-
LiNbO3/CMOS9WG-RX link.

ware. In comparison, the 16 Gb/s stacked voltage-mode CMOS
TX uses 165 mW of power while delivering 1.6 V,,;, drive. The
stacked voltage-mode CMOS TX reduces the required input
laser power by 2.6 dB, but requires an additional 65 mW of
power to supply the stacked voltage-mode TX CMOS. There-
fore, if the reduction in required laser power is equal to or greater
than 65 mW, the stacked voltage-mode CMOS TX design will
offer a more efficient system solution in terms of power per-
formance. The change in relative laser power consumption for
an uncooled transceiver is estimated by assuming a ~10% wall
plug efficiency at a maximum operating temperature of ~85 °C
[54]. Therefore, a change in laser electrical power consumption
of 65 mW equates to ~6.5 mW optical output power. If we
then scale this 6.5 mW to be 2.6 dB of the total optical power
required for a current-mode CMOS TX link, then we find the
threshold for “power consumption neutrality” happens when the
current-mode CMOS TX link needs ~14.5 mW or ~11.6 dBm
of optical power at the TX input. For comparison, a 15% laser
wall plug efficiency has “power consumption neutrality” when
the current-mode CMOS TX link requires ~22 mW of input
optical power.

There are many considerations that dictate the required laser
power for a given link, including optical input and output cou-
pling efficiency to the silicon photonic chip, whether polariza-
tion diversity, wavelength division multiplexing, or power split-
ting components are required, and what the receiver sensitivity
and link budget will be. A more detailed discussion of the laser
power required for a given link configuration is beyond the scope
of this manuscript. However, we have outlined the conditions
under which power consumption neutrality exists between the
current-mode and stacked voltage-mode CMOS TX designs and
so the reader can apply specific link requirements to consider
which solution may be best for a given application.

VIII. CONCLUSION

We have demonstrated a 16 Gb/s monolithic TX manufac-
tured in the IBM CMOS9WG technology node. We have also
demonstrated a 20 Gb/s link between a monolithic TX and
separate monolithic RX manufactured in the IBM CMOS9WG
technology node. The TX showed a 0.5 dB OMA penalty as
compared to a 25 Gb/s LiNbO3 TX at 16 Gb/s operation, and
a 1 dB penalty at 20 Gb/s. We note that the CMOS circuits
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demonstrated here were designed using a PDK for a 90 nm
bulk CMOS technology node, in which the device models were
not centered for the photonics-enabled SOI substrates on which
the circuits were fabricated. Improved performance is expected
from alternate monolithic circuits currently under fabrication,
which have been designed with hardware-correlated models.
The 20 Gb/s performance limitations in this link are solely due
to the TX, which was specifically designed for 16 Gb/s oper-
ation. Our results show that unamplified single-mode optical
links at 16 Gb/s and beyond are well within the capabilities of
the IBM CMOS9WG technology, which could enable low-cost
large-scale deployment of these optical data links.

REFERENCES

[1] Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer
and data communications beyond 100 G,” IEEE Commun. Mag., vol. 50,
no. 2, pp. s67-s72, Feb. 2012.

[2] S. Assefa et al., “A 90 nm CMOS integrated nano-photonics technology
for 25Gbps WDM optical communications applications,” in Proc. [EEE
Int. Electron Devices Meet., 2012, pp. 33.8.1-33.8.3.

[3] T. Goh, H. Yamazaki, T. Kominato, and S. Mino, “Novel flexible-format
optical modulator with selectable combinations of carrier numbers and
modulation levels based on silica-PLC and LiNbO3 hybrid integration,”
presented at the Opt. Fiber Commun. Conf. Expo., Nat. Fiber Opt. Eng.
Conf., 2011, pp. 1-3.

[4] H. Pan et al., “High-speed receiver based on waveguide germanium
photodetector wire-bonded to 90 nm SOI CMOS amplifier,” Opt. Exp.,
vol. 20, no. 16, pp. 18145-18155, 2012.

[5] N. Dupuis et al., “30 Gbps optical link utilizing heterogeneously inte-
grated III-V/Si photonics and CMOS circuits,” presented at the Optical
Fiber Communication Conf., San Francisco, CA, USA, 2014, p. Th5A-6.

[6] H. E Liu, “Demonstration of a 41 x 12.5 Gb/s fully integrated silicon
photonic link,” presented at the 17th Microopics Conf., 2011, pp. 1-3.

[71 A. V. Krishnamoorthy et al., “A low-power, high-speed, 9-channel
germanium-silicon electro-absorption modulator array integrated with
digital CMOS driver and wavelength multiplexer,” Opt. Exp., vol. 22,
no. 10, pp. 12289-12295, 2014.

[8] I.Kang etal., A hybrid electroabsorption modulator device for generation
of high spectral-efficiency optical modulation formats,” Opt. Exp., vol. 16,
no. 12, pp. 8480-8486, 2008.

[9]1 G.Masini et al., “CMOS photonics for optical engines and interconnects,”

presented at the Optical Fiber Communication Conf., Mar. 4-8, 2012,

paper OTu2l.

D. Krause et al., “854 Gb/s superchannel InP transmitter and receiver

photonic integrated circuits utilizing real-time detection of PM-8 QAM,”

presented at the Optical Fiber Communication Conf., San Diego, CA,

USA, Mar. 4-8, 2012, paper OTulG3.

T. Pinguet et al., “A 1550 nm, 10 Gbps optical modulator with integrated

driver in 130 nm CMOS,” presented at the IEEE 4th Int. Conf. Group IV

Photon., 2007.

A. Narasimha et al., “A fully integrated 4 x 10-Gb/s DWDM opto-

electronic transceiver implemented in a standard 0.13 pm CMOS SOI

technology,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2736-2744,

Dec. 2007.

A. Narasimha et al., “An ultra low power CMOS photonics technology

platform for H/S optoelectronic transceivers at less than $1 per Gbps,”

presented at the Opt. Fiber Communication Conf., San Diego, CA, USA,

2010, paper OMV4.

A. Narasimha et al., “A 40-Gb/s QSFP optoelectronic transceiver in a

0.13 m CMOS silicon-on-insulator technology,” presented at the Optical

Fiber Communication Conf., San Diego, CA, USA, 2008, paper OMK7.

D.J. Thomson et al., “Silicon carrier depletion modulator with 10 Gbit/s

driver realized in high-performance photonic BiICMOS,” Laser Photon.

Rev., vol. 8, no. 1, pp. 180-187, 2014.

T. K. Woodward et al., “Modulator-driver circuits for optoelectronic

VLSI,” IEEE Photon. Technol. Lett., vol. 9, no. 6, pp. 839-841, Jun. 1997.

C. Menolfi et al., “A 14Gb/s high-swing thin-oxide device SST TX in

45nm CMOS SOL” in Proc. IEEE Int. Solid-State Circuits Conf. Dig.

Tech. Papers, Feb. 2011, pp. 156-158.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]



3400311

[18] S. Palermo and M. Horowitz, “High-speed transmitters in 90 nm CMOS
for high-density optical interconnects,” in Proc. IEEE 32nd Eur. Solid-
State Circuits Conf., Sep. 2006, pp. 508-511.

[19] J. Proesel, C. Schow, and A. Rylyakov, “25Gb/s 3.6 pJ/b and 15Gb/s

1.37 pJ/b VCSEL-based optical links in 90 nm CMOS,” in Proc. IEEE

Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 418-420.

G. T.Reed et al., “Recent breakthroughs in carrier depletion based silicon

optical modulators,” Nanophotonics, vol. 3, pp. 229-245, 2013.

G. T.Reed, G. Z. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon

optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518-526, 2010.

A.Liu et al., “High-speed optical modulation based on carrier depletion

in a silicon waveguide,” Opt. Exp. vol. 15, no. 2, pp. 660-668, 2007.

G. Kim et al., “Low-voltage high-performance silicon photonic devices

and photonic integrated circuits operating up to 30 Gb/s,” Opt. Exp.,

vol. 19, pp. 26936-26947, 2011.

[24] J. Ding et al., “Ultra-low-power carrier-depletion Mach-Zehnder silicon
optical modulator,” Opt. Exp., vol. 20, pp. 7081-7087, 2012.

[25] T. Baehr-Jones et al., “Ultralow drive voltage silicon traveling-wave
modulator,” Opt. Exp., vol. 20, no. 11, pp. 12014-12020, 2012.

[26] H. Yu et al., “12.5 Gbits/s carrier-depletion based silicon Mach-Zehnder
modulation with a 2 V driven voltage,” in Proc. IEEE 16th Annu. Symp.
Photon. Soc., 2011, pp. 93-96.

[27] X. Li et al., “Highly efficient silicon Michelson interferometer mod-
ulators,” IEEE Photon. Technol. Lett., vol. 25, no. 5, pp. 407-409,
Mar. 2013.

[28] H. Yu et al., “Performance tradeoff between lateral and interdigitated
doping patterns for high speed carrier-depletion based silicon modulators,”
Opt. Exp., vol. 20, no. 12, pp. 12926-12938, 2012.

[29] X. Xiao et al., “High-speed, low-loss silicon Mach—Zehnder modulators
with doping optimization,” Opt. Exp., vol. 21, no. 4, pp. 4116-4125,2013.

[30] X. Tu et al., “50-Gb/s silicon optical modulator with traveling-wave
electrodes,” Opt. Exp., vol. 21, no. 10, pp. 12776-12782, 2013.

[31] D. M. Gill et al., “CMOS-compatible si-ring-assisted Mach-Zehnder
interferometer with internal bandwidth equalization,” IEEE J. Sel. Topics
Quantum Electron., vol. 16, no. 1, pp. 45-52, Jan./Feb. 2010.

[32] M. Aamer et al., “10Gbit/s error-free DPSK modulation using a push—

pull dual-drive silicon modulator,” Opt. Commun., vol. 304, pp. 107-110,

2013.

K. Goi et al., “DQPSK/QPSK modulation at 40-60 Gb/s using low-loss

nested silicon Mach-Zehnder modulator,” presented at the Optical Fiber

Communication Conf., Anaheim, CA, USA, 2013, paper OW4J-4.

[34] P.Dong et al., “112-Gb/s monolithic PDM-QPSK modulator in silicon,”

Opt. Exp., vol. 20, no. 26, pp. B624-B629, 2012.

S. Matthew et al., “Low power 50 Gb/s silicon traveling wave

Mach-Zehnder modulator near 1300 nm,” Opt. Exp., vol. 21, no. 25,

pp- 30350-30357, 2013.

[36] P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-
drive push-pull silicon Mach-Zehnder modulators,” Opt. Exp., vol. 20,
pp. 6163-6169, 2012.

[37] M.R.Watts etal., “Low-voltage, compact, depletion-mode, silicon Mach-
Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16,
no. 1, pp. 159-164, Jan./Feb. 2010.

[38] D.Thomson et al., “High contrast 40 Gbit/s optical modulation in silicon,”
Opt. Exp., vol. 19, pp. 11507-11516, 2011.

[39] 1. Goykhman et al., “Optimization of efficiency-loss figure of merit in
carrier-depletion silicon Mach-Zehnder optical modulator,” Opt. Exp.,
vol. 21, no. 17, pp. 19518-19529, 2013.

[40] J. Rosenberg et al., “A 25 Gbps silicon microring modulator based on an
interleaved junction,” Opt. Exp., vol. 20, pp. 26411-26423, 2012.

[41] X. Xiao et al, “25 Gbit/s silicon microring modulator based on
misalignment-tolerant interleaved PN junctions,” Opt. Exp., vol. 20,
pp. 2507-2515, 2012.

[42] F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-
type photonic modulator in silicon on insulator,” Opt. Exp., vol. 13,
no. 22, pp. 8845-8854, 2005.

[43] J. Fujikata et al., “25 GHz operation of silicon optical modulator with
projection MOS structure,” presented at the Optical Fiber Communication
Conf. Tech. Dig., San Diego, CA, USA, 2010, paper OMI3.

[44] J. Van Campenhout et al., “Low-voltage, low-loss, multi-Gb/s silicon
micro-ring modulator based on a MOS capacitor,” presented at the Optical
Fiber Communication Conf., Optical Soc. Amer. Tech. Dig., Los Angeles,
CA, USA, 2012, paper OM2E 4.

[45] D.J. Thomson et al., “High speed silicon optical modulator with self
aligned fabrication process,” Opt. Exp., vol. 18, no. 18, pp. 19064-19069,
2010.

[20]
[21]
[22]

[23]

[33]

[35]

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 4, JULY/AUGUST 2015

[46] D. J. Thomson et al., “High performance Mach—Zehnder-based silicon
optical modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 19,
no. 6, p. 3400510-3400510, 2013.

[47] D. M. Gill et al., “A figure of merit based transmitter link penalty
calculation for CMOS-compatible plasma-dispersion electro-optic Mach-
Zehnder modulators,” 2012.

[48] X. Tu et al., “Fabrication of low loss and high speed silicon opti-
cal modulator using doping compensation method,” Opt. Exp., vol. 19,
pp. 18029-18035, 2011.

[49] F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated
optics: Selected contemporary devices and system applications,” in Opti-
cal Fiber Telecommunications III B, 1. P. Kaminow and T. L. Koch, Eds.
San Diego, CA, USA: Academic, 1997, ch. 9, pp. 377-462.

[50] D. M. Gill and A. Chowdhury, “Electro-optic polymer-based modula-

tor design and performance for 40 Gb/s system applications,” J. Lightw.

Technol., vol. 20, no. 12, pp. 2145-2153, Dec. 2002.

S. H. Lin and S.-Y. Wang, “High-throughput GaAs PIN electrooptic mod-

ulator with a 3-dB bandwidth of 9.6 GHz at 1.3 um,” Appl. Opt., vol. 26,

no. 9, pp. 1696-1700, 1987.

Yu Hui and W. Bogaerts, “An equivalent circuit model of the traveling

wave electrode for carrier-depletion-based silicon optical modulators,”

J. Lightw. Technol., vol. 30, no. 11, pp. 1602-1609, Jun. 2012.

S. Assefa et al., “Monolithically integrated silicon nanophotonics re-

ceiver in 90nm CMOS technology node,” presented at the Optical Fiber

Communication Conf., Anaheim, CA, USA, 2013, paper OM2H—4.

[54] J.S. Orcutt, R. Ram, and V. Stojanovic, “CMOS photonics for high perfor-
mance interconnects,” in Telecommunications Volume VIA: Components
and Subsystems, 1. Kaminow, T. Li, and A. Willner Eds. Waltham, MA,
USA: Academic, 2013, ch. 12, sec. 12.2.9, p. 446.

[51]

[52]

[53]

Douglas M. Gill received the M.S. and Ph.D. degrees from the materials science
program at UW-Madison, Madison, WI, USA, in 1994. He was a Research As-
sociate at Northwestern University from 1995 to 1998 working on electro-optic
optical amplifiers, thin-film electro-optic modulators, and nonlinear polymers.
He was a Member of Technical Staff at Lucent Technologies, Bell Labs from
199902011, working on research and development of 40 Gb/s LiNbO3 modula-
tors, CMOS compatible photonics, hybrid integrated transceivers, and advanced
transmission formats for cost-effective data transport. Since 2011, he has been
is a Research Staff Member at the IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, working on electro-optic systems monolithically integrated
within CMOS electronics.

He received the Newport Research Award, two Central Bell Labs Teamwork
Awards for work on 40-Gb/s ultralong haul DPSK systems and the DARPA
funded EPIC program on CMOS compatible photonics, was inducted at the
Alcatel-Lucent Technical Academy in 2010, and holds 30 patents and 65 refer-
eed journal and conference articles. He is a Member of the Optical Society of
America.

Jonathan E. Proesel (M’10) received the B.S. de-
gree in computer engineering from the University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
in 2004, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2008 and 2010,
respectively.

He joined the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, in 2010, where
he is currently a Research Staff Member working
on analog and mixed-signal circuit design for optical
transmitters and receivers. He has also held internships with IBM Microelectron-
ics, Essex Junction, VT, USA, in 2004, and IBM Research, Yorktown Heights,
NY, in 2009. His research interests include high-speed optical and electrical
communications, silicon photonics, and data converters.

Dr. Proesel is a Member of the IEEE Solid-State Circuits Society. He re-
ceived the Analog Devices Outstanding Student Designer Award in 2008, the
SRC Techcon Best in Session Award for Analog Circuits in 2009, and core-
ceived the Best Student Paper Award for the 2010 IEEE Custom Integrated
Circuits Conference.



GILL et al.: DEMONSTRATION OF A HIGH EXTINCTION RATIO MONOLITHIC CMOS INTEGRATED NANOPHOTONIC TRANSMITTER

Chi Xiong received the B.S. degree in microelectronics from Peking Univer-
sity, Beijing, China, in 2006, and the Ph.D. degree in electrical engineering from
Yale University, New Haven, CT, USA, in 2012. He is currently a Postdoctoral
Researcher at IBM T. J. Watson Research Center, Yorktown Heights, NY, USA,
in the silicon photonics group. Prior to joining IBM in 2013, he was a Postdoc-
toral Associate in the group of Prof. Hong Tang in the Department of Electrical
Engineering at Yale University. His research interests at Yale University include
chip-scale nonlinear optics and optomechanics based on nonlinear crystalline
semiconductors, especially piezoelectric aluminum nitride thin films. His cur-
rent research activities are designing monolithic silicon photonic transceivers for
optical interconnects applications. His other research interests include nonlinear
optical effects in integrated waveguide devices and optomechanical resonators.
He has published more than 20 peer-reviewed journal articles. He holds one US
patent.

Jason S. Orcutt received the B.S. degree in electrical engineering from
Columbia University, New York, NY, USA, in 2005, and the M.S. and Ph.D.
degrees in electrical engineering and computer science from the Massachusetts
Institute of Technology, Boston, MA, USA, in 2008 and 2012 respectively.

From 2012 to 2013, he was a Research Scientist at the Massachusetts Institute
of Technology. Since 2013, he has been a Research Staff Member in the Phys-
ical Sciences Department of IBM’s T. J. Watson Research Center, Yorktown
Heights, NY. His research interests range from ultrafast and integrated optics to
bioelectronics and stochastic systems.

Dr. Orcutt received the National Sciences Foundation Graduate Research
Fellowship from 2005 to 2008.

Jessie C. Rosenberg received the A.B. degree in
physics from Bryn Mawr College, Philadelphia, PA,
USA, in 2004, and the Ph.D. degree in applied
physics from the California Institute of Technology,
Pasadena, CA, USA, in 2010. She joined the Research
Division of IBM at T. J. Watson Research Center,
Yorktown Heights, NY, USA, in 2010, as a Postdoc-
toral Researcher, and as a Research Staff Member
later that year. She was previously involved in op-
tomechanics and plasmonics, and currently focuses
on silicon photonic modulators and components for
transceiver applications. She is an Associate Editor of the journal Optics Ex-
press, and is a Member of the Optical Society of America.

Marwan H. Khater (M’02—SM’06) received the B.S. degree in physics from
Middle East Technical University Ankara, Turkey, the M.S. degree in physics
from Texas State University, San Marcos, TX, USA, with emphasis on ex-
perimental and applied solid-state physics, and the Ph.D. degree in electrical
engineering from the University of Texas at Dallas, Dallas, TX, USA, where his
research work focused on low-temperature plasma sources and characterization
for microelectronics processing. He joined IBM Corporation in 2000, where he
has been involved in various advanced research and technology projects. His
research and development work on Silicon-Germanium heterojunction bipolar
transistor has been a major contribution to the advancement of IBM’s BiICMOS
technologies for RF and high-speed communication systems and applications.
His research also includes various projects on advanced CMOS devices pro-
cessing and design for 22-nm node technology and beyond. These include
FinFET and thin SOI fully depleted devices, as well as Schottky source/drain
CMOS devices, with metal gates and high-+ dielectrics. Most recently, he has
been involved in the research and process development for monolithic inte-
gration of photonic devices (e.g., waveguides, modulators, and Germanium
photo-detectors) with CMOS, as well as, packaging process development and
integration to enable Silicon Nanophotonics technology for high-speed data
transfer applications. He has published more than 63 technical publications and
holds 60 patents in the field of microelectronic device design and fabrication
and received the George E. Smith Award by the IEEE Electron Devices Society
in 2003 and 2007. He is currently a Member of the American Vacuum Society.

3400311

Tymon Barwicz was born in Warsaw, Poland, in
1977. He received the B.Eng. degree in engineer-
ing physics from the Ecole Polytechnique de Mon-
treal, Montreal, QC, Canada, in 2000, and a joint
M.Sc./Ph.D. degree in materials science and engi-
neering from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 2005. His doc-
toral dissertation focused on accurate nanofabrication
techniques for strong-confinement microphotonic de-
vices.

From 2005 to 2006, he was a Postdoctoral Asso-
ciate at MIT where he leads nanofabrication of silicon photonic reconfigurable
add-drop multiplexers. He joined the IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY, USA, in 2006. From 2006 to 2010, he worked
on shape and dimensional control of sub-10-nm silicon nanowires as well as
their applications to FETs, NEMS and photovoltaics. He currently leads silicon
nanophotonic packaging research at IBM. His current research interests include
encompasses design, fabrication, and assembly of low-cost interfaces between
optical fibers and nanophotonic waveguides as well as their high-volume inte-
gration with microelectronic packaging.

Solomon Assefa (M’06-SM’13) received the B.S. degree in physics in 2001,
the B.S. degree in EECS in 2001, the M.S. degree in EECS in 2001, and the
Ph.D. degree in 2004 all from the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA.

He is a Research Scientist at the IBM T. J. Watson Research Center Yorktown
Heights, NY, USA. He was involved in nanophotonics technology for optical
interconnects, with responsibilities spanning research, development, and tech-
nology transfer to commercial foundry. His research contributions include high-
speed optical detectors, nanostructured platforms for biosensing, and quantum
information processing. He has coauthored more than 40 scientific articles,
has 40 patents, and has appeared as a Guest Speaker at numerous conferences
worldwide. He is a Member of the Optical Society of America and the Amer-
ican Physical Society. He has served as the Committee Chair and a Workshop
Organizer for various conferences including the Optical Fibers Conference and
Conference on Lasers and Electro-Optics.

Dr. Assefa received several awards including the Technical Accomplishment
Award, the Corporate Recognition Award, and several Invention Achievement
Awards from IBM. He was named one of the World’s Top Young Innovators
under 35 and received the TR35 Award by MIT’s Technology Review in 2011.
He was honored by the World Economic Forum as a Young Global Leader in
2013.

Steven M. Shank received the B.S. degree in physics from the State Univer-
sity of New York, Binghamton, NY, USA, in 1986, and the Ph.D. degree in
optical engineering from the University of Rochester, Rochester, NY, in 1993.
He is a Senior Engineer in the Microelectronics Division of the Systems and
Technology Group at IBM, Essex Junction, VT, USA, and has been with IBM
since 1999. His research interests include various aspects of semiconductor
manufacturing including process design, development and integration, device
and yield characterization, and technology transfer. He has made significant
contributions to the manufacturability of Gate Dielectrics, Embedded DRAM,
SRAM, CMOS, RF-CMOS, ASICs, and silicon photonics. He holds 35 U.S.
patents.

Carol Reinholm was born in Detroit, MI, USA, in 1957. She received the B.S.
degree in chemistry from the Lawrence Institute of Technology, Southfield, MI,
in 1979, and attended graduate classes in materials science at UVM, Burlington,
VT, USAin 1981 and 1982. As aretired IBM process/characterization Engineer,
she returned to IBM Burlington in 2009 as a Contractor working with Yorktown
Research.



3400311

John Ellis-Monaghan received the Ph.D. degree in electrical engineering from
N. C. State University, Raleigh, NC, USA, in 1995. He has worked and published
papers on DRAM, SRAM, high speed logic, CMOS imager, RF SOI, high-
voltage devices, SiGe BiCMOS, and silicon photonics while working with
IBM’s Specialty Foundry Group. He holds more than 100 U.S. patents. He is
currently a Senior Technical Staff Member with IBM’s Systems and Technology
Group in Essex Junction, VT, USA.

Edward Kiewra received the Ph.D. degree in chemical engineering from the
Rensselaer Polytechnic Institute, Troy, NY, USA, and joined IBM’s Microelec-
tronics division in 1988 where he developed III-V processes for MESFET and
laser devices. He was at IBM’s Advanced Semiconductor Development Center
(ASTC) in East Fishkill, NY, on 200-mm Si logic and DRAM process integration
and at the IBM Ziirich Research Laboratory on high-power 980-nm AlGaAs
pump diodes. Upon returning to the US, he managed ASTC’s 200 mm and
SRDC’s 300 mm Testing and Characterization Departments from 2000, when
he transferred to IBM’s Yorktown Research Laboratory and helped develop
record I,,, GaAs MOSFET’s and buried channel HEMT structures. His current
focus is on silicon photonics integration at IBM’s manufacturing facilities in
Burlington, VT, USA. He is an author of more than 20 patents, and teaches
geometric algebra for physical applications in electronics and optics.

Swetha Kamlapurkar received the Bachelor of Technology degree in metal-
lurgy and materials technology from Jawaharlal Nehru Technological Univer-
sity, Andhra Pradesh, India, in 2005, and the M.Sc. degree in materials science
and engineering from the Missouri University of Science and Technology, Rolla,
MO, USA, in 2008. She joined as an Etch Process Engineer with the Materials
Research laboratory at IBM, Yorktown Heights, NY, USA. Her research inter-
ests include various aspects of semiconductor manufacturing including process
development, and integration, and device and yield characterization. In 2011,
she joined Silicon Photonics Group as a Development Engineer. She has made
significant contributions to the integration and manufacturability of CMOS with
Germanium and stress engineering of films in silicon Photonics. She is currently
working on fabrication and process development of optical fibers and nanopho-
tonic waveguides as well as their high-volume integration with microelectronic
packaging.

Chris M. Breslin received the B.S. degree in computer science and applied
mathematics and the M.S. degree in nanoscale science and engineering from
SUNY Albany, NY, USA, in 2005 and 2011, respectively. His master’s thesis
project consisted of developing a model to determine the effects of secondary
electron emission characteristics on charged matter beam induced depositions.
He currently holds a position at the IBM T. J. Watson Research Center supporting
advanced research projects through TEM preparation and TEM preparation
development techniques.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 4, JULY/AUGUST 2015

William M. J. Green (M’03—-SM’13) received the B.Sc. degree in engineering
physics from the University of Alberta, Edmonton, AB, Canada, and the Ph.D.
degree in electrical engineering from the California Institute of Technology,
Pasadena, CA, USA, in 2005. He is currently the Manager of the Silicon Inte-
grated Nanophotonics Group at the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. His current research interests include encompass
design and enablement for optical devices and integrated optical electronic sys-
tems, in support of next-generation high-speed optical interconnects. In addition,
his work has extended the silicon photonic integrated circuit platform to the gen-
eration and processing of midinfrared optical signals, for various applications
in molecular spectroscopy, environmental sensing, and medical diagnostics. He
received the 2012 IBM Corporate Award, and the 2012 IEEE Photonics Society
Young Investigator Award. He has served on the technical organizing commit-
tees for numerous OSA and IEEE conferences. He is a Member of the OSA.

Wilfried Haensch (M’05-SM’06-F’12) received the
Ph.D. degree in 1981 from the Technical University
of Berlin, Berlin, Germany, in the field of theoret-
ical solid-state physics. He started his career in Si
technology in 1984 at SIEMENS corporate research
Munich. There he worked on high-field transport in
MOSFETs. From 1990 to 2001, he worked on vari-
ous aspects in DRAM technology. This covered the
development of the quarter micron 64M generation to
the manufacturing of the 256M at the 110-nm node at
INFINEON’s manufacturing site in Richmond, VA,
USA. In 2001, he joined the IBM TJ Watson Research Center to lead a group
for novel devices and applications. In this function, he was responsible for the
exploration of device concepts for future technology nodes and new concepts
for memory and logic circuits, including 3-D integration. He is currently re-
sponsible for post CMOS device solution and Si technology extensions. This
includes carbon electronics for RF and digital applications, optical and electrical
material properties of graphene and carbon nanotubes, and CMOS integrated Si
nanophotonics. He is the author of a text book on transport physics and an au-
thor/coauthor of more than 100 publications. He received the Otto Hahn Medal
for outstanding Research in 1983.

Yurii A. Vlasov (M’07-SM’07-F’15) is a Manager
at IBM Research. For 12 years at IBM, he lead the
development of Silicon Nanophotonics project start-
ing from its initial exploratory research stage up to
manufacturing and product development. He served
as a Company-Wide Strategist focused on the long-
term vision of nanophotonics aligned with the IBM
product division roadmap. He is a Fellow of both the
OSA and the APS. He received several IBM Out-
standing Achievement Awards, the “Best of IBM”
Award and the IBM Corporate Award, as well as was
named “Scientist of the Year” by the Scientific American journal.

i _




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


