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Abstract—We review the physics underlying the process of spon-
taneous emission, with a special focus on spontaneous emission into
a resonator mode. We define the mode volume, verify the funda-
mental modal dimensions, present the spectral mode profile, the
coherence time, the Q-factor, the Füchtbauer–Ladenburg equa-
tion, and the Purcell factor, and discuss their influence on different
types of lasers. We obtain the relation between peak emission cross
section, radiative lifetime, and emission linewidth. By interpreting
spontaneous emission as stimulated emission driven by vacuum
fluctuations, we derive the spontaneous-emission rate into a res-
onator mode and establish physical expressions for the fractions
of spontaneous emission and total decay from the upper laser level
into this mode. Furthermore, we discuss coupling of the atomic sys-
tem with the coherent field inside a lasing resonator mode, resulting
in the formation of a Mollow triplet, and demonstrate that it leads
to a reduction of the spontaneous-emission rate into a coherently
occupied resonator mode by a factor of 2.

Index Terms—Lasers, optical resonators, laser modes, lumines-
cence, spontaneous emission.

I. INTRODUCTION

THE performance of lasers is often described by the laser
rate equation, in which two processes that determine the

number of coherent photons inside the laser resonator are con-
sidered, namely the stimulated-emission rate into the lasing res-
onator mode and the photon-decay rate out of this mode due
to intrinsic resonator losses and outcoupling through the res-
onator mirrors. Frequently neglected in the laser rate equation
is the photon source term that initializes laser operation, namely
the spontaneous-emission rate into the lasing resonator mode.
This approximation provides a simple and intuitive picture of
how a continuous-wave (cw) laser operates: The laser thresh-
old, which occurs at the point where the gain equals the losses,
induces a sharp transition, above which the laser resonator fills
with coherent photons in linear dependence on the pump rate
of the upper laser level, whereas the inversion remains clamped
to its threshold value. However, omission of the spontaneous-
emission rate does not allow one to understand and quantify the
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coherence of a laser, its Q-factor and linewidth, how the laser
operation is initialized, how the laser threshold depends on de-
cay channels from the upper laser level i) at other transitions,
ii) non-radiatively, and iii) into other optical modes, nor how
threshold-less lasing can occur in micro-resonators.

In this paper, we review the physics underlying the process
of spontaneous emission, with a special focus on spontaneous
emission into a resonator mode. In a straight-forward manner
we demonstrate that spontaneous emission can be interpreted
as stimulated emission driven by the one vacuum photon per
optical mode and polarization. We define the mode volume and
present the relationship between spectral mode profile, coher-
ence time, and Q-factor. Of importance for understanding spon-
taneous emission into a resonator mode is the derivation of
the fundamental modal dimensions. We then obtain the relation
between the radiative lifetime and the emission cross section,
called the Füchtbauer–Ladenburg equation, introduce the Pur-
cell factor to this equation, and discuss its influence on different
types of lasers. We derive the relation between peak emission
cross section, radiative lifetime, and emission linewidth and
show that semiconductor and solid-state laser materials exhibit
a similar product of radiative lifetime and peak emission cross
section, because the atomic de-coherence of the excited state
is on the same order of magnitude in both gain materials. We
derive the spontaneous-emission rate into a resonator mode and
establish physical expressions for the fractions of spontaneous
emission and total decay from the upper laser level into this
mode. Furthermore, we discuss coupling of the atomic system
with a coherently occupied resonator mode, resulting in the
splitting of the combined energy states into dressed states and
occurrence of four spectrally separated emission lines, which at
large coherent photon numbers form a Mollow triplet. For the
first time, we show that this interaction reduces the spontaneous-
emission rate into a coherently occupied resonator mode by a
factor of two. We derive a novel expression for the effective
spontaneous-emission cross section.

All phenomena are described in a coherent sequence and a
self-consistent notation. The spectroscopic foundation laid in
this paper will allow us to extend, in the same self-consistent
notation, the laser rate equation by including the photon source
term, thereby establishing a refined and more complete descrip-
tion of the cw laser [1].

II. VACUUM PHOTON AND SPONTANEOUS EMISSION

We interpret spontaneous emission of photons from upper
to lower laser level as stimulated emission driven by vacuum
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fluctuations. Since vacuum fluctuations create energy only
within the related time uncertainty interval, they trigger only
spontaneous emission [2]. Spontaneous absorption would lead
to a long-lasting creation of energy, thereby violating the uncer-
tainty principle [3], [4].

We assume that light at frequency ν propagates with speed
c = c0/nr (ν), where c0 is the speed of light in vacuum, in
the active medium of refractive index nr (ν), which homoge-
neously fills the mode volume Vmode of the resonator. With the
wavenumber k and wavelength λ in the active medium,

k

2π
=

1
λ

=
ν

c
(1)

when taking into account that in a 3-D Hohlraum resonator each
mode extends over the round-trip length, i.e., forward (k) and
backward (−k) propagating waves belong to the same mode,
and the same mode volume Vmode is shared by two modes with
orthogonal polarizations, in free space the mode density M(ν)
per unit volume up to the frequency ν and the spectral mode
density M̃(ν) are derived by the volume integral over the whole
k-sphere:

M(ν) = 2
∫ k

0

∫ π

0

∫ 2π

0

d3k′

(2π)3 = 2
∫ ν

0

∫ π

0

∫ 2π

0

d3ν ′

c3

=
4π

c3

∫ ν

0

∫ π

0
ν ′2 sin(ϑ)dϑdν ′ =

8πν3

3c3

⇒ M̃(ν) =
dM(ν)

dν
=

8πν2

c3 . (2)

In this paper, all parameters that are defined per frequency
interval, i.e., in units of the parameter divided by the frequency
unit, are denoted by a tilde.

Exploiting Einstein’s rate-equation description [2] of black-
body radiation, the radiative lifetime τ21,rad and rate constant or
Einstein coefficient A21 of spontaneous emission are connected
to the Einstein coefficient B21 of stimulated emission by

1
τ21,rad

= A21 =
8πhν3

c3 B21 = M̃(ν)hνB21 (3)

where h is Planck’s constant. Interpreted as stimulated emission
triggered by the vacuum spectral energy density ũ0(ν) generated
by the number ϕ0 of vacuum photons of energy hν per mode,

ũ0(ν) = M̃(ν)hνϕ0 , (4)

the spontaneous-emission rate constant becomes

1
τ21,rad

= A21 = ũ0(ν)B21 = M̃(ν)hνϕ0B21 . (5)

By comparison of (3) and (5) one obtains a fundamental result
of quantum electrodynamics that

ϕ0 = 1 (6)

vacuum photon is present per mode as a result of vacuum fluc-
tuations. In the present derivation, this result obtains from the
information contained in Einstein’s equation (3), see, e.g., Ref.
[5]. The spectrum of blackbody radiation obeys Planck’s equa-
tion [6], because (6) holds true.

III. RESONATOR MODES

In this section, we will define the mode volume of the Gaus-
sian resonator mode, introduce its spectral mode profile, and
derive the fundamental modal dimensions.

A. Mode Volume and Spatial Photon Density

For an optical resonator of geometrical length � and the
Gaussian TEM00 beam with beam waist w0 as the resonator
mode, the mode volume over which this resonator mode is dis-
tributed is

Vmode = �πw2
0 . (7)

Vmode is defined in the following way. The normalized spa-
tial photon distribution function ξ(r, z) describing the resonator
mode is

ξ(r, z) =
1

Vnorm

w2
0

w2(z)
e
− 2 r 2

w 2 ( z )

with w(z) = w0

√
1 +

z2

z2
R

(8)

where w(z) is the beam radius at position z along the resonator
axis, w0 is the beam waist at position z = 0, zR = πw2

0/λ is the
Rayleigh range, and r and z are the radial and axial coordinate,
respectively. The effective normalizing volume then is

Vnorm =
∫ �

0

∫ ∞

0

w2
0

w2(z)
e
− 2 r 2

w 2 ( z ) 2πrdrdz=
1
2
πw2

0 �=
1
2
Vmode .

(9)
Thus, a photon density corresponding to ϕ photons in such a

resonator mode is given by

ϕξ(r, z) =
ϕ

Vnorm

w2
0

w2(z)
e
− 2 r 2

w 2 ( z ) =
2ϕ

Vmode

w2
0

w2(z)
e
− 2 r 2

w 2 ( z ) .

(10)
All energy densities, the population densities N2 and N1 of

upper and lower laser level, respectively, as well as all rates con-
sidered in this work are photon-distribution averages which are
defined, e.g., by calculating the average upper-level population
density N2 from its spatial distribution N2(r,z):

N2 =
∫ �

0

∫ ∞

0
N2(r, z)ξ(r, z)2πrdrdz. (11)

Consequently, the average photon density of the photon dis-
tribution ϕξ(r, z) obtains as
∫ �

0

∫ ∞

0
ϕξ(r, z)ξ(r, z)2πrdrdz=

∫ �

0

∫ ∞

0
ϕξ2(r, z)2πrdrdz

= ϕ
1

�2λ
arctan

(
�λ

πw2
0

)
≈ ϕ

1
πw2

0 �
=

ϕ

Vmode
, (12)

showing explicitly that the average resonator photon density is
the number of photons per mode volume Vmode . The approxi-
mation of the arctan is valid for short resonators with weakly
diverging beams, i.e., in paraxial approximation, and an equal-
ity for an axially constant beam radius, e.g., in case of a guided
mode in a waveguide that can be approximated by a collimated
Gaussian distribution.
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B. Spectral Mode Profile, Coherence Time, and Q-factor

A number ϕ(t0) of photons at frequency ν0 that are present
inside a resonator at the initial time t0 decay out of the resonator
with time t as a result of resonator losses which are quantified by
the photon decay time τc (where the index c stands for “cavity”,
which means the resonator):

ϕ(t) = ϕ(t0)e−t/τc for t ≥ t0 = 0. (13)

Fourier transformation of the amplitude of this exponential de-
cay to frequency space and calculation of its absolute value
squared,

γ̃c(ν) =
1
τc

∣∣∣∣∣
1√

ϕ(t0)

∫ ∞

t0

√
ϕ (t)e−i2π (ν−νc )tdt

∣∣∣∣∣
2

=
1
τc

∣∣∣∣ 2
π

1
i4(ν − νc) + (πτc)−1

∣∣∣∣
2

=
1

π2τc

1
4(ν − νc)2 + (2πτc)−2 , (14)

provides the spectral intensity distribution of this emission as a
function of frequency ν. It has a normalized Lorentzian spectral
profile

γ̃c(ν) =
2
π

Δνc

4(ν − νc)2 + Δν2
c

with
∫

γ̃c(ν)dν = 1 (15)

which is centered at frequency νc and of full-width-at-half-
maximum (FWHM) linewidth

Δνc =
1

2πτc
=

1
πτ coh

c

. (16)

As illustrated in Fig. 1, the photon decay time τc is half the
coherence time τ coh

c of light emitted from the resonator, which,
unlike an exponential decay, is defined over the interval from
t = −∞ to t = ∞ [7].

The quality of an optical resonator is expressed by its intrinsic
Q-factor, originally introduced as the “coil dissipation constant”
of a resonant electric circuit [8] and later generalized [9] as the
energy stored in the resonator, Estored , divided by the energy
lost per oscillation cycle, Elost ,

Qc := 2π
Estored(t)
Elost(t)

= 2π
ϕ(t)

− 1
νc

d
dt ϕ(t)

= 2πνcτc (17)

where E = hνcϕ. Equations (17) and (16) relate the Q-factor
and photon decay time to the linewidth, which can be mea-
sured by injecting continuous-wave (cw) light into the passive
resonator, thus establishing a steady state in which the injected
energy Einjected = Elost = Estored/(νcτc), and observing its
spectral transmission

Qc = 2π
Estored

Einjected

∣∣∣∣
cw

= 2π
ϕ

− 1
νc

δϕ

δt

∣∣∣∣∣∣∣∣
cw

= 2πνcτc =
νc

Δνc
.

(18)

δϕ is the photon number lost during the time interval δt and
replaced by injecting photons. The injection must take place via

Fig. 1. Comparison of mathematical definitions of (a) photon decay time τc

and (b) coherence time τ coh
c .

an existing loss channel of the resonator, e.g., one of the res-
onator mirrors, in order not to alter its Q-factor, and the injected
signal must be optically isolated from its source to avoid feed-
back between the light-source resonator and the resonator under
investigation.

Fourier transformation according to (14) and its Fourier back-
transformation unambiguously transform the amplitudes of an
exponential decay in the time domain and a Lorentzian line
function in the frequency domain into each other, thereby re-
lating the exponential decay time to the Lorentzian linewidth
according to (16), i.e., the underlying physical process is inde-
pendent of its description in frequency or time domain. Hence,
the right-hand side of (18) serves as an equivalent definition of
the Q-factor. In other words, the Q-factor of a passive resonator
does not change with the way we feed light into it or the way
we observe the outcoupled light. The Q-factor solely depends
on the resonator losses.

Accordingly, in a passive Fabry–Pérot resonator [10] with a
free spectral range of

ΔνFSR =
c

2�
=

1
tRT

(19)

where tRT is the photon round-trip time in the resonator, each
transverse-fundamental resonator mode with its longitudinal-
mode index q, centered at frequency νq , where ν0 = c/λ0 =
c/(2�) represents the lowest frequency, has an individual photon
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decay time of τq (νq ) given by

1
τq (νq )

= − c

2�
ln

{[
1 − LRT(νq )

][
1 − Tout(νq )

]}
, (20)

where LRT and Tout quantify the intrinsic round-trip losses
and the out-coupling losses at the frequency νq , respectively. τq

results in a Q-factor of Qq according to (17) or (18), a linewidth
of Δνq according to (16), and a finesse of

F (νq ) =
ΔνFSR

Δνq
=

ΔνFSR

νq
Qq =

λq

2�
Qq =

Qq

q + 1
. (21)

Each mode exhibits a normalized Lorentzian spectral profile
equivalent to (15),

γ̃q (ν) =
2
π

Δνq

4(ν − νq )2 + Δν2
q

. (22)

The sum over all longitudinal modes results in a spectral airy
function [11], [12]. The non-averaged spectral mode density of
a single resonator mode with longitudinal-mode index q is given
by

M̃q (ν) =
γ̃q (ν)
Vmode

. (23)

In case the Lorentzian line γ̃q (ν) is narrow compared to the
free spectral range of the resonator, the spectral mode density
averaged over the free spectral range obtains as

M̃mode(ν) ≈ 1
ΔνFSR

∫ νq +ΔνF S R /2

νq −ΔνF S R /2
M̃q (ν)dν

=
1

ΔνFSR

∫ νq +ΔνF S R /2

νq −ΔνF S R /2

γ̃q

Vmode
dν

≈ 1
ΔνFSR

1
Vmode

. (24)

In average, there exists one mode, hence also one vacuum
photon ϕ0 , per polarization state and free-spectral range ΔνFSR .
Whereas M̃mode (ν) is only approximately equal to the finite
integral in (24), which cuts off the wings of the Lorentzian
profile γ̃q (ν) of the single resonator mode of (23), the missing
amount is exactly compensated by the wings of other resonator
modes that reach into this free spectral range, hence the very
left-hand and right-hand terms of (24) are equal to each other.
Consideration of the solid angle of the resonator modes,

ΔΩmode = 2 × 2π [1 − cos (θ)] ≈ 4π

[
1 −

(
1 − 1

2
θ2

)]

= 2πθ2 = 2
λ2

πw2
0

= 2
c2

ν2

1
πw2

0
, (25)

where θ is the divergence angle of the Gaussian beam and the
factor of 2 takes both propagation directions into account, and
executing the volume integral of (2) only over this solid angle,

Mmode =
∫ ν

0

∫
ΔΩm o d e

d3ν ′

c3 =
∫ ν

0

∫
ΔΩm o d e

ν ′2dΩdν ′

c3

=
∫ ν

0

ν ′2ΔΩmodedν ′

c3 = 2
ν

c

1
πw2

0
, (26)

results in the same spectral mode density,

M̃mode(ν) =
dMmode

dν
=

2
c

1
πw2

0
=

2�

c

1
πw2

0 �
=

1
ΔνFSR

1
Vmode

,

(27)
thereby proving that in (24) the very left-hand and right-hand
terms are indeed equal.

C. Fundamental Modal Dimensions

When taking into account that in a 1-D linear resonator of
length � each mode extends over the round-trip length 2�, i.e.,
forward (k) and backward (−k) propagating waves belong to the
same mode, and the same mode volume is shared by two modes
with orthogonal polarizations, the 1-D mode density M 1D (ν)
per unit length up to a frequency ν and the 1-D spectral mode
density M̃ 1D (ν) along the resonator direction are given by

M 1D(ν) = 2
∫ k

−k

dk′

2π
= 2

ν∫

0

2dν ′

c
=

4ν

c

⇒ M̃ 1D(ν) =
dM 1D(ν)

dν
=

4
c

=
2

ΔνFSR

1
�
. (28)

Although the volume integral in (2) ranges only from 0 to
k, the integrated sphere includes negative and positive k val-
ues in all three dimensions. To cover the equivalent k-space,
the 1-D integral in (28) must range from −k to k. By inserting
(19) into the right-hand side of (28), we find that two modes
with orthogonal polarizations exist per free spectral range of
the resonator of length �, in agreement with (24). When con-
sidering the frequency range up to a maximum frequency ν, for
transverse-fundamental-mode operation the 3-D spectral mode
density inside the resonator amounts to

M̃ 1D(ν)
πw2

M

=
4
c

1
πw2

M

=
2

ΔνFSR

1
�

1
πw2

M

= M̃(ν) =
8πν2

c3 ,

(29)
allowing us to determine the fundamental modal area πw2

M and
radius wM that are, in average, occupied by two resonator modes
with orthogonal polarizations:

πw2
M =

M̃ 1D(ν)
M̃(ν)

=
c2

2πν2 =
λ2

2π
⇒ wM =

λ√
2π

. (30)

Inserting this result into (25) yields

ΔΩmode

4π
=

πw2
M

πw2
0

, (31)

i.e., a mode confined to a beam waist w0 that equals the fun-
damental modal radius wM leads to divergence of the light
propagation, in both directions, into the whole sphere, whereas
a larger beam waist results in an accordingly smaller divergence.

The fundamental modal length that allows these two modes
with orthogonal polarizations to exist inside the linear resonator
equals one half sine cycle of light,

�M =
λ

2
. (32)
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Physically interpreted, it encompasses one complete sine cy-
cle over the round-trip length 2�, leading to constructive in-
terference of the wave with itself. As expected, with (19) the
fundamental modal length results in a fundamental free spectral
range of

ΔνFSR ,M =
c

2�M
= ν. (33)

The fundamental modal volume VM that two linear-resonator
modes with orthogonal polarizations would occupy if this vol-
ume did not spatially overlap with the volumes of any other
modes then obtains with (30) and (32) as

VM = �M πw2
M =

λ3

4π
. (34)

This result for the fundamental modal volume is independent of
the existence of a resonator, hence is the same as directly derived
from the mode density in free space of (2) and the fundamental
free spectral range of (33) by use of (1):

VM =
1

ΔνFSR ,M

2
M̃(ν)

=
λ3

4π
. (35)

If the volume Vmode is smaller than the fundamental modal
volume VM of (34), no resonator mode exists up to the maximum
frequency ν. If Vmode equals VM (ν), two orthogonal modes
exist. If Vmode is larger than this limit, the number of modes
and, hence, also the number of vacuum photons that, in average,
share the volume Vmode of the lasing resonator mode increases
stepwise to

ϕ0(Vmode) = 2
Vmode

VM (ν)
. (36)

These vacuum photons have largely different frequencies.
In a ring resonator, the round-trip length is identical to the

geometrical length �. Since forward and backward propagating
modes then represent different modes, the total 1-D mode den-
sity of (28) remains equal to 4/c. The free spectral range of a
ring resonator amounts to ΔνFSR(ring) = c/�, which is twice
the value of (19). Nevertheless, the result of (30) remains un-
changed, even for a unidirectional ring resonator, because both
the 1-D mode density of that resonator and the equivalent free-
space mode density, taking into account, e.g., only the positive
k-direction, i.e., integrating only over a half sphere in (2), are
both reduced by a factor of two. For the ring resonator, the fun-
damental modal length becomes equal to one wavelength, i.e.,
twice the value of (32). Therefore, the fundamental modal vol-
ume increases to twice that of a linear standing-wave resonator
of (34).

IV. TRANSITION CROSS SECTIONS AND EMISSION RATES

The strengths of emission from the upper and absorption
from the lower level of a transition can be described in terms
of the effective emission and absorption cross sections σe(ν)
and σa(ν), respectively, which are defined via the interaction of
light at frequency ν with spectral intensity Ĩ (ν, z) propagating

along the z direction and interacting with a gain medium:

dĨ (ν, z)
dz

= σe (ν) N2(z)Ĩ (ν, z)

dĨ (ν, z)
dz

= −σa (ν) N1(z)Ĩ (ν, z) . (37)

In an active medium with crystal-field splitting of upper
and lower electronic multiplets, σe(ν)/b2 = σa(ν)/b1 = σ(ν),
where b2 and b1 are the Boltzmann factors of upper and lower
crystal-field level of the specific transition at frequency ν, re-
spectively, and σ(ν) is the atomic cross section of this transition
(for simplicity, the degeneracies of the crystal-field levels are
assumed to be equal).

A. Füchtbauer–Ladenburg Equation and Purcell Factor

Spontaneous emission that is interpreted as stimulated emis-
sion triggered by the vacuum spectral energy density ũ0(ν), by
use of (5), gives rise to a spectral fluorescence power P̃f (ν)
generated per unit volume V of

dP̃f (ν)
dV

= −dN2

dt
hνρ̃f (ν) = B21 ũ0(ν)N2hνρ̃f (ν). (38)

The spectral fluorescence distribution ρ̃f (ν) is normalized to
∫

ρ̃f (ν)dν = 1. (39)

From the spectroscopic point of view, the same spectral fluores-
cence power P̃f (ν) or spectral fluorescence intensity Ĩf (ν) can
be regarded as a result of stimulated emission triggered by an
equivalent plane-wave spectral vacuum photon intensity Ĩ0(ν)
generated per unit length z, penetrating the area Axy , which, by
use of (37), can be expressed as

dP̃f (ν)
dV

=
∂P̃f (ν)
∂Axy∂z

=
dĨf (ν)

dz

= σe(ν)N2 Ĩ0(ν) = cσe(ν)N2 ũ0(ν). (40)

Equality of (38) and (40) yields

σe(ν) =
hν

c
B21 ρ̃f (ν). (41)

With (3), the emission cross section obtains as

σe(ν) =
1
c

1
τ21,rad

1
M̃(ν)

ρ̃f (ν). (42)

Exploiting (39) and (2) results in the Füchtbauer–Ladenburg
equation in free space, which relates the effective emission cross
section σe(ν) to the radiative lifetime τ21,rad :

1
τ21,rad

= A21 =
∫

cσe(ν)M̃(ν)dν =
8π

c2

∫
σe(ν)ν2dν.

(43)
Accordingly, with (23), (2), and (22) the spontaneous-

emission rate into a single resonator mode becomes
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1
τmode
21,rad

= Amode
21,rad =

∫
cσe(ν)M̃q (ν)dν =

∫
cσe(ν)

γ̃q (ν)
Vmode

dν

=
∫

cσe(ν)Fq (ν)M̃(ν)dν. (44)

Therein,

Fq (ν) =
M̃q (ν)
M̃(ν)

=
c3

8πν2

γ̃q (ν)
Vmode

=
c3

4π2ν2

1
Vmode

Δνq

4 (ν − νq )
2 + Δν2

q

(45)

quantifies the difference between the spontaneous-emission rate
into a single resonator mode and that into free space.

In the limit of an emitter with a very narrow linewidth,
Δνe → 0, if the resonator is tuned such that the center fre-
quency νq of one of its modes matches the frequency νe of the
peak cross section, the integral in (44) delivers a value different
from zero only at frequencies ν ≈ νq = νe , equivalent to wave-
lengths λ ≈ λq = λe in the active medium, hence by use of (18)
we can approximate (45) as

Fq (ν)
Δνe →0

ν=νq =νe≈ c3

4π2ν2
q

1
Vmode

1
Δνq

=
c3

4π2ν3
q

1
Vmode

Qq = Fq (νq )

⇒ Fq (λq ) =
λ3

q

4π2

1
Vmode

Qq . (46)

Fq (νq ) and Fq (λq ) can be considered as a 1-D Purcell factor.
Adding up this factor in all three dimensions results in the
Purcell factor [13] that is defined for an emitter placed inside a
3-D hohlraum resonator:

3Fq (λq ) = FP (λq ) =
3λ3

q

4π2

1
Vhohlraum

Qq . (47)

The radiative decay into the single resonator mode of (44) is
then altered to

1
τmode
21,rad

=
∫

cσe(ν)Fq (ν)M̃(ν)dν

Δνe →0
ν=νq =νe≈

Fq (νq )
∫

cσe(ν)M̃(ν)dν = Fq (νq )
1

τ21,rad
. (48)

Inserting (46), (45), (35), and (36) into (48) displays the under-
lying physics:

1
τmode
21,rad

Δνe →0
ν=νq =νe≈ M̃q (νq )

M̃(νq )
1

τ21,rad
=

VM

2Vmode

2
π

Qq
1

τ21,rad

=
1

ϕ0(Vmode)
2
π

Qq
1

τ21,rad
. (49)

Compared to the spontaneous-emission rate 1/τ21,rad into
free space, the spontaneous-emission rate 1/τmode

21,rad into the sin-
gle resonator mode is, on the one hand, reduced by the factor
VM /(2Vmode), because out of the number ϕ0(Vmode) of vac-
uum photons that in average occupy the mode volume Vmode

only one triggers spontaneous emission into this mode. On the
other hand, 1/τmode

21,rad is enhanced by the factor Qq , the resonant
enhancement due to a high resonator quality, because the vac-
uum photon of this mode is better confined to the mode volume
Vmode by this factor. Only when the latter factor is larger than
the former, the spontaneous-emission rate into a single resonator
mode exceeds that into free space.

In the other limit, if the effective emission cross-section σe(ν)
varies insignificantly over the Lorentzian profile of the resonator
mode, Δνe 	 Δνq , (45) and (44) can be approximated as

Fq (νq )
Δνe >>Δνq≈ 1

M̃(νq )
1

ΔνFSR

1
Vmode

=
c3

8πν2
q

1
ΔνFSR

1
Vmode

, (50)

1
τmode
21,rad

=
∫

cσe (ν)
γ̃q (ν)
Vmode

dν

Δνe >>Δνq≈ cσe(νq )
Vmode

∫
γ̃q (ν)dν =

cσe(νq )
Vmode

. (51)

For certain lasers with narrow spectral luminescence
linewidth, Δνe 
 Δνq , e.g., far-infrared and sub-millimeter-
wave lasers [14], as well as for solid-state and semiconductor
lasers with resonator lengths that are not significantly longer
than the laser wavelength, � ≈ λe , leading to a large free spec-
tral range in (19), a short photon decay time τq in (20), and
an accordingly broad linewidth Δνq that can be on the order
of Δνe , see Fig. 2 (a), the integral in (44) must be considered,
and experimentally the resonator length must be adjusted, such
that νq equals the peak emission frequency νe , to ensure a large
spectral overlap between the two profiles σe(ν) and γ̃L (ν) of
the lasing resonator mode [15].

In bulk lasers with resonator lengths that are long compared
to the emission wavelength, � 	 λe , one finds an accordingly
small free spectral range in (19), a long photon decay time τq in
(20), and a narrow linewidth Δνq . In, e.g., rare-earth-ion-doped
near-infrared or visible solid-state lasers, phonon perturbation
of the excited-state wave function, resulting in a virtual decay,
as well as phononic re-distribution within the crystal-field mul-
tiplet, resulting in a real decay and re-population among the
individual crystal-field levels, lead to atomic de-coherence with
an atomic coherence time τ coh

atom . This decay occurs with a life-
time τatom = 1/2 τ coh

atom , on the time scale of a picosecond, thus
usually being significantly faster than the effective decay time
τ2,eff and the radiative lifetime τ21,rad of the excited state, as
well as the photon decay time τq in bulk lasers,

1
2
τ coh
atom = τatom 
 τ2,eff ,τ21,rad ,τq

⇒ Δνe =
1
2π

(
1

τatom
+

1
τ2,eff

)
≈ 1

2πτatom
	 Δνq , (52)

thereby forming a key linewidth broadening mechanism.
Consequently, with (16), one obtains Δνe 	 Δνq in (52),
hence the transition cross sections σe(ν) and σa(ν) are broader
than, and vary insignificantly over, the Lorentzian profile γ̃q (ν)
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Fig. 2. Overlap of Lorentzian-shaped emission-line spectral profile γ̃e (ν)
(red) with Lorentzian-shaped resonator-mode spectral profiles γ̃q (ν) (black),
normalized to the peak of the emission-line spectral profile, for a resonator with
nr = 1, λe = 1 μm, Δλe = 1 nm, Tout = 0.01, and LRT = 0, for resonator
lengths of (a) � = 1 × λe /2, showing the resonator mode with index q = 0 for
� (solid line) and detuning of � by ±0.15% (dotted and dashed lines), and (b)
� = 5000 × λe /2, showing the 31 resonator modes with mode indices around
q = 4999.

of the resonator mode, see Fig. 2 (b), such that (44) can be
approximated by (51).

B. Relation Between Peak Emission Cross Section, Radiative
Lifetime, and Emission Linewidth

For a single atomic emission line, centered at frequency νe ,
with a Lorentzian-shaped profile γ̃e (ν) of linewidth Δνe given
by (15), the emission cross section becomes

σe(ν) = σe(νe)
π

2
Δνe γ̃e(ν) = σe(νe)

Δν2
e

4(ν − νe)2 + Δν2
e

.

(53)
When assuming a narrow emission linewidth, Δνe,min 
 νe ,
resulting in a large peak cross section σe,max(νe), (43) yields

1
τ21,rad

Δνe <<νe=
8π

c2

∫
σe,max(νe)

π

2
Δνe,min γ̃e(ν)ν2

e dν

=
4π2ν2

e

c2 σe,max(νe)Δνe,min . (54)

Exploiting (16) and (1),

Δνe,min =
1

2πτ21,rad
=

c

λ2
e

Δλe,min (55)

where Δλe,min is the minimum emission linewidth in wave-
length units inside the active medium, one finds from (54) that
the largest possible peak cross section, called the natural emis-
sion cross section, equals the fundamental modal area of (30):

σe,max(νe) =
c2

4π2ν2
e τ21,rad

1
Δνe,min

=
c2

2πν2
e

=
λ2

e

2π
= πw2

M .

(56)
With (53) and (56), the integral emission cross section Σe , i.e.,
the area underneath the spectral emission-cross-section curve,
which is proportional to the product of peak emission cross
section and emission linewidth, is solely determined by the
radiative lifetime of spontaneous emission:

Σe =
∫

σe(νe)
π

2
Δνe γ̃e(ν)dν = σe(νe)

π

2
Δνe

= σe,max(νe)
π

2
Δνe,min =

c2

8πν2
e τ21,rad

. (57)

Consequently, the product of peak emission cross section and
radiative lifetime cannot exceed the value of

σe(νe)τ21,rad =
c2

4π2ν2
e

1
Δνe

=
λ4

e

4π2c

1
Δλe

≤ σe,max(νe)τ21,rad =
c2

4π2ν2
e

1
Δνe,min

=
λ4

e

4π2c

1
Δλe,min

. (58)

Transitions within the 4f sub-shell of rare-earth ions are par-
ity forbidden, leading to long radiative lifetimes on the order
of τ21,rad ≈ 10−3 s. Assuming a host material with a refrac-
tive index of nr = 2, resulting in c = c0/nr , and an emission
wavelength of λvac

e = 1 μm emitted from the material, re-
sulting in λe = λvac

e /nr = 500 nm, the emission linewidth ex-
pected from (55) would be as narrow as Δλe,min = λvac

e,min/nr =
2.6 × 10−19 m. From (56) one obtains a maximum peak emis-
sion cross section of σe ,max (λe) = 4.0× 10−14 m2. These values
would satisfy (58). However, in rare-earth-ion-doped solid-state
laser materials phonon perturbation of the excited-state wave
function as well as phononic re-distribution within the crystal-
field multiplet lead to atomic de-coherence with an atomic co-
herence time τ coh

atom according to (52) on the time scale of τ coh
atom

� 10−12 s, orders-of-magnitude faster than τ21,rad , resulting in
the peak emission cross section being decreased and the emis-
sion linewidth Δλe inside the active medium being increased
by a factor of

fσ =
Δνe,min

Δνe
=

Δλe,min

Δλe
=

σe(νe)
σe,max(νe)

τa t o m 
τ2 1 , r a d≈ τatom

τ21,rad

(59)
on the order of fσ ≈ 10−9 , thereby leaving the integrated emis-
sion cross section of (57) and, thus, the radiative lifetime τ21,rad
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unchanged. The fast atomic de-coherence significantly broad-
ens the emission linewidth to Δλe ≈ 0.5 nm, equal to Δλvac

e �
1 nm, and accordingly decreases the natural emission cross sec-
tion of (57) to σe(νe) ≈ 2 × 10−23 m2, thereby again satisfying
(58). Thus, the significantly smaller experimental peak emission
cross-sections observed in rare-earth-ion-doped host materials
compared to the natural emission cross section obtained from
(56) are not, as sometimes assumed, a direct consequence of the
long lifetimes due to the parity rule, but of the ratio between
these long lifetimes and the fast de-coherence of excited atomic
states, as quantified by (59).

The allowed inter-band transitions in III–V semiconduc-
tor materials as well as the allowed transitions in laser dyes
lead to significantly shorter radiative lifetimes on the order
of τ21,rad ≈ 10−7 s. Assuming that de-coherence of the ex-
cited states in these materials occurs at a similar time scale
of τ coh

atom � 10−12 s as in rare-earth-ion-doped materials, the
linewidth-broadening and peak-decreasing factor fσ is by a ratio
of 10−7/10−3 ≈ 10−4 smaller in the semiconductor materials,
leading to accordingly larger peak emission cross sections on
the order of σe ≈ 10−20 − 10−19 m2 in III–V semiconductor
materials, compared to σe ≈ 10−24 − 10−23 m2 in rare-earth-
ion-doped materials [16]. In fact, the product of peak emission
cross section σe(νe) and radiative lifetime τ21,rad in (58) is
similar in these different classes of materials [16], because the
de-coherence time is on the same order of magnitude. The situ-
ation is illustrated in a simplified manner in Fig. 3.

Taking the example of a host material, monoclinic potas-
sium double tungstate, that is known for providing compar-
atively large emission cross sections to rare-earth ions such
as Yb3+ [17], [18], its refractive index in the near-infrared
spectral region is nr ≈ 2, resulting in c ≈ 1/2c0 , and at the
central emission line of λvac

e = 981 nm, equal to λe =
490 nm in the active medium, the measured emission cross sec-
tion is σe(λe) ≈ 1.5 × 10−23 m2 , and the emission linewidth is
λvac

e � 4.0 nm, equal to Δλe ≈ 2.0 nm in the active medium.
The luminescence lifetime is τ2 ≈ 261 μs [19]. However, the
upper and lower state exhibit a crystal-field splitting into 3
and 4 crystal-field levels, respectively, resulting in 12 indi-
vidual crystal-field transitions. Within each crystal-field mul-
tiplet, the population density is thermalized by fast phononic
intra-multiplet transitions, resulting in a Boltzmann distribu-
tion. The radiative lifetime of spontaneous emission from up-
per to lower crystal-field multiplet reflects the decay on all
12 crystal-field transitions, whereas the area underneath the
central line at 981 nm occupies only ∼25% of the com-
plete emission spectrum [19]. Hence, assuming that the decay
from the upper crystal-field multiplet is entirely radiative, the
spontaneous-emission rate on the central line corresponds to a
radiative lifetime that is approximately four times the intrinsic
luminescence lifetime, τ21,rad ≈ 4τ2 ≈ 1.044 ms. Equivalent to
(55), Δλe ≈ 2.0 nm results in τatom ≈ 1.3 × 10−13 s, thereby
assuming that the measured emission linewidth is entirely
due to atomic de-coherence and additional inhomogeneous
linewidth-broadening mechanisms are negligible. Therefore,
fσ = τatom/τ21,rad ≈ 1.2 × 10−10 . The decrease in peak emis-

Fig. 3. Emission cross sections in a semiconductor and a rare-earth-ion-doped
material, calibrated to the natural emission cross section, as a function of fre-
quency detuning from the emission peak, calibrated to the FWHM linewidth
of the natural emission line of the rare-earth ion. For the purpose of clarity of
illustration in a single figure, it is assumed that the excited-state lifetime of
the semiconductor is only three times (instead of orders-of-magnitude) shorter
than that of the rare-earth ion, whereas the atomic de-coherence time is the
same for both excited states and only 10 times (instead of orders-of-magnitude)
shorter than the excited-state lifetime of the rare-earth ion. It results in fσ = 10
for the rare-earth ion, fσ = 3.33 for the semiconductor, and an experimentally
observed (real) peak emission cross section which is 3 times larger for the
semiconductor compared to the rare-earth ion. The arrows indicate the FWHM
linewidths. The areas underneath the natural and experimentally observed (real)
semiconductor emission lines are equal to each other. The same holds for the
areas underneath the two rare-earth-ion emission lines.

sion cross section leads to fσ = σe(λe)/σe,max(λe) = 1.5 ×
10−23 m2/3.8 × 10−14 m2 = 3.9 × 10−10 , and the broadening
of emission linewidth results in fσ = Δλe,min/Δλe = 2.4 ×
10−19 m/2.0 × 10−9 m = 8.2 × 10−9 . Consequently, the ex-
perimental values of σe(λe) ≈ 1.5 × 10−23 m2 , τ21,rad ≈
1.044 ms, and Δλe ≈ 2.0 nm satisfy (58) only with an error
of a factor of five, which may be owing partly to experimental
inaccuracies when measuring these values, a spectral overlap of
the central emission line with other nearby crystal-field transi-
tions, additional inhomogeneous linewidth broadening, a certain
amount of non-radiative decay from the upper crystal-field mul-
tiplet, which decreases the intrinsic luminescence lifetime from
its radiative value to the measured value of τ2,eff , and consider-
ing only one of the three directions of the optical indicatrix.

V. SPONTANEOUS EMISSION INTO A RESONATOR MODE

In this section, we derive physical expressions for the frac-
tions βmode of spontaneous-emission rate and β of upper-state
decay rate into a resonator mode, obtain a simple expression for
the spontaneous-emission rate into this mode, and identify the
time it takes for a photon to be spontaneously emitted into this
mode.
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A. The Fraction βmode of Spontaneous-Emission Rate Into the
Resonator Mode

In the presence of a resonator, luminescence can be emitted
into the transverse-fundamental longitudinal resonator modes.
With (44), the radiative lifetime describing this part of the emis-
sion is given by

1

τ tf−modes
21,rad

= 2
∑

q

∫
cσe(ν)M̃q (ν)dν

= 2
∑

q

∫
cσe(ν)

γ̃q (ν)
Vmode

dν. (60)

If the effective emission cross section σe(ν) varies insignifi-
cantly over the Lorentzian profile γ̃q (ν) of each resonator mode,
Δνe 	 Δνq , this part can be approximated by

1

τ tf−modes
21,rad

Δνe 	Δνq≈ 2
∑

q

cσe(νq )
Vmode

∫
γ̃q (ν)dν =2

∑
q

cσe(νq )
Vmode

.

(61)
The mode density within the solid angle ΔΩ of (25), which is

occupied by the transverse-fundamental longitudinal resonator
modes, is given by (27). Consequently, the radiative lifetime
describing the emission of luminescence into this solid angle in
free space would have amounted to

1
τΔΩ
21,rad

= 2
∫

cσe(ν)M̃mode(ν)dν

= 2c
1

ΔνFSR

1
Vmode

∫
σe(ν)dν. (62)

If the effective emission cross section σe(ν) varies insignifi-
cantly over the Lorentzian profiles of many, and eventually all,
resonator modes, Δνe 	 ΔνFSR 	 Δνq , this lifetime can be
approximated by

1
τΔΩ
21,rad

Δνe 	ΔνF S R 	Δνq≈ 2c
1

ΔνFSR

1
Vmode

∑
q

σe(νq )ΔνFSR

= 2
∑

q

cσe(νq )
Vmode

Δνe 	Δνq≈ 1

τ tf−modes
21,rad

. (63)

If the resonator is of such a nature that it suppresses, by
an appropriate photonic structure, emission into some of the
external modes with a corresponding spectral mode density of
M̃suppr (ν), which would otherwise have resulted in a radiative
lifetime given by

1
τ suppr
21,rad

=
∫

cσe(ν)M̃suppr(ν)dν, (64)

for luminescence that is emitted into the 3-D space outside the
solid angle ΔΩ of the transverse-fundamental resonator modes
only a spectral mode density of

M̃ext(ν) = M̃(ν) − M̃suppr(ν) − 2M̃mode(ν) (65)

is available and, with (43), (64), and (62), this part yields a

radiative lifetime of

1
τ ext
21,rad

=
∫

cσe(ν)M̃ext(ν)dν

=
1

τ21,rad
− 1

τ suppr
21,rad

− 1
τΔΩ
21,rad

. (66)

Only under the condition Δνe 	 ΔνFSR 	 Δνq , it can be ap-
proximated by

1
τ ext
21,rad

Δνe 	ΔνF S R 	Δνq≈ 1
τ21,rad

− 1
τ suppr
21,rad

− 1

τ tf−modes
21,rad

.

(67)
Thus, the radiative lifetime of an excited state inside the res-
onator is given by

1
τ res
21,rad

=
1

τ ext
21,rad

+
1

τ tf−modes
21,rad

Δνe 	ΔνF S R 	Δνq≈ 1
τ21,rad

− 1
τ suppr
21,rad

M̃ s u p p r (ν )=0
=

1
τ21,rad

.

(68)

Hence, the radiative lifetime on the transition from upper to
lower state of a gain medium inside the resonator is the same
as the one of this medium in free space only if the emission
spectrum is very broad compared to the free spectral range of
the resonator, having itself narrow resonances, and emission into
none of the external modes is suppressed.

Taking these considerations into account, the fraction of spon-
taneous emission from upper to lower state that is coupled into
a specific mode and polarization of the resonator is correctly
defined as

βmode :=
1
/

τmode
21,rad

1
/

τ res
21,rad

≤ 1. (69)

If all external resonator modes are suppressed and emission
is possible only into the longitudinal, transverse-fundamental
resonator modes, which are further restricted to one polariza-
tion, by use of (44) and (60) the fraction βmode of the mode
with longitudinal-mode index m = Integer(2�/λ − 1/2) that
is closest to the peak of the spontaneous-emission line, (69)
then becomes

βmode = 2
1
/

τmode
21,rad

1
/

τ tf−modes
21,rad

=
∫

σe(ν)γ̃m (ν)dν∑∞
q=0

∫
σe(ν)γ̃q (ν)dν

≤ 1.

(70)
Assuming that the emission line is of Lorentzian shape, by

inserting (53), the overlap integral of (44) takes the analytical
form
∫

cσe(ν)
γ̃q (ν)
Vmode

dν =
cσe (νe)
Vmode

Δνe(Δνq + Δνe)
4(νe − νq )2 + (Δνq + Δνe)2 .

(71)
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With (60), (71), (19), and (57) we obtain

1
2

1

τ tf −m odes
21 ,rad

=
∞∑

q=0

∫
cσe (ν)

γ̃q (ν)
Vm ode

dν

=
cσe (νe )
�πw2

0

∞∑
q=0

Δνe (Δνq + Δνe )
4(νe − νq )2 + (Δνq + Δνe )2

= 2ΔνFSR
σe (νe )
πw2

0

∞∑
q=0

Δνe (Δνq + Δνe )
4(νe − νq )2 + (Δνq + Δνe )2

�→∞
= 2

σe (νe )
πw2

0
lim

Δ νF S R →0

∞∑
q=0

Δνe (Δνq + Δνe )ΔνFSR

4(νe − νq )2 + (Δνq + Δνe )2

= 2
σe (νe )
πw2

0

∫
Δν2

e

4(νe − ν)2 + Δν2
e

dν

= 2
σe (νe )
πw2

0

π

2
Δνe = 2

Σe

πw2
0

. (72)

It means that, for long resonator lengths, a very large
number of longitudinal resonator modes overlapping with
the spontaneous-emission line interrogate the integral emis-
sion cross section. The relative enhancement of spontaneous-
emission rate at a specific resonator length � with respect to the
spontaneous-emission rate at � → ∞ is then given by

fτ =
1
2

1

τ tf−modes
21,rad

/
2Σe

πw2
0

=
c

�π

∞∑
q=0

Δνq + Δνe

4(νe − νq )2 + (Δνq + Δνe)2
�→∞= 1. (73)

This situation is shown in Fig. 4. As can be seen in the upper
row, a significant enhancement of spontaneous emission, the
Purcell effect, occurs for short resonators when the resonator
length is tuned such that a mode overlaps with the emission
line, whereas a significant suppression of spontaneous emis-
sion occurs when the overlap of the emission line even with the
nearest resonator mode is weak. For increasing resonator length
� the mode volume increases, thereby reducing the enhance-
ment. For long resonators, in which many longitudinal modes
overlap with the emission line, the enhancement converges to
unity, i.e., the spontaneous-emission rate becomes independent
of the resonator length and spectral tuning of the resonator is
not necessary. For short resonators on the order of the emis-
sion wavelength, the fraction βmode approaches unity when a
resonator mode is tuned to the emission line. However, there
are no sharp resonances, because βmode represents the rela-
tive fraction of spontaneous emission into a single mode. At
short resonator lengths, where only the nearest longitudinal res-
onator mode can significantly overlap with the emission line,
detuning results in a reduction of the emission rate which, nev-
ertheless, occurs significantly into this one mode only, hence
βmode remains large. Detuning of � beyond λe/4 from the cen-
tral wavelength of a mode increases βmode again, because then
the nearest mode is the next longitudinal mode. Detuning � by
exactly λe/4, providing equal overlap of the emission line with

the two nearest modes of lower and higher frequency, results
in a minimum value of βmode , which is slightly lower than ½
due to the contributions of the second-nearest modes on either
side. This behavior remains almost unchanged for a number of
modes tuned across the emission line. For longer resonators,
several modes overlap with the emission line and the lumines-
cence decay occurs into these modes with comparable strength,
thereby reducing the maximum obtainable βmode for emission
into a single mode and, hence, the contrast of the oscillations.
For very long resonators, the oscillations in βmode die out and
βmode decreases inversely proportional to the resonator length.

If the effective emission cross-section σe(ν) varies insignifi-
cantly over the Lorentzian profiles of many, and eventually all,
resonator modes, Δνe > ΔνFSR > Δνq , one can approximate
(69) as

βmode
Δνe 	ΔνF S R 	Δνq≈

cσe(νq )τ res
21,rad

Vmode
≤ 1. (74)

Only when none of the external modes is suppressed, (74)
can be further approximated to

βmode
M̃ s u p p r (ν )=0

≈ cσe(νq )τ21,rad

Vmode
≤ 1. (75)

As we see from Fig. 4, if the mode volume is reduced to the fun-
damental modal dimensions, Vmode → VM , specifically � = �M

or a reasonably small integer multiple of �M , the emission is
restricted to one polarization, and all external modes are sup-
pressed, 1/τ suppr

21,rad → 1/τ ext
21,rad , then in (74) τ res

21,rad → τmode
21,rad

and according to (69) βmode approaches unity. Independent of
the value of �, suppression of all external modes and one polar-
ization results in 1/τ res

21,rad = 1/(2τ tf-modes
21,rad ), and when insert-

ing the approximation of � → ∞ from (72) and an equivalent
of (55) into (74), one obtains βmode ≈ λ2

e/(πΔλe�) for large �,
which is indicated by the black dashed line in Fig. 4, bottom row.

The spontaneous-emission rate of photons coupled per unit
time interval into a single resonator mode and polarization is
then given by

Rsp =
βmode

τ res
21,rad

N2Vmode =
1

τmode
21,rad

N2Vmode

= N2Vmode

∫
cσe(ν)M̃q (ν)dν = N2

∫
cσe(ν)γ̃q (ν)dν

(76)

Rsp is independent of βmode , because it is triggered by the one
vacuum photon ϕ0 in this mode, which does not change in case
the spontaneous-emission rate into other modes is manipulated.
If the emission cross section is spectrally Lorentzian-shaped
according to (53) and positioned at νe = νq , then inserting (53)
and (22) into (76) and executing the integral leads to

Rsp = cN2σe(νe)
Δνe

Δνq + Δνe
. (77)

If the effective emission cross section σe(ν) varies insignif-
icantly over the Lorentzian profile γ̃q (ν) of the resonator
mode, Δνe 	 Δνq , the spontaneous-emission rate of (76)
and also that of (77) for the specific case of νe = νq can be
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Fig. 4. Variation of spontaneous emission into the longitudinal, transverse-fundamental resonator modes, restricted to a single polarization, as a function of
resonator length �, normalized to the emission-peak wavelength λe , in a laser with λe = 1 μm, Δλe = 1 nm, nr = 1, Tout = 0.01 for all λq , and LRT = 0.
Upper row: The enhancement factor fτ of (73). Middle and bottom row: The fraction βm ode of (70), with (71) inserted. From left to right, different ranges of
�/λe are displayed. Bottom row: overview for a large range of � values. Black dashed line: approximation for large � as discussed in the text. Black dotted line:
see the note added in proof.

approximated by

Rsp = cσe(νq )N2 . (78)

Using the approximation of (78) in (76) yields (74).

B. Absorption and Amplification

In an absorbing, amplifying, or lasing resonator with a nor-
malized spectral distribution function γ̃L (ν) of the resonator
mode centered at the frequency νL , the gain per unit length due
to inversion between the population densities N2 and N1 in the
upper and lower state, respectively, is accordingly given by

g =

∞∫

0

[
σe(ν)N2 − σa(ν)N1

]
γ̃L (ν)dν. (79)

Like for (78), if the effective emission and absorption cross
sections σe(ν) and σa(ν), respectively, vary insignificantly over

the Lorentzian profile γ̃L (ν) of the resonator mode, Δνe and
Δνa > ΔνL , the gain per unit length can be approximated by

g = σe(νL )N2 − σa(νL )N1 . (80)

In case the gain medium absorbs light, g < 0, or amplifies light,
g > 0 (as long as the loss-rate constant 1/τc is larger than the
gain-rate constant cg), the photon decay time τc of (13) decreases
due to the additional loss (increases due to the gain) according
to

1
τL

=
1
τc

− cg (81)

and the linewidth Δνc of (16) increases (decreases) to

ΔνL =
1

2πτL
=

1
2π

(
1
τc

− cg

)
= Δνc −

cg

2π
. (82)

As we will show, (81) and (82) also apply to the case of a
lasing resonator mode [1].
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C. The Fraction β of Upper-State Decay Rate Into the
Resonator Mode

The total decay rate of the population density N2 from the
upper state per unit time can be written as

R2 =
1

τ res
2,eff

N2Vmode . (83)

τ res
2,eff is the effective decay time of the upper state of the emitter

placed inside the resonator. We neglect nonlinear processes,
e.g., fractional luminescence quenching [20], [21] or energy-
transfer upconversion [21], owing to which τ res

2,eff may deviate
from the intrinsic lifetime τ res

2 of the upper state of the emitter
placed inside the resonator. Again, if some external modes are
suppressed by the resonator or if resonant enhancement occurs,
τ res
2,eff and τ res

2 may differ from the values in free space. Hence,
with τ21,nrad and τ2,other considering relaxation from the upper
state nonradiatively to the lower state and to other lower-lying
levels, e.g., the ground state in a four-level laser, respectively,

1
τ res
2,eff

≈ 1
τ res
2

=
1

τ res
21,rad

+
1

τ21,nrad
+

1
τ2,other

. (84)

We define

β21,rad :=
1/τ res

21,rad

1/τ res
2,eff

≤ 1 (85)

as the branching ratio of radiative decay from upper to lower
state to total decay from the upper state. With (69) and (51), i.e.,
assuming that the emission cross section varies insignificantly
over the linewidth of the resonator mode, we obtain

1
τ res
2,eff

=
1

β21,rad

1
τ res
21,rad

=
1

β21,rad

1
βmode

1
τmode
21,rad

=
1

β21,rad

1
βmode

∫
cσe(ν)γ̃q (ν)dν

Vmode

Δνe 	Δνq≈ 1
β21,rad

1
βmode

cσe

Vmode
. (86)

Consequently,

β = β21,radβmode =
cσeτ

res
2,eff

Vmode
=

Rsp

R2
≤ 1 (87)

is the fraction of total decay from the upper state that is coupled
as spontaneous emission into the lasing resonator mode. By
inserting (87) into (78) the spontaneous-emission rate into the
lasing resonator mode then takes the familiar form

Rsp =
β

τ res
2,eff

N2Vmode . (88)

When the mode volume is reduced to the fundamental modal
dimensions of (30) and (32), Vmode → VM , specifically � = �M

or a reasonably small integer multiple of �M , the emission is
restricted to one polarization, and spontaneous emission into
any other modes is suppressed, then βmode approaches unity.
If the population density of the upper state solely decays via
spontaneous emission on the transition from upper to lower
state, i.e., τ res

2,eff equals the radiative lifetime τ res
21,rad of the upper

state when the gain medium is placed inside the resonator [RX1],

then β21,rad = 1. Under these two conditions

β =
cσeτ

res
2,eff

Vmode

β2 1 , r a d =1
βm o d e =1

=
cσeτ

res
21,rad

VM
= cσeτ

res
21,rad

4π

λ3
e

= 1

⇒ σeτ
res
21,rad(VM ) =

λ3
e

4πc
.

(89)
Inserting the largest possible σe , namely the natural emission
cross section of (56), provides the minimum possible radiative
lifetime,

τ res
21,rad(VM ) =

λe

2c
=

1
2νe

(90)

and comparison of (89) with (58) delivers the fundamental emis-
sion linewidth and its related Q-factor,

Qe =
λe

Δλe
=

νe

Δνe
= π. (91)

Combination of (90) and (91) then reproduces (55).

D. Spontaneous Emission—A Time-Consuming Process

Semi-classically, a single photon is a spatially extended elec-
tromagnetic wave. The concept of temporal coherence implies
that emission of a photon by an atom in an excited state with a
characteristic decay time τ occurs as emission of a wave packet
during the time interval τ , c.f. Fig. 1. Specifically, rearranging
(74) yields

cτmode
21,radσe = c

τ res
21,rad

βmode
σe = Vmode = �πw2

0 , (92)

whose comparison with (7) shows that the time τmode
21,rad required

to spontaneously emit a photon into a resonator mode equals
the time the wave has to travel to fill the mode of length � =
cτmode

21,rad , in case σe = σe ,max = λ2
e

/
(2π) = πw2

M = πw2
0 . If the

light-matter interaction is weaker, σe < πw2
0 , because either the

resonator mode has a larger area than the fundamental modal
area, or the emitter has a smaller cross section than the natural
cross section, or both, then a multi-pass interaction is required
and, thus, the emission process takes accordingly longer. Spon-
taneous emission into a resonator is only possible if the emitted
wave interferes constructively with itself after each round-trip,
necessitating that it is emitted at the center frequency νq of the
resonator mode. One can argue that νq is imposed upon the
spontaneously emitted photon by the vacuum photon that car-
ries the spectral properties of its birth-giving mode. This picture
is consistent with describing the Casimir effect [22] as a result
of vacuum fluctuations [23].

During the emission process, the photon energy is still par-
tially stored in the excited state of the emitting atom and partially
already emitted into the resonator mode, which is quantum-
mechanically a superposition between the excited state and the
de-excited state plus the emitted photon. Likewise, during the
process of photon decay out of the resonator the front part of
the wave packet already leaks out of the resonator, while its rear
part is still oscillating inside the resonator. These two processes,
emission of a photon into, and its decay out of the resonator,
overlap in time.
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Similar considerations hold true for stimulated-emission pro-
cesses. Quantum-mechanically, the coherent photon number
ϕcoh existing in the lasing mode of the resonator represents
the expectation value of the Poissonian photon statistics [24],
which can assume non-integer values, just like the semi-classical
ϕcoh we will use in our work to describe a cw laser [1]. The
creation and annihilation operators act on this coherent state. It
is sometimes incorrectly assumed that these processes occur in-
stantaneously by emission of a point-like photon, which would
result in an instantaneously changing number of photons in the
coherent state.

VI. SPONTANEOUS EMISSION INTO A

COHERENTLY OCCUPIED MODE

So far we have investigated spontaneous emission into an
empty resonator mode. In a laser, the lasing resonator mode is
usually filled with a large number of coherent photons. This
leads to a coupling between the atomic system and the coherent
field, resulting in a splitting of the combined energy states and
a modification of the spontaneous-emission rate into the lasing
resonator mode.

A. Coupled Resonators of Atomic System and Coherent Field

The vacuum Rabi frequency is defined by [25]

hνRabi = μEV . (93)

Therein,

μ = e 〈2| r |1〉 (94)

is the dipole-transition matrix element for the transition between
the states 2 and 1, where e is the electron charge and e r is the
dipole operator. Furthermore,

EV =
√

hν

2ε0Vmode
(95)

shows the zero-point vacuum-fluctuation electric field, where
ε0 is the dielectric constant in vacuum. Inserting (94), (95), and
the quantum-mechanical expression for the Einstein coefficient
A21 [26],

A21 =
1

τ21,rad
=

2
3

e2 (2π)3 ν3

hε0c3 |〈2| r |1〉|2 , (96)

into (93) yields an expression for the vacuum Rabi frequency
[27] of an optical transition at the unperturbed frequency ν,

νRabi =
c

4πν

√
3c

2πVmodeτ21,rad
. (97)

As was shown by Jaynes and Cummings [28], the two atomic
energy levels involved in an emission process and an electro-
magnetic field consisting of a number ϕcoh of coherent photons
in resonance with the transition constitute a system of coupled
resonators, which are referred to as dressed states [29]. In a
laser, the upper and lower non-degenerate atomic energy levels
|ψ2 > and |ψ1 >, respectively, of the gain medium and the co-
herent photon state |ϕcoh > form common states |ψ2 , ϕcoh >

and |ψ1 , ϕcoh >, which for a variable coherent photon num-
ber ϕcoh correspond to an equidistant ladder of energy states.
In resonance, i.e., for a separation of the two atomic energy
levels that equals the photon energy hνL , the two upper states
|ψ2 , ϕcoh > and |ψ1 , ϕcoh + 1 > of total energy (ϕcoh + 1)hνL

are degenerate, as are the two lower states |ψ2 , ϕcoh − 1 > and
|ψ1 , ϕcoh > of total energy ϕcohhνL , see the left-hand side of
Fig. 5(a). Assuming that after a pump process the atomic sys-
tem is excited, while ϕcoh photons are in the resonator, the
system is in one of the two degenerate upper states, namely
|ψ2 , ϕcoh >. Spontaneous emission of a photon into free space
then turns the system into a superposition of |ψ1 , ϕcoh > and
|ψ2 , ϕcoh − 1 >, i.e., the total energy is reduced by the energy
of the emitted photon from (ϕcoh + 1)hνL to ϕcohhνL , where
the lost energy may have emerged from either the atomic exci-
tation or the coherent photon field. Spontaneous or stimulated
emission into the lasing resonator mode results in the same re-
duction of total energy, because during the time interval when
in a cw laser a photon is coupled into the lasing resonator mode,
simultaneously another photon is coupled out (see Section V-C).
With increasing strength of coupling between the atomic system
and the coherent photon field, the degeneracy of each ladder state
is lifted and the former degenerate combined states |ψ2 , ϕcoh >
and |ψ1 , ϕcoh + 1 > are split by an amount of [30]

δERabi = 2hνRabi
√

ϕcoh + 1. (98)

In this manner, the dressed states |ϕcoh ,± > are formed, result-
ing in a doublet splitting of each combined degenerate energy
level as indicated on the right-hand side of Fig. 5(a). In the spe-
cial case of ϕcoh = 0, only one lower state |ψ1 , 0 > exists and,
therefore, no splitting occurs in the lower level.

In the case where nm two-level systems are present in the
resonator mode and couple to the coherent field, i.e., in a
four-level laser, in which the population density of the lower
laser level is N1 = 0, the number of excited states amounts
to nm = b2N2Vmode , whereas in a three-level laser the to-
tal number of states, nm = (b2N2 + b1N1)Vmode , is in reso-
nance with the mode, the total splitting of the lower and upper
lasing state, respectively, is increased according to the Tavis-
Cummings model [31] to

δERabi = 2hνRabi
√

nm

√
ϕcoh + 1. (99)

The coherent atom-field interaction that induces the dressed
states, however, occurs only in the strong-coupling limit [32],
where the Rabi oscillation can take place without being per-
turbed by de-coherence which is caused by, firstly, photon de-
cay out of the resonator that is quantitatively represented by the
coherence time τ coh

L of emitted laser light and, secondly, the
atomic-state de-coherence that is quantitatively represented by
τ coh
atom of (52). Therefore, two conditions need to be fulfilled in

order to obtain dressed states and the resulting level splitting:

2π
√

nm νRabi >
1

τ coh
L

= πΔνL and

2π
√

nm νRabi >
1

τ coh
atom

= πΔνe. (100)
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Fig. 5. Formation of a Mollow triplet for a single atom. (a) Energy levels and transitions. Spectral emission shapes (black curve) for the situations (b) with a weak
and (c) with a strong coherent field (red curve) in the lasing resonator mode, under the assumption τ coh

atom 	 τ2 ,eff as in (103), resulting in Δνe,sb = 3/2Δνe .
The laser linewidth ΔνL is not to scale with the abscissa nor ordinate, but only indicative.

The typically long coherence time τ coh
L of laser light sig-

nificantly facilitates achieving the first condition. The sec-
ond condition requires a long atomic coherence time τ coh

atom of
(52). Therefore, it can be reached more easily for lasers based
on gain media which exhibit only natural linewidth broaden-
ing, i.e., de-phasing effects are negligible. It may be difficult
to reach if only a single emitter is concerned, i.e., nm = 1.
However, if many laser-active states couple to the resonator
field, nm 	 1, the second condition can be established thanks
to the much larger effective Rabi frequency

√
nm νRabi in

(99).

B. Reduction of Spontaneous-Emission Rate and
Mollow Triplet

With the normalized Lorentzian-shaped spectral mode profile
of (22), the spontaneous-emission rate into a mode is given
by (76). If the emission cross section is spectrally Lorentzian-
shaped according to (53), with a peak value of σpeak

e = σe(νe),
the spontaneous-emission rate of (77) obtains. In the presence
of a coherent field, the energetic splitting of (99) results in
a division of the single spontaneous-emission line into four
lines or, in the special case of ϕcoh = 0, a doublet spectrum
and, consequently, a modification of the spontaneous-emission
rate into the lasing resonator mode. Assuming that the original
spontaneous-emission line is centered at the laser frequency νL ,
see Fig. 5(b), the four lines resulting from the interaction appear

at frequencies

νp=1,...,4 = νL + δνp=1,...,4

= νL ±
(√

ϕcoh + 1 ±√
ϕcoh

)√
nm νRabi.

(101)

With increasing number ϕcoh 	 1 of coherent photons in the
lasing mode and polarization of the resonator, resulting in a
Rabi shift of δν1,4 	 Δνe , the spontaneous-emission spectrum
under purely natural linewidth broadening evolves into the Mol-
low triplet [33], see Fig. 5(c), where one-half of the spontaneous
emission (p = 2 and p = 3) overlaps almost perfectly at the cen-
tral frequency νL , because in (101)

√
ϕcoh + 1 −√

ϕcoh → 0
for large ϕcoh , whereas the other two peaks (the sidebands cor-
responding to p = 1 and p = 4) are spectrally further and further
separated until they exhibit almost no spectral overlap with
the lasing mode and, therefore, no contribution to spontaneous
emission into this mode. The central line exhibits the original
linewidth and the area ratio between the satellite peaks and the
central peak is 1:2. Occurrence of the Mollow triplet has been
experimentally verified [34].

From (41) it follows that, as long as the emission spectrum
is narrow compared to its central frequency, Δνe 
 νe , the
emission cross section has the same mathematical shape as the
luminescence intensity. Therefore, Mollow’s original derivation
of the incoherent part of the luminescence intensity distribution,
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cumulating in equation (4.33) of Ref. [33], can be used to de-
scribe the emission cross section in the presence of a strong
coherent field. Thus, the formally Lorentzian-shaped emission
cross section of (53) changes to the same three-peak structure
and can be expressed as

σcoh
e (ν) =

1
2
σpeak

e

Δν2
e

4(ν − νe)2 + Δν2
e

+
1
4

Δνe

Δνe,sb
σpeak

e

Δν2
e,sb

4
(
ν − νe − 2νRabi

√
ϕcohnm

)2 + Δν2
e,sb

+
1
4

Δνe

Δνe,sb
σpeak

e

Δν2
e,sb

4
(
ν − νe + 2νRabi

√
ϕcohnm

)2 + Δν2
e,sb

.

(102)
The emission bandwidth Δνe,sb of the sidebands depends

in a complex way on the strength of the atom-field coupling
itself and the amount of de-coherence of the atomic system
with coherence time τ coh

atom compared to the decay-induced de-
coherence with upper-state effective luminescence decay time
τ2,eff . In some limiting cases we find

Δνe,sb =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δνe for ϕcoh → 0
3
2
Δνe for ϕcoh → ∞ and τ coh

atom >> τ2,eff

Δνe for ϕcoh → ∞ and τ coh
atom = 2τ2,eff

1
2
Δνe for ϕcoh → ∞ and τ coh

atom << τ2,eff .

(103)
In the case depicted in Fig. 5(c), the two satellite peaks have

three-half the original linewidth, while the peak ratio is 1:3 [33].
Consequently, for δν1,4 	 Δνe , with (76) the effective

spontaneous-emission rate into the lasing mode, with its
Lorentzian-shaped mode profile γ̃L (ν) and linewidth ΔνL , and
polarization of the resonator becomes

Rsp ,eff := cN2

∫
σcoh

e (ν)γ̃L dν

=
1
2

cN2 σp eak
e

×
[

Δνe

ΔνL + Δνe
+

Δνe (ΔνL + Δνe,sb )
16ν2

Rabiϕcoh nm + (ΔνL + Δνe,sb )2

]
.

(104)

The ratio of the effective spontaneous-emission rate of (104)
and the unperturbed spontaneous-emission rate of (76), in this
case into a lasing resonator mode with a Lorentzian-shaped
mode profile γ̃q (ν) = γ̃L (ν) and linewidth Δνq = ΔνL , pro-
vides the effective spontaneous-emission fraction,

ρ :=
Rsp,eff

Rsp
=

cN2
∫

σcoh
e (ν)γ̃Ldν

cN2
∫

σe(ν)γ̃Ldν
. (105)

In case the emission line is of Lorentzian shape, inserting
(104) and (77), again with Δνq = ΔνL , into (105) yields

ρ =
1
2

+
1
2

(ΔνL + Δνe)(ΔνL + Δνe,sb)
16ν2

Rabiϕcohnm + (ΔνL + Δνe,sb)2

ϕ c o h →∞
≈ 1

2
.

(106)
Since the Rabi shifts δνp in (101) depend on the coherent pho-
ton number ϕcoh in the lasing mode, ρ changes from unity at

low ϕcoh , where the peaks of all four emission lines are spec-
trally positioned within the laser linewidth and exhibit the same
bandwidth Δνe , down to the value of ½ at large ϕcoh , thereby
reducing the spontaneous-emission rate into the lasing resonator
mode at large ϕcoh to½ its value into an empty resonator mode.

Whenever a significant atom-field interaction is present, i.e.,
ρ < 1, the fractions βmode and β are affected and must be
modified.

VII. CONCLUSION

In this paper, we have revisited the physics underlying the
process of spontaneous emission into a resonator mode. We
have verified that the spontaneous-emission rate into a resonator
mode is equal to the stimulated-emission rate driven by the one
vacuum photon that is present inside this mode. This rate is inde-
pendent of spontaneous emission into other modes. By consid-
ering the fundamental modal dimensions, we have derived novel
physical expressions for the fractions of spontaneous emission
and total decay from the upper laser level into this mode, which
show that these fractions necessarily depend on the specific res-
onator configuration and resulting spontaneous emission into all
other available modes. We have also investigated the coupling
of the atomic system with the coherent field inside a lasing res-
onator mode and derived an expression for the effective emission
cross section and resulting fraction of the spontaneous-emission
rate into a lasing resonator mode under the influence of this
interaction.

In our subsequent work [1], we will exploit this physical foun-
dation for establishing a refined and more complete description
of the cw laser.

Note added in proof: In the situation underlying (70), if the
resonator length � is tuned, such that one longitudinal resonator
mode with index m spectrally overlaps with the Lorentzian-
shaped emission line, νm = νe , and assuming that the resonator
losses do not vary significantly over the spectral range of the
emission line, Δνq ≈ Δνm = Δνc for all modes with index q
that exhibit a relevant overlap with the emission line, then by
inserting the result of (71) into both the numerator and denom-
inator of (70) one obtains

βmode =
1∑∞

q=0
(Δνc +Δνe )2

4(νe −νq )2 +(Δνc +Δνe )2

(107)

This is the dotted black line in Fig. 4, bottom row.
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