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Abstract—We review a novel class of femtosecond Cr?* -doped
ZnSe and ZnS lasers, which operates in a very important for ap-
plications wavelength range between 2 and 3.5 pym and which
generates ultrashort optical pulses that are only five optical cy-
cles in duration. Room-temperature Cr>* -lasers provide tens of
Watts average power, >70% slope efficiency, ultrabroad tunability
(~1400 nm between 2 and 3.4 pm) in the continuous wave regime
and GW-level peak powers in the amplified femtosecond regime.
Different mode-locking techniques from Kerr-lens to graphene sat-
urable absorbers have been demonstrated, and dispersion compen-
sation methods from bulk materials to chirped mirrors allowed
the realization of self-starting few-optical cycle oscillators and
the demonstration of a number of applications in spectroscopy
and nonlinear optics. The Watt level few-optical cycle Cr:ZnS
oscillator! operating at 2.4 m is distinguished by extremely short
pulse duration of only 41 fs, hundreds of kilowatt peak powers, and
tens of nanojoule pulse energies. Using the direct diode-pumping
or fiber laser pump sources such a laser can be made reliable and
compact, which paves the way to industrial realisation and appli-
cations in environmental analysis, oil and gas sensing, hazardous
gas detection, breath analysis, fine material processing of semicon-
ductors, composite materials, and glasses.

Index Terms—Laser, mid-infrared, near-infrared, optical pulse
generation, laser mode-locking, laser tuning, sensors, chemical haz-
ards, gas detectors.

I. INTRODUCTION

OOM-temperature solid-state lasers based on Cr>* -doped

II-VI compound materials like ZnSe or ZnS are in many
respects similar to the Ti:sapphire laser, but offer the ability
to generate high-power broadly tunable radiation in the mid-
infrared (mid-IR) wavelength range above 2 pm. This wave-
length range, which is often called a “molecular fingerprint”
region, and in particular, the range between 2 and 5 pm, is char-
acterized by the presence of strong fundamental and overtone
vibrational absorption lines of major atmospheric constituents,
as well as several important for industrial and medical applica-
tions molecules and radicals (see Figs. 1 and 2). The ability of
Cr?* - lasers to spectrally cover in a single shot or by rapid laser
tuning the widest possible wavelength range that contain many
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Fig. 1. Typical absorption and penetration depth of the biological tissue, as
well as the absorption ranges of some important radicals [1].
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Fig. 2. Spectral coverage and tunability of the most representative Cr* -
lasers and spectral positions of the measured trace gas absorption lines with the
corresponding minimum detectable gas concentrations—results of photoacous-
tic measurements [2]-[4]. For many of important molecules the detection limit
lies well in the ppb (part-per-billion) region.

molecular absorption lines, is the main advantage of this class
of compact mid-IR lasers.

As can be seen in Fig. 2, the absorption lines include, e.g.:
water vapor (H2O), which fills the whole range between 2.5 and
3 pum and has a maximum around 2.7 pum, carbon monoxide
(CO) with strong features around 2.3-2.4 pum, carbon diox-
ide (CO,) absorbing around 2.7-2.8 pum, nitrous oxide (N, O),
methane (CH,), carbohydrates, and other oil and petroleum as-
sociated gases having several absorption features all through
2-4 pm range, as well as many other species. Detection of low
concentrations of these molecules for the purpose of medical,
environmental or industrial diagnostics, e.g. diagnostics of the
human breath, or of oil and petroleum associated gases is cur-
rently done using laser systems, which are based mainly on
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single gas detection semiconductor or quantum cascade laser
devices or on nonlinear optical conversion techniques. The
latter include optical parametric oscillators (OPO) and differ-
ence frequency generators. OPO has much appeal as an ideal
broadband solution for remote sensing and multigas analysis,
but is by construction rather complex and costly. In the same
wavelength range, Cr>* -lasers are a single-stage devices, which
provide very broad spectral coverage both as narrow-linewidth
tunable and as broadband sources. For example, a femtosec-
ond Cr:ZnS supercontinuum source generates spectra, which
cover the whole wavelength range between 2 and 3 pum [5],
[6]. In competition to traditional femtosecond OPO technology,
femtosecond Cr?* -lasers offer the versatility and robustness of
compact fiber laser pumped solid-state lasers, and as such are
ready for real-world applications such as trace gas sensing and
breath analysis (see Section VI), medicine as well as fine mate-
rial processing.

Various spectroscopic techniques—femtosecond Fourier
transform (FT) spectroscopy [7]-[10] and dual-comb FT
spectroscopy [11]-[13]—have been realized and successfully
verified using these femtosecond sources, with sensitivities
achieving ppb and potentially parts-per-trillion levels, which
are otherwise not achievable with the present multi-species gas
sensor technologies (see Section VI). In addition, these lasers
might be perfect ultrahigh peak power mid-IR sources for X-Ray
generation [1], [14], [15].

This review encompasses mainly the works on femtosec-
ond Cr?*:ZnSe laser technology development between 1997
and 2014 in our group in Vienna, as well as highlights a few
of our most recent works on Cr?*:ZnS laser development in
Trondheim. In the last few years a tremendous leap forward in
femtosecond pulse generation in both, Cr>*:ZnSe as well as
Cr’*:ZnS has been made by several leading groups in the field.
There is a considerable research effort on Cr**:ZnSe femtosec-
ond technology led the A. Sennaroglu group at Ko¢ University,
P. Moulton group at Q-Peak Inc., and by S. Mirov group at the
University of Alabama Birmingham. The coherent efforts in this
direction led to real world applications demonstrations of this
novel class of femtosecond lasers, proving the viability of this
technology and opening new avenues towards their applications,
some of which are described in Section VI.

The paper is organized as follows: starting with the motiva-
tion and historical introduction (see Section II), it provides the
background in continuous-wave (CW) tunable operation (see
Section III), further describing the principles and most recent
advances in generation and applications of ultrashort pulses and
frequency combs directly from the solid-state oscillator based on
Cr*>:ZnSe (see Section IV) as well as Cr:ZnS laser (see Section
V) and highlights radical efficiency, breadth of wavelength cov-
erage and sensitivity increase when applied to high-resolution
molecular spectroscopy and trace gas sensing (see Section VI).

II. MOTIVATION AND HISTORICAL PERSPECTIVE

Cr’* - femtosecond laser technology is a result of more than
18 years of research and development effort, which starts from
the discovery of the new class of Cr>* - doped II-VI compound
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laser materials and realization of the first pulsed lasers by the
group of pioneers from the Lawrence Livermore Laboratory
back in 1995 [16]-[20], through first CW tunable operation in
Cr?>*:ZnSe in 1999 [21], [22] and then in Cr**:ZnS [23], [24]
to the first actively and passively mode-locked picosecond [25]
and then femtosecond Cr**:ZnSe laser operation in 2006 [26].

The main motivation for the research and development of
Cr** -based femtosecond laser technology has been a surprising
similarity of spectroscopic, material and laser properties of these
lasers with those of the Ti:sapphire laser—a “work horse” of
femtosecond technology. Due to these extraordinary properties
of Cr:ZnSe and Cr:ZnS, their inventors and at that time leaders
of the Livermore laser group, W. F. Krupke and S. A. Payne
referred to these materials as “Ti:sapphire of the mid-infrared”
and as being “without precedent” [27].

Indeed, the electric-dipole transitions of the Cr?* -ions, oc-
cupying tetrahedral sites without inversion symmetry, are char-
acterized by large oscillator strength and short lifetime. The
high activation energy in Cr:ZnSe and Cr:ZnS crystals leads to
the decreased nonradiative decay rate and to the high fluores-
cence quantum yield [28]. Moreover, the excited state absorp-
tion (ESA) to the higher energy levels is spin-forbidden in these
materials leading to the negligibly low ESA [29], which is a
common plague of the vibronic materials [30].

It is therefore not a surprise that these materials drew such
an attention of both, research and industry, as first room-
temperature broadly tunable CW lasers operating between 2
and 3 pm [21], [23], [31], [32] and later on as sources of high
power (>20 W average power) and high energy (>20 mJ at 7 ns
and >1J at 7 ms) pulsed operation [33], [34], GW peak power
amplified femtosecond operation [35] and since recently, also
Watt level few optical cycle femtosecond operation [36], [37]
and ultrabroad tunability between 1.95 and 3.35 pm [38].

III. CW PERFORMANCE OF CR:ZNSE AND CR:ZNS

The remarkable properties of the Cr**:ZnSe and Cr**:ZnS
crystals, described in the previous Section, such as high emission
cross-section, negligibly low ESA, good chemical and mechan-
ical stability, and thermal conductivity being nearly as high as
in sapphire gave these material enormous potential as an active
medium for CW tunable mid-infrared lasers. For a detailed re-
view of the experiments performed so far, we refer the reader
to the following review articles [37], [39]-[42]. Here we focus
on the material and CW laser properties of single crystal and
polycrystalline Cr:ZnSe and Cr:ZnS with the final aim to obtain
high-efficiency and high-power femtosecond pulse operation to
be described in Sections IV and V.

A. Materials

One of the most important advantages of Cr:ZnSe and Cr:ZnS
is the commercial availability of the technologically developed
and low-cost polycrystalline material. The existing technolo-
gies for producing ceramic crystals, such as chemical vapor
deposition method or the hot-press method of powders result
in high optical quality substrates—typical window material for
CO,, lasers. This makes Cr:ZnSe and Cr:ZnS one of the most



1601519

technological and low-cost active media among the known solid-
state lasers. In our works we have been using both, single crys-
tal as well as ceramic (polycrystalline) materials. The undoped
crystals of Cr:ZnSe and Cr:ZnS have been grown by various
methods like e.g. the Bridgman, physical vapor transport (PVT),
and chemical vapor transport methods. The best laser results
have been obtained from crystals grown by the Bridgman and
PVT methods. The high structural quality of the single crystals
grown under optimum growth conditions has been confirmed
by X-ray diffraction.

Chromium was introduced by thermal diffusion from solid
metal source. The advantages of this doping method [43]-[46]
over the growth of the crystal containing Cr from the beginning
is the ability to precisely control dopant level by the adjust-
ment of the diffusion temperature and duration of the treatment.
Diffusion was typically carried out in the argon atmosphere in
evacuated (5 x 107 Torr) fused silica ampoules in the temper-
ature range 800-1000 °C during 3-10 days depending on the
crystal. We used a commercially available metallic chromium
0f 99.99% purity. The Cr>* concentration was estimated to vary
between 5 x 10'® ions/cm? to 2 x 10'? ions/cm? by comparing
the absorption coefficient of our sample to the absorption cross-
section reported in [19], [20]. The disadvantage of diffusion
doping over the growth of the Cr-doped crystals are the Cr**
ion concentration gradient along the diffusion depth and surface
erosion. Nevertheless, this method allows one to obtain good
quality 2-3 mm thick samples with fair Cr homogeneity, which
is sufficient for CW as well as femtosecond lasers.

The good chemical and mechanical stability of the host ma-
terial and its thermal conductivity nearly, which is nearly as
high as in sapphire, ranks Cr**:ZnSe and Cr>*:ZnS crystals
very high among other broadband solid-state lasers. The only
significant issue of these materials is the relatively high ther-
mal lensing parameter dn/dT (~ 70-107% K~! in Cr:ZnSe,
46 - 107 K~! in ZnS compared to 12 - 107® K~ ! in sapphire
[47]). However, the latter is partially compensated by the three
times longer wavelength and hence three times larger beam area,
as well as by the possibility to reduce the relative Stokes shift
by long-wavelength pumping [29], [48], [49].

Among all II-VI chalcogenides ZnS is distinguished by the
largest energy gap of 3.8 eV, the smallest lattice constant and by
the correspondingly blue-shifted emission cross-section, which
peaks around 2.35 pm (Fig. 4). While working with this crystal
we established that the formally cubic crystal of Cr?*:ZnS ex-
hibited birefringence [23], [24]. The X-ray analysis revealed the
partial hexagonal symmetry in the crystal. However, the struc-
ture of the crystals was not that of wurtzite, but a modification of
the cubic zinc blende. Cr>*:ZnS is one of the most structurally
rich polytypical compounds and can exist in several structure
types, sphalerite and wurtzite structures being the most com-
mon. Thus, even the so called cubic Cr:ZnS as a rule reveals a
certain degree of “hexagonality”, which amounts up to 10-20%.
The cause of the hexagonal symmetry may be due to twinning
and fault-stacking enhanced by the Cr-doping in case of the
melt grown Cr>*:ZnS. This natural degree of “hexagonality”
has certain implications on the tuning, which will be discussed
later.
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Fig. 3. Absorption cross-section spectra of Cr:ZnSe and Cr:ZnS with operat-
ing ranges of commercial fiber laser pump sources.
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Fig. 4. Emission cross-section spectra of Cr:ZnSe and Cr:ZnS. The grey

spectrum shows atmospheric transmission for 1 m path at normal conditions.

Cr?*:ZnS is also distinguished by the lowest dn/dT, the
highest hardness and damage threshold among other Cr**-
doped media, which makes it attractive for high power applica-
tions. The power handling capability of Cr:ZnS is comparable to
that of Yb: YAG—the factor of three larger Stokes shift is com-
pensated by the three times higher thermal conductivity. From
the power scaling point of view Cr:ZnS is thus as interesting
as Yb:YAG and in a thin-disk design with reduced thermal lens
sensitivity can approach the same power levels as other thin-disk
lasers.

B. Spectroscopy

ZnSe and related compounds attracted a lot of attention back
in the 60s and 70s as materials for blue LEDs and diodes. Spec-
troscopy of Cr** (3d*) in chalcogenides has been subject of
extensive research since the early 1960’s [50]-[52]. Curiously,
the main interest in chromium as an impurity in ZnSe producing
deep levels has been due to the quenching of photoluminescence
(recombination luminescence). Therefore Cr was frequently re-
ferred to as a visible luminescence “killer”. However, these
fundamental studies and availability of good optical quality un-
doped material have laid a solid foundation for the spectroscopic
investigations of Cr** as an active laser ion. For detailed spec-
troscopic studies the reader is referred to previous reviews [19],
[301, [39], [40], [47], [53], [54].

Here we would like to pay attention to the spectroscopic
features, which are most important for broadband operation
and ultrashort-pulsed generation. The absorption and emission
spectra in Cr:ZnSe and Cr:ZnS are depicted in Figs. 3 and 4,
respectively. The broad absorption band is centered around
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Fig. 5. Temperature dependent life-time measurements for Cr:ZnS, Cr:ZnSe
and Ti:sapphire.

1.78 pm in Cr:ZnSe, and around 1.67 pm in Cr:ZnS, which
make them particularly attractive for pumping with Tm-fiber
and Er-fiber lasers respectively (see Fig. 3). The broad-band
emission between 2 and 3 um (see Fig. 4) reflects the parity-
forbidden yet spin-allowed electronic transition between >E and
5T, states. As can be seen in Fig. 4, Cr:ZnS better matches the
transparency window, while Cr:ZnSe can be used to operate
further into the infrared.

It is important to underline the role of the Jahn-Teller effect.
The Jahn—Teller splittings of the ground 3T, state and of the
excited °E state are 340 and 40 cm !, respectively [55]. Contrary
to Ti:sapphire, the ground state is split more than the upper state,
which favors triple peaks in the fluorescence spectrum of Cr>+
ions and a correspondingly broader gain spectrum. This makes
Cr’* -based materials the broadest among all existing lasers.

The activation-energy and multiphonon relaxation processes
set the fundamental limit for obtaining CW room-temperature
laser operation from vibronic transitions in the mid-IR region
[28]. Therefore, the life-time measurements gain a special im-
portance (see Fig. 5). Here, Cr:ZnSe demonstrates a constant
lifetime well beyond room temperature, while Cr:ZnS lifetime
shortens by 20% at 300 K, like in Ti:Sapphire. Note that the
lifetime data in [19] provide much higher values at room tem-
perature due to the obvious reabsorption influence. The curves
in Fig. 5 have been recorded with special care to avoid reab-
sorption effects.

The four-level scheme and favorable lifetime temperature de-
pendence suggest a rather low pump threshold at room tem-
perature. In addition, the infrared wavelength generally fa-
vors a lower threshold according to the fundamental scaling
rule I;, oc (Ax/A) A~ [28], so that pumping thresholds of a
few tens of mW are quite common, despite the large value of
the Ax/A ~ 0.37, which exceeds that of the Ti:sapphire [28].
From the point of view of ultrashort pulse generation, relative
bandwidth defines the minimum number of optical cycles per
pulse. This implies that achieving two optical cycle pulse du-
rations, corresponding to 16 fs at 2.5 pm (analogous to 5 fs in
Ti:sapphire), is feasible.

1601519

C. Diode-Pumping

The low pump threshold of Cr:ZnSe and Cr:ZnS makes direct
diode pumping feasible. Direct diode-pumping has been demon-
strated in pulsed [56] and CW [57]-[62] regimes with the use
of a variety of 1.6-1.9 um InGaAsP/InP and GaSb based diode-
lasers. The direct diode-pumping normally yields smaller cost
and better wall plug efficiency lasers, but represents a challenge
for mode-locked operation. Nevertheless, a femtosecond diode-
pumped Cr:ZnSe laser has been demonstrated in [63].

For power scaling of the diode-pumped operation, thin disk
arrangement is of interest, as it allows pumping with low beam
quality sources. There have been two successful experimental
attempts to realize a thin-disk Cr:ZnSe laser [64]-[67], with
the best results currently reaching 5 and 4 Watts of output
power under Tm:fiber and direct diode pumping, respectively,
and some limited tuning [66]. High thermal lensing and soft-
ness of Cr:ZnSe limit further power scaling. Thermal quenching
of emission at temperatures above room temperature is another
limiting factor that could lead to thermal runaway [68]. Ther-
mal quenching is not a problem for low and medium power
operation in both Cr:ZnSe or Cr:ZnS. However, at high power
operation the better thermo-optical properties of Cr:ZnS prevail
(in equal setups, the latter emits over 20 W as compared to 5 W
output by Cr:ZnSe [34]), and this advantage should also remain
in the diode-pumped thin-disk design. For the sake of complete-
ness we should mention here the possibility of pumping using a
VECSEL (thin-disk semiconductor laser) [48], [49].

D. Ultrabroad CW Tunable Operation

The promising spectroscopic characteristics of Cr>* - based
materials stimulated intensive laser related research. Soon after
the first experimental demonstration of the Cr>*:ZnSe laser its
performance was greatly improved, spanning tuning ranges of
several hundreds of nanometers [21], [32], [39] at close to the
quantum limit slope efficiency (>60%), with narrow linewidth
and power levels in excess of 2 W in CW regime [1] and 20
Watts (up to 30 W) in the pulsed regime [33], [34].

The possibility of wide tuning has always been an aim of
almost every report on CW and pulsed operation of Cr** -based
lasers [21], [23], [24], [32], whereas the limitation has been due
to the optics rather than to the active medium. In particular,
Cr?*:ZnSe has been shown to operate from 2.0 to 3.1 ym in the
CW regime with two different sets of optics [39] and from 1880
to 3100 in the pulsed regime with four sets of optics [69].

Ultrabroadband operation is extremely attractive for vari-
ous applications. Besides the direct use of the tunable narrow-
linewidth operation for spectroscopic and sensor applications,
demonstration of the broad tuning range is extremely important
for the few-cycle femtosecond operation and frequency comb
generation, as a proof of the active medium gain properties
and availability of optics. In [38] we presented the ultrabroad-
band tunable laser operation of ceramic and single-crystalline
Cr:ZnSe and Cr:ZnS materials, using the novel hybrid mirrors
covering a record tuning range of over 1400 nm range with
a single set of optics, and generating over 600 mW of output
power. The mirrors have been designed and prepared using a
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hybrid technology, which combines semiconductor and dielec-
tric materials. This allowed the increase of the index contrast and
hence the bandwidth of the mirrors (see Fig. 6). The experimen-
tal results are shown in Figs. 7 — 9, together with the intracavity
atmospheric transmission, explaining the tuning curve “dip” be-
tween 2.5 and 2.9 pm.

Interestingly, the tuning curve of a cubic single crystalline
Cr:ZnS laser was found to be modulated by a Lyot-filter ac-
tion of the gain medium. The residual birefringence is due to
the stacking faults in ZnS, as discussed in Section III-A. In
the single crystal, even the very weak but regularly orientated
birefringence accumulates on the 2-3 mm path, which creates
a significant effect. In a polycrystalline material with a ran-
dom grain orientation, the birefringence produces only a weak
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Fig. 9. Tuning of a ceramic and single-crystal Cr:ZnS lasers.

wavelength-independent depolarization loss. As a result, the ce-
ramic material may give a broader and more uniform tuning
than a single crystal (see Fig. 9). The demonstrated extreme
bandwidth of the gain and of the optics opens up the way to
single-cycle operation in the mode-locked femtosecond regime.

IV. ULTRASHORT-PULSED CR:ZNSE AND CR:ZNS LASERS

The extremely broad gain and high third-order nonlinear-
ity in Cr:ZnSe and Cr:ZnS (ny is 60-30 times higher than in
Ti3t+ :sapphire [70]-[72]) makes this material suitable for gen-
eration of the few- to single-cycle pulses. Such pulses in the
mid-infrared spectral region can be used as unique diagnostic
tools for investigation of numerous transient processes on the
femtosecond scale as well as for such applications as remote
sensing, environmental monitoring, mid-IR free space commu-
nications, optical frequency standards, optical coherence tomog-
raphy [73], ophthalmology and dermatology in medicine [74].
They can be also be used for pumping mid-IR OPOs to produce
even longer wavelengths [75], [76].

A. Active and Passive Mode-Locking of Cr:ZnSe Laser

Only one or two years after demonstration of the first CW
lasing in Cr:ZnSe two groups demonstrated transform-limited
Gaussian-shaped pulses as short as 4 ps using an acousto-optic
modulator [25], [77]. The output power of 400 mW [78] was
limited only by the pump source. Two years later we have de-
veloped and mode-locked in the same way the Cr:ZnSe ceramic
laser [79]. Varying the modulation depth of the AOM, we pro-
duced pulses with duration between 20 and 40 ps and an average
output power up to 150 mW.

In the work [25] we have also observed and studied two dis-
tinctly different regimes of operation: a purely actively mode-
locked regime allowing relatively long pulses with pulse dura-
tions of the order of tens of picoseconds, as well as an alternative
passive mode-locking regime taking place in the narrow range
of the cavity and acousto-optic modulator parameters, allowing
to obtain only ~4 ps pulses, which could not be described within
the frames of Kuizenga—Siegman theory of active mode-locking
[80]. Earlier a similar phenomenon has been observed in the
acousto-optically initiated passively mode-locked Ti:sapphire
laser, generating 2 ps pulses [81], [82]. This was the first
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experimental observation of the passive mode-locking in the
positive dispersion regime in Cr:ZnSe laser (see Section V-C).

B. SESAM Mode-Locking of Cr:ZnSe and Cr:ZnS

Passive mode-locking of solid-state oscillators using a semi-
conductor saturable absorber [83] is a very versatile approach,
because it contains a number of controllable design parameters
and provides the self-starting ability. It is also perfectly compati-
ble with the mid-IR lasers [84], given the possibility of band-gap
engineering. In 2005 Pollock et al. realized the first semiconduc-
tor saturable absorber (SESAM) mode-locked Cr:ZnSe laser,
generating 11 ps pulses at 2.5 pm at 400 mW output power
[85]. Shortly after that we were able to passively mode-lock
Cr:ZnS laser using an InAs/GaSb based multiple quantum well
SESAM, generating ~1.1 ps pulses at 125 mW of output power
around 2.45 pum [86]. The SESAM sample consisted of a sat-
urable absorber based on 50 layers of InAs/GaSb quantum wells,
grown on top of a dielectric mirror made from 15 alternating
layers of quarter-wave thickness GaSb and AlAsj gsSbg. g2 on
a GaSb substrate (see Fig. 10). The SESAM had a small-signal
absorption of 12% per bounce, a calculated relaxation time of
200-300 ps, and a saturation fluence of 40 ;J/cm?. Under simi-
lar conditions in a Cr’>* :ZnSe laser we obtained ~1 ps pulses at
140 mW ouput power. Adding proper dispersion compensation
the first femtosecond operation was realized in Cr:ZnSe laser,
generating ~ 100 fs pulses at up to 75 mW power around 2.5 ym
wavelength [26].

The schematic of the laser was unusually simple as the disper-
sion compensation for the first time was achieved by using only
a 3 mm thick sapphire plate (see Fig. 11). Selection of sapphire
is not random: a study of possible materials for the bulk disper-
sion compensation shows sapphire to be second best material
after LiF in terms of providing minimum round-trip third-order
dispersion (see Fig. 12, upper graph). Note that using the classic
Brewster-prism pair for dispersion compensation does not bring
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significant improvements (see Fig. 12, lower graph), with third-
order dispersion values being comparable or higher than for the
bulk compensators. This has been later confirmed experimen-
tally in a study [72], where different bulk and prism materials
were compared in a Kerr-Lens modelocked Cr:ZnSe laser.
Further pulse shortening requires means to improve disper-
sion control, compensating, at least partially, the third order. This
can be done using chirped mirrors [88], a meanwhile standard
approach for dispersion control and simultaneous bandwidth ex-
tension in ultrafast optics. Dispersion compensation by chirped
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compensated Cr:ZnSe laser [87].

mirrors is a challenging task in the mid-IR due to the necessity to
fabricate very thick multilayer mirrors. The issues are the den-
sity control of the outer layers and impurities that accumulate
during the long process. The impurities are especially detrimen-
tal at the long-wavelength side, where the optical wave must
have much deeper penetration to provide negative dispersion.
Fig. 13 illustrates the point: the measured in-layer absorption
losses amount to 5% per bounce. The standard quarterwave stack
high reflectors, manufactured in the same coating machine show
less than 0.2% losses in the same spectral range. Nevertheless,
this was the first successful demonstration of the broadband
chirped mirrors in the mid-IR wavelength region, suitable for
intracavity dispersion compensation. The best dispersion com-
pensation turned out to be a combination of two chirped mirrors
and 3.1 mm of YAG. The laser generated 80 fs pulses (ten optical
cycles) at 80 mW output power at 180 MHz repetition rate (see
Fig. 14). This result represents so far the shortest femtosecond
pulses obtained from Cr:ZnSe oscillators.

Further extensions of the SESAM-based setup were to
demonstrate femtosecond Cr:ZnSe [89] and Cr:ZnS [90] laser,
based on polycrystalline (ceramic) active media. When mode-
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taining the fundamental pulse (red) and the intracavity SHG signal (green). The
relative intensities between the spectral parts are not to the scale. The “noise”
features at the spectrum are due to the intracavity water vapor absorption lines
([92], see also Section VI-C). Inset: Autocorrelation trace. The second-order au-
tocorrelation (right feature) appears smaller than the first-order autocorrelation
(left feature) despite its 10° higher energy because the two-photon absorption in
the InGaAs detector at 2.4 zzm is much weaker than direct absorption at 1.2 yzm.

locked in the cavity of Fig. 11, both lasers routinely produced
100-110 fs (~12 optical cycles) pulses at 100-120 mW of av-
erage output power at ~200 MHz repetition rate, results being
similar to those of single-crystal media (see Fig. 15). However,
the complete spectrum and the autocorrelation trace in the two-
photon absorption autocorrelator (see Fig. 15, inset) reveal that
besides the main pulse at ~2450 nm, the laser also emits signal
at second harmonic (SHG) around 1240 nm. The SHG signal can
be seen in the spectrum (see Fig. 15, green trace) and in the auto-
correlator, because the InGaAs detector acts as a one-photon ab-
sorber below 1700 nm. The autocorrelation trace in Fig. 15 thus
contains two signals: the second-order autocorrelation with a
typical 8:1 ratio (left feature) and the first-order autocorrelation,
which is nearly symmetric around the baseline (right feature).
The time delay between the two signals corresponds to the group
delay between 2450 and 1225 nm wavelengths, accumulated in
the 2-mm ZnSe beamsplitter in an unbalanced autocorrelator.
With group velocity mismatch of 278 fs/mm [91], the double
pass through the beamsplpitter at 45° gives 1160 fs delay, well
matching the experimental observation (see Fig. 15, inset). The
SH signal power is about 100-200 W (5—-10 mW intracavity) or
about 1073 of the main signal (0.3-0.6% intracavity conversion
efficiency).

The origin of this SHG signal is the lack of central sym-
metry in tetrahedral zinc blende structure, giving rise to non-
zero second harmonic coefficient. The intracavity SHG from
the Cr:ZnSe laser in CW regime was observed before [40]. It is
clear, however, that the SHG cannot be efficient in single crystal
ZnSe or cubic ZnS because no birefringent phase matching is
possible.

In the polycrystalline samples the situation is different.
The crystal consists of multitude of differently oriented
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microcrystallites, that are comparable or smaller than the ZnSe
coherence length of [, = 22 pm, providing for the quasi-regular
grating of optical inhomogeneities, making collinear SHG in
ceramic Cr:ZnSe possible. From the theoretical standpoint this
effect is described by a model in which a vector phase synchro-
nism is realized in the region of normal crystal dispersion due to
the contribution of the wave vector of the grating [93]. This is in
every respect analogous to quasi-phase matching (QPM), except
that the grains are randomly oriented and have random sizes. In
this case, the random walk model applies [94]-[98]. In com-
parison to the QPM with a regular domain pattern, in random
QPM the conversion efficiency grows linearly with propagation
distance, but the process is non-resonant. Most importantly,
the intensity dependence of the random QPM is still quadratic,
meaning that this process may become significant limitation at
shorter and more energetic pulses. In the experiment, the intra-
cavity SHG results in certain increase of amplitude noise, but it
may open up interesting application opportunities, especially in
the frequency standards area.

In a recent experiment, Kerr-Lens mode-locked Cr:ZnS and
Cr:ZnSe polycrystalline lasers have been demonstrated [99],
however, the authors did not report about SHG issues.

V. HIGH POWER FEMTOSECOND LLASER OSCILLATORS

Successful realization of sub-100 fs chirped mirror controlled
Cr:ZnSe lasers using SESAM served as a strong motivation to
explore the limits in terms of pulse duration, average power and
pulse energy scaling. From the point of view of robustness and
power scalability Cr:ZnS is a material of choice. As discussed
in Section III, the thermo-optical properties of Cr:ZnS are better
suited to power scaling, and this is confirmed in direct compar-
ison [34]. In addition to that, twice smaller nonlinearity [40]
should allow higher intracavity energies before pulse break-up.

It turns out, however, that in the SESAM mode-locked
femtosecond operation substitution of Cr:ZnSe by Cr:ZnS
brings only marginal improvement. In the same experimen-
tal conditions, Cr:ZnS laser produced 130 fs pulse duration at
130 mW output power (0.7 nJ pulse energy), while Cr:ZnSe
laser delivered 132 fs pulse duration at 90 mW output power or
0.5 nJ pulse energy (see Fig. 16). The reason is that the SESAM
is the main absorbing element (~6% unsaturable losses), thus
limiting the efficiency and power handling capacity. Increasing
the intracavity power resulted in deterioration of the beam qual-
ity, loss of mode-locking stability, and eventually the SESAM
damage [100]. The SESAM is also the main frequency-filtering
element [see Fig. 17(a)] and, most importantly, it is also the main
source of the higher-order dispersion [see Fig. 17(b)]. Resolving
this constraint requires either a SESAM-free operation such as
Kerr-lens mode-locking (KLM), thus sacrificing the self-starting
ability, or finding an appropriate saturable absorber which does
not impose power and bandwidth limitations. In what follows,
we shall consider both approaches.

A. Watt-Level KLM Cr:ZnS Laser

KLM [101] makes use of the spatial variation of the res-
onator beam profile due to self-focusing caused by the Kerr
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effect inside the medium. Together with the soft aperture effect,
produced by the gain profile in longitudinally-pumped setup,
self-focusing results in the self-amplitude modulation (SAM)
leading to mode-locking [102]. Since the original publications,
the KLM lasers has become the mainstream of ultrashort-pulse
technology, providing the highest output power and shortest
pulses due to the fact that there is no absorbers or bandwidth-
limiting elements in the cavity. At the same time, the KLM
performance is now defined by the parameters of the active
medium, such as gain saturation intensity and third-order non-
linearity, and in most cases the pulsed operation requires external
initiation.

KLM operation in Cr:ZnSe lasers has been reported in 2009
by the two groups independently [103], [104]. In our first re-
ported experiment [104] we used the chirped mirror dispersion
control and obtained 300 mW of output power at ~200 MHz
repetition rate and 100 fs pulse duration. The limitation was ob-
viously due to the third-order dispersion, because any attempt
to reduce the dispersion resulted into spontaneous switching
to the chaotic positive dispersion regime, later studied in de-
tail in [105]. To the contrary, the setup, reported in [103], used
Tm-fiber pump and the prism dispersion compensation and pro-
duced 95-fs pulses with 40 mW of output power at 94 MHz
repetition rate, later improved to 165 mW with 121 fs pulse
duration [72]. Recently, KLM operation has been demonstrated
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also in a polycrystalline Cr:ZnSe oscillator under Er:fiber laser
pumping delivering up to 30 mW of 126-fs pulses [99].

Significantly higher output power could be obtained with
Cr:ZnS active medium. We used a 2.5 mm thick PVT grown
and diffusion doped Cr:ZnS crystal, that could operate at up to
5 W of Er:fiber pump, delivering in CW regime up to 1.2 W of
output power with 19% output coupler. In a 1 m long cavity with
145 MHz repetition rate the laser [106] generated high spectral
and spatial quality near transform-limited pulses of only 69 fs
in duration at 3.8 nJ pulse energy, 145 MHz repetition rate and
550 mW average output power (see Fig. 18).

Dispersion compensation was achieved with a single 1 mm
sapphire plate and a single bounce from the chirped mirror.
This was possible owing to the shorter active element and al-
most twice lower dispersion of ZnS than in ZnSe (2.5 mm and
123 fs? vs. 4 mm and 220 fs?, respectively). As a positive side
effect, the third order dispersion decreases as well, allowing to
reach even shorter pulse duration as we shall show later. Further
increasing the pump power up to 1 W resulted in double-pulse
regime, with the pulse energy effectively limited to the same
3.8 nJ level. Inside the cavity this corresponded to 20 nJ, and be-
yond this value the nonlinearity in the active medium caused the
pulse break-up. Some improvement to this limit was achieved in
a shorter cavity (bigger mode volume), with up to 1 W of output
power at 210 MHz repetition rate, corresponding to 4.7 nJ energy
[36] at the expense of somewhat longer pulse duration of 75 fs.

Another option to overcome this limit, is to provide higher
outcoupling rate, e.g. using the broadband 20% output coupler
in a folding mode, bringing the effective output transmission to
35% [107]. This brings the maximum output power to 820 mW
(7.8 nJ pulse energy) in single-pulse regime. Fig. 19 summarizes
the results.

It is important to note that all experiments were performed
at room temperature, without active cooling. With proper ther-
mal management and more pump power, higher average power
seems feasible.

B. Chirped-Pulse Cr:ZnS Laser

Increasing the energy beyond the pulse break-up limit, set by
the excess self-phase modulation in the active medium, is pos-
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sible by operating the laser in the positive (normal) dispersion
regime. In this case the propagating pulse acquires strong chirp
and is extended in time. This regime is called a dissipative soli-
ton or, by analogy to chirped-pulse amplifier, a chirped-pulse
oscillator (CPO). This regime, first studied as a side effect [81],
[82], [108] has been put on a solid theoretical basis [109]-[111]
and has now become an accepted and commercially successful
approach to scale up the pulse energies of solid-state oscillators.

The important property of these oscillators is the possibility
to dechirp the output pulse by a simple dispersion stage pro-
viding negative (anomalous) group delay dispersion, such as
e.g. a prism pair, back to the femtosecond domain to regain
the peak intensity required by the applications. Our simulations
based on the analytical theory presented in [111] predict feasi-
bility to scale the pulse energy in the femtosecond Cr:ZnSe and
Cr:ZnS oscillators up to pJ levels [112], [113]. In what follows
we describe our experiments towards implementation of this
ambitious goal.

The first observation of the CPO regime in a Cr:ZnSe os-
cillator occurred in a KLM laser [104], operated under high
third-order dispersion near the dispersion zero crossing. The
laser was able to spontaneously switch the operation wave-
length to the chaotic [105], [114], [115] CPO regime. The CPO
regime has also been demonstrated in the SESAM-modelocked
Cr:ZnS and Cr:ZnSe lasers [100], but as the output parameters
were mostly limited by the SESAM, the achieved energy did
not exceed 1.1 nJ in the best case.

Much better results could be demonstrated using the KLM
setup, where the positive dispersion regime allowed reaching
the 8.4 nJ output energy at 105 MHz (see Fig. 20) and pulse
durations from 0.8 to 2 ps with nearly rectangular 100-nm broad
spectra [107]. Most importantly, the energy scaling was achieved
in a low-output configuration, in which the soliton laser output
energy was limited to 3.8 nJ by the pulse break-up. In the CPO
configuration, the laser operated in a reliably single pulse mode
across the wide range of pump powers, adapting to higher energy
by increasing chirp. Thus it becomes possible to reach even
higher pulse energies in the longer resonators.
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oscillator with extended cavity. The high-frequency modulation is due to the
intracavity water vapor absorption in the atmosphere [17]. (Right) Pulse auto-
correlation traces before and after compression.

This has been demonstrated in [116] and [117], where we
realized the first high-energy graphene mode-locked Cr:ZnS
laser operating in the positive dispersion regime. Extending the
resonator round-trip length to 6.5 m, we obtained pulses with
15.5 nJ energy and 42 nm spectral bandwidth with 0.87 ps
duration (see Fig. 21). The chirp could be compressed with a
simple two-prism compressor at 60 cm distance down to 187 fs
(see Fig. 21, right). The graphene SA provided reliable self-
starting within 0.5 ms after interruption, but also turned to be
the weak point of the setup. The very fast relaxation times of
graphene (<0.2 and 1.5 ps [118], [119]), which are shorter or
comparable to the pulse duration, result in a very high thermal
load onto the graphene layer, causing its irreparable damage, if
the focusing spot is too small [116].

C. Few-Cycle Graphene and CNT Mode-Locking

The advance of graphene and carbon nanotube (CNT) sat-
urable absorbers for mode-locking in the recent years came as
a real break-through to the infrared mode-locked laser tech-
nology. A major advantage of these materials is that they have
very broadband saturable absorption, and allow deposition tech-
niques compatible with most optical materials. With saturation
fluences of tens of ;J/cm? and double decay time of 100-200 fs
and ~ 1.5 ps for intraband electron scattering and optical phonon
cooling, respectively [119] graphene is a convenient and ex-
tremely fast saturable absorber, with nearly uniform spectral
response from the visible to the infrared. Parameters of the
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CNT saturable absorbers vary upon manufacturing and depo-
sition process; their size-dependent absorption bands are typi-
cally located below 2 um. A compilation of mode-locked laser
demonstrations can be found in [120], and new results keep
arriving almost on a monthly basis.

Graphene mode-locking has been first demonstrated in
Cr:ZnSe [121], [122], using a single graphene layer deposited
on a CaF, plate, positioned at Brewster angle in an additional
resonator focus. With a CaF, prism pair for dispersion com-
pensation, the Tm:fiber laser pumped setup produced up to
185 mW of output power with pulse duration between 176 and
200 fs [122]. At 78 MHz repetition rate, the 2.4 nJ output energy
is so far the highest pulse energy, obtained from a Cr:ZnSe-based
laser. Recently, a graphene-gold saturable absorber (GSA) was
used to demonstrate a tunable femtosecond Cr:ZnSe laser [123].

Much higher energy and shorter pulses could be demonstrated
with a Cr:ZnS active medium using a reflection-type saturable
absorber, with graphene single and double layers deposited di-
rectly onto the high reflector end mirror of the resonator (see
Fig. 22). Dispersion compensation was achieved by two bounces
from the focusing chirped mirror and could additionally by ad-
justed by thin YAG wedges at Brewster angle.

A Cr:ZnS laser with this kind of GSA showed remarkable
reliability in self-starting within few 100 us after opening the
cavity and flexibility in resonator configurations. The output
power reached 250 mW level at 108 MHz repetition rate in sin-
gle pulse regime, corresponding to 2.3 nJ pulse energy at 49 fs
pulse duration. Higher output power up to 815 mW was pos-
sible, but only in the multipulsing regime. Even shorter pulse
duration of 41 fs was obtained with a 1.8% output coupler with
75 mW output power (see Fig. 23). At such short duration, the
pulse spectrum fills most of the water-free atmospheric win-
dow and some dry air purging became necessary. The achieved
41 fs pulse duration corresponds to only five optical cycles of
the electric field. These are now the shortest pulses ever gener-
ated from any laser in the mid-infrared wavelength range above
1.5 pm. Combined with the demonstrated power-handling ca-
pability and self-starting, the GSA technology seems to be the
most appropriate for applications.

A CNT saturable absorber mirror has also proved a feasi-
ble alternative to mode-lock a Cr:ZnS laser [126]. The 80-pm
thick CNT layer was essentially single-walled with diameter
1.2—1.8 nm, measured initial absorption of 5.1%, and saturation
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fluence about three times higher than for graphene mirror. The
CNT saturable absorber was able to support mode-locked oper-
ation indefinitely long, but required slight initial perturbation to
start the pulsed regime. It was also more sensitive to overheat-
ing, which resulted in most cases in irreparable spot damage.
With a short cavity at 250 MHz repetition rate the laser emitted
950 mW of average output power (3.8 nJ pulse energy) with 61
fs duration [126] — so far the shortest pulses produced from any
CNT mode-locked laser.

D. High-Power Ceramic Cr:ZnS Oscillator

Graphene saturable absorber also proved very useful in pro-
viding reliable high-power mode-locking of a laser based on
ceramic Cr:ZnS material [127]. The setup utilized a short,
270 MHz cavity and increased negative group delay disper-
sion, providing up to 1.05 W of average output power (3.8 nJ
energy) with 140 fs pulse duration (see Fig. 24).

As compared to the single-crystal based setup described pre-
viously, this experiment utilized shorter active element, causing
the group-delay dispersion to be overcompensated at —500 fs?.
The resulting pulse duration of 140 fs is therefore not optimal
and subject to optimization.

The presented result clearly outperforms not only the
SESAM-based lasers described in Section IV-B. It also gener-
ates over an order of magnitude higher output power and about
8 times higher energy than the recently published Kerr-Lens
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mode-locked Cr:ZnS and Cr:ZnSe polycrystalline lasers [99] at
comparable pulse duration.

E. Summary of Results

Table I summarizes the demonstrated femtosecond and
chirped-pulse Cr** -based lasers discussed in the previous sec-
tions. Note that for every configuration we quote the highest
output power and energy, the shortest pulse duration (FWHM)
and the broadest spectral width (FWHM), which may have not
been obtained simultaneously, or improved after publication.

VI. APPLICATIONS

The main advantage, offered by the Cr>*-based ultrafast
lasers is undoubtedly their unique operation wavelength range.
Therefore, those applications will benefit the most, which crit-
ically depend on this property. A good example is molecu-
lar spectroscopy, where it becomes possible to address directly
the fundamental vibrational frequencies or low-order overtones,
thus gaining orders of magnitude in sensitivity as compared to
the near-infrared sources. Another case in point is pumping the
nonlinear-optical materials, which wouldn’t operate at shorter
wavelengths, but are very efficient in the mid-IR. At the same
time, the mid-IR wavelength region imposes certain constraints,
like e.g. strong absorption of the atmosphere. In what follows we
shall describe those applications that have already been demon-
strated and discuss possibilities that are opening with the recent
advances in high-power femtosecond generation in Cr** -based
media.

A. Femtosecond Lasers for Molecular Spectroscopy

A femtosecond laser can be used in high-resolution spec-
troscopy in various ways, see e.g. reviews [13], [128]-[130].
Even the most simple and straightforward way such as using the
laser as an illumination source in combination with a conven-
tional spectrometer, brings enormous advantage as compared to
the traditional incoherent (e.g. thermal) broadband source. The
unique property of femtosecond and supercontinuum sources is
the combination of a broad spectrum with the perfect transver-
sal coherence, allowing reaching brilliance orders of magnitude
higher than any other source of broadband radiation smaller than
a synchrotron. Spectroscopy of most gas molecules requires res-
olution of Av ~ 0.1 cm™! (typical linewidth in the atmosphere
at normal conditions) or better. To achieve this resolution using
an incoherent source would require reducing the throughput of a
spectral device, e.g. by selecting the Jaquinot stop throughput in
a FT spectrometer (FTIR) proportionally to the required resolu-
tion: S o< Av. With the noise-limited performance, this makes
the signal-to-noise ratio (SNR) proportional to the resolution,
and the recording time required to reach a given SNR thus scales
quadratically with the inverse resolution 7' oc Av~2. Using a
coherent, diffraction-limited beam allows using the maximum
throughput independently from the required resolution. In this
sense, the advantage of the laser sources, which is already sig-
nificant given their higher spectral power density, additionally
grows quadratically with improving resolution.
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TABLE I
ULTRASHORT-PULSED CR>" -BASED LASERS
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Active Crystal Pump source Mode-locking Dispersion Pout FEout AT (fs) A o (nm) References
medium type mechanism compensation (mW) (n)) (nm)
Cr:ZnSe NS NaCl:OH~ AOM no 82 0.38 4400 22 2470 [77]
single Co:MgF, AOM no 400 4 4300-30000 ~2500 [25]
NS Tm:YALO SESAM no 400 33 10800 0.75 ~2500 [85]
single Er:fiber SESAM no 140 0.93 970 ~20 ~2450 [86]
SESAM sapphire 75 0.38 100 60 2450 [26]
SESAM CM + YAG 80 0.44 80 105 2420 [87]
SESAM CM + sapphire 90 0.5 132 47 2420 [100]
SESAM, CPO CM + YAG 100 0.55 730 69 2370 [100]
KLM YAG 300 3 100 72 2500 [104]
KLM, CPO YAG 170 1.7 1000 70 2350 [104]
NS Tm:fiber KLM YAG 41 0.45 116 69 2427-2450 [72]
KLM CaF, prisms 165 1.81 92 76 2451-2459 [72]
KLM MgF, prisms 40 0.4 95 69 2421 [72], [103]
graphene CaF, prisms 185 2.4 176 43 2400, 2500 [121], [122]
poly Er:fiber SESAM sapphire 100 0.47 100 70 2450 [89]
KLM YAG + FS 60, 250* 0.5, 1.5° 100 75 2400 [99]
NS Er:fiber graphene CaF, prisms 66 0.67 116 50 2310-2426° [123]
Cr:ZnS single Er:fiber SESAM no 125 0.83 1100 ~10 2450 [86]
SESAM CM + YAG 130 0.72 130 48 2375 [901, [100]
SESAM, CPO CM 205 1.14 630 102 2410 [90], [100]
KLM CM + sapphire 1000 7.8 69 91 2390 [36], [106],
[107]
KLM, CPO CM + YAG 880 8.2 800-2000 150 2350 [105], [107]
graphene CM + YAG 815 2.3 41 190 2400 [124], [125]
graphene, CPO CM + YAG 890 15.5 870-1200, 65 2350-2450 [116]
189¢
CNT CM 950 3.8 61 85 2350 [126]
poly Er:fiber SESAM sapphire 120 0.67 116 50 2390 [90]
KLM YAG + FS 30 0.25 125 45 2350 [99]
graphene CM 1050 39 140 45 2349 [127]

AOM: Acousto-optic modulator; CM: Chirped mirror; NS: Not specified; CPO: Chirped-pulse oscillator; FS: Fused silica.

2 With extracavity amplification. ® Tunable. ¢ After extracavity compression.

This approach has been first realized with a femtosecond OPO
at 3.5 pum [8], [131]. The simple home-made FTIR arrangement
and several mW of the idler OPO beam allowed reaching only
2.6 cm~! resolution, but demonstrated feasibility of the tech-
nique. Shortly after the first femtosecond Cr:ZnSe laser had
been developed, it was used to record spectra with 0.125 cm ™!
resolution within 13 s and with 3800 SNR [10]. The experiment
utilized a commercial FTIR spectrometer, a single-pass 70-cm
gas cell, and a femtosecond Cr:ZnSe laser at 200 MHz repetition
rate (see Fig. 25).

The laser has been put into an evacuated chamber that con-
tained water-free gas mixture guaranteeing that the output spec-
trum is free of the intracavity absorption signal (see Section
III). This, in turn, required that the laser should be reliably self-
starting, which was provided by the SESAM structure. Fig. 26
shows the output spectra before and after the acetylene gas cell,
as well as the retrieved absorption signal.

In the setup, the complete spectrum could be recorded within
only 13 s, set by the FTIR mechanics at maximum resolution.
The observed SNR ratio reached 3800, despite the fact that the
70 mW signal had to be attenuated by about 100 times in order to
stay within the safe limits of the detector. This clearly shows the
potential of the technique, which can tolerate significant beam
attenuation e.g. in a remote sensing mode or within a multipass
cell.

Cr*:ZnSe

!

YAG SESAM
on heatsink
0OC 2%
EVACUATED CHAMBER
70 cm absorption cell
Atten.
FTIR
Fourier-transform Er-fiber
spectrometer pump laser

Fig. 25. Experimental setup for high-resolution mid-IR molecular spec-
troscopy (adapted from [10]). CM: Chirped mirror.

B. Dual-Comb Spectroscopy

The radical shortening of the recording time can be reached
by eliminating the slowest part of the setup—the mechanical
FTIR spectrometer. This can be done by using a second fem-
tosecond laser operating at the slightly different pulse repetition
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Fig. 26.  Acetylene absorption measurement (adapted from [10]). Red: Pulse
spectrum (baseline), black — spectrum after acetylene cell propagation. Inset
shows the detail of the retrieved spectrum with spectral line designations.
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polarizer.

Dual-comb setup at 2.4 pm (adapted from [13]). TFP: Thin-film

rate, the dual-comb approach. This method, originally suggested
in 2004 [11] uses cross-correlation signal provided by the in-
terfering pulse sequences to obtain complete Fourier spectra
at a rate, equal to the repetition rate difference between the
two lasers, typically few hundreds spectra per second, allow-
ing spectroscopic recording of transient processes [132]. The
dual-comb spectroscopy has a natural application focus in the
mid-IR. Originally demonstrated with a difference frequency
generation [11], [132], it has been extended to include OPOs
[133] and coherent Raman interaction [134]. Cr>* -based lasers
allow bringing the dual-comb spectroscopy directly to the mid-
IR in a most straightforward way. The feasibility of such ap-
plication has been demonstrated with the Cr:ZnSe femtosecond
lasers [13].

The experimental setup included two identical Cr:ZnSe laser
based on ceramic materials [89], pumped by a single Er-fiber
laser, providing up to 2 W finely controllable power in two
channels (see Fig. 27). The lasers were made transportable with a
footprint of 30 x 60 cm each and operated at 200 MHz repetition
rate with about 400 Hz difference. The interference signal was
recorded with a fast extended-InGaAs detector. All equipment
operated at room temperature. With a sample cell in one arm
(see Fig. 27) it was possible to obtain the first proof-of-principle
spectra of the acetylene v; + v} band (see Fig. 28). Taking the
10 s burst length for the fast FT, 0.4 cm~! resolution in the
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Fig. 28.  Acetylene spectrum, obtained from a single burst [13].

optical domain can be obtained, sufficient for clear identification
of the species in the sample and its concentration measurement.
Such spectra can be recorded every 2.5 ms.

C. Intracavity Absorption and Protected Delivery

The mid-IR spectral range, being very promising for spec-
troscopic applications, itself represents a challenge, because the
atmosphere is not completely transparent anymore. Water va-
por absorption lines are present almost everywhere, except the
2.1-2.4 window. This leaves only a relatively narrow operation
range. For all other wavelengths water absorption lines represent
an issue to be dealt with. The effect of the molecular absorption
lines turns out to be tremendously different when the absorption
takes place inside the cavity. The reason for this is that pulse
propagation in a femtosecond oscillator is nonlinear. In com-
parison to linear propagation through the atmosphere or a gas
cell outside of the cavity, where absorption line causes a narrow
dip in the spectrum, the nonlinear interaction continuously fills
the spectral gap. At the same time the nonlinearity causes phase
delay of the pulse with respect the phase velocity of a linear
wave. The narrowband absorption feature in time domain is a
long tail behind the pulse, with negligible overlap with the high-
intensity pulse. Therefore, the tail propagates as a linear wave,
and accumulates phase difference with the pulse itself. The an-
alytical description of this process [92], [135] stipulates that the
steady-state solution occurs when phase delay reaches 90°, so
that the absorption line becomes a dispersion-like feature (blue
line in Fig. 29).

In addition to the predictable shape, the intracavity absorption
signal has also a well-defined amplitude, which can be calcu-
lated using the design and observable parameters such as the
dispersion and spectrum width [92]. This amplitude is typically
an order of magnitude higher than in the corresponding extra-
cavity signal in a cell with the length equal to the round-trip
length of the laser resonator. This is clearly seen in Fig. 29,
where the amplitude of the blue signal is comparable to the grey
signal, while the absorbing gas concentration is 17 times lower.

The enhancement of the intracavity absorption signal can be
further increased in the CPO. The analytical theory [135] pre-
dicts that while the intracavity absorption signal near the spec-
trum center is comparable to that for the conventional (soliton)
laser, there is an additional strong enhancement near the spec-
tral edges. Experimental observation using a Cr:ZnS laser have
demonstrated a 140-fold enhancement of the absorption sig-
nal [138]. Fig. 30 compares the water vapor absorption over the
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Spectral intensity (rel. units)

/

Fig.29. Comparison of the extra-cavity (gray, 17 mbar acetylene, path 70 cm)
and intracavity (blue, 1 mbar acetylene, round-trip path 150 cm) absorption
signals with a femtosecond Cr:ZnSe laser [136], [137].
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The lower graph shows the expanded view of the spectrum edge. The dark red
signal is the spectrum after propagation in 2 m of ZBLAN fiber.
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round-trip (blue) with the laser output spectrum (green), demon-
strating the near-edge enhancement. The dark red signal shows
the spectrum after propagation the 2 nJ pulse in a ZBLAN fiber.
After initial chirp compensation, the high energy of the pulse is
sufficient to initiate soliton fission, again resulting in accumula-
tion of an additional phase delay with respect to the narrowband
tail. The result is the conversion of the dispersion-like signal to
a more familiar peak-type signal (phase delay —200°) as seen
in the lower graph.

Thus, the intracavity absorption in a femtosecond laser does
not prevent operation, and can even be useful for spectroscopic
and sensing purposes. However, if the laser is going to be used as
a source for spectral measurements, the narrowband modulation
due to the atmospheric absorption is not desired. While the laser
itself can be protected, like e.g. in Fig. 25, there still remains an
issue of beam delivery to the object. This can be solved by an
optical fiber, which do exist for this spectral region, however, the
propagation becomes necessarily nonlinear. Luckily, the typical
and commercially available ZBLAN fiber, offering transparency
between 2 and 3 pm also has a reduced nonlinearity and a
fairly flat anomalous dispersion curve. This allows propagating
pulses form Cr:ZnSe and Cr:ZnS with typical durations and en-
ergies through a single-mode ZBLAN fiber close to the soliton
regime, i.e. maintaining the pulse temporal and spectral width
[139]. Fig. 31(a) and (b) show the output spectra at different
launched energies. It is evident that the spectrum gets somewhat
narrower at energy corresponding to half of the fundamental
soliton(N = 0.5) and then restores it original width at N =1
energy. At this point the output pulse width becomes equal to
the launched [see Fig. 31(c) and (d)], i.e. the pulse propagates
practically undisturbed. Some spectrum shift which is observed
on the experimental trace [see Fig. 31(b)] is obviously due to
the Raman interaction, which was not included into the simu-
lation. For shorter pulses the launched energy will be higher,
according to the soliton area theorem E - 7 = 2|32 /7, but still
lies close to the typical parameters, described in the previous
sections.

D. Mid-IR Parametric Oscillators

Besides spectroscopic applications, high energy femtosecond
Cr:ZnSe and Cr:ZnS lasers are interesting as pump sources for
nonlinear optical conversion, especially in combination with
materials, which cannot operate with other, shorter-wavelength
femtosecond oscillators. A good example is the orientation
patterned GaAs (OP-GaAs)—an analogue to the periodically
poled nonlinear crystals, allowing quasi-phase matched oper-
ation and possessing a number of special properties, such as
very high nonlinear coefficient d;4 = 94 pm/V and extended
transparency region up to 17 pm [140]. This material cannot be
pumped with available Ti:sapphire, Yb- or Er-doped femtosec-
ond oscillators because of direct or two-photon absorption. Us-
ing the OP-GaAs would have required therefore an additional
OPO stage [141] with the corresponding loss of performance
and cost increase. With Cr:ZnSe pump source, OP-GaAs has
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Fig. 31. Propagation of a 110-fs pulse in ZBLAN fiber. Simulated (a) and

experimental (b) output spectra at different launched pulse energy. Input (c) and
output (d) autocorrelation traces at N = 1 soliton energy. Adapted from [139].

been shown to generate broadband radiation between 4.5 and
5.4 pm [142].

The experimental setup used synchronous pumping by the
182-MHz Cr:ZnSe laser with pulses about 100 fs duration cen-
tered at 2.45 pm (blue spectrum in Fig. 32). The average power
at the OPO input was limited to 100 mw or 0.55 nJ pulse en-
ergy, which was focused by a 50-mm r.o.c. mirror on the OP-
GaAs sample. The 0.5-mm thick OP-GaAs device had only
5 domain reversal periods of 92 pm thickness, thus allowing
quite broadband gain. With a pump threshold at 60 mW (0.33
nJ), the OPO delivered broadband output spectrum (dark red
in Fig. 32), almost completely filling the transparency region
between the CO, band at 4.3 um and the water absorption band
above 5.5 pum. It is worth noting, that the spectral width of
the OPO depends mostly on the dispersion and available pump
[143], [144], and already in this experiment exceeded that of the
Cr:ZnSe laser. With the recent advances in high-energy, short
pulse Cr:ZnS oscillators like described above, the subharmonic
OPO will become even more efficient and versatile, opening
way to practical applications of such sources.
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VII. CONCLUSION

Cr’>"- based femtosecond lasers—notably Cr?*:ZnSe and
Cr>*:ZnS—have come of age. In particular, Cr>*:ZnS can be
truly called now “Ti:sapphire of the mid-infrared”. Both, in
single crystalline as well as ceramic form, Cr’*:ZnS lasers
now produce exceptionally stable low frequency noise near
transform-limited pulses — frequency combs - with a pulse du-
ration down to five optical cycles (~40 fs) at Watt-level output
powers and tens of nanojoule pulse energies directly from the
oscillator. The good power handling capabilities of Cr>*:ZnS
together with the smaller than in Ti:sapphire Stokes shift makes
this material comparable to Yb:YAG in terms of power scaling.
Future improvements of the thin-disk and CPO designs in a
master oscillator power amplifier geometry will be the way for-
ward to obtain high powers and high energies from these lasers,
which makes them particularly attractive for efficient X-Ray
generation as well as for a multitude of industrial applications.

As such, these compact and robust fiber-laser pumped fem-
tosecond mid-IR sources are perfect tools for ultraprecise and
ultrasensitive spectroscopy, with sensitivities that reach well
into the ppb or even the ppt range. Advanced realizations of such
spectroscopic devices include, but are not limited to a frequency
comb FT spectrometer as well as a dual-comb spectrometer. The
latter device represents a leap forward in modern spectroscopic
techniques as it allows reaching virtually unlimited resolution
and ms recording speeds. One of the immediate applications
would be hydrocarbon detection and chemical fingerprinting of
oil and oil related trace gases. Another obvious use is breath
analysis. The unprecedented sensitivity offered by femtosec-
ond sources in this wavelength region allows for the monitor-
ing and early prediction of various human diseases, which in-
cludes early cancer recognition. The same laser features, which
are attractive for sensor applications, namely, the possibility to
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adjust the wavelength of the laser to the desirable absorption
band, make these lasers desirable tools also for fine surgery of
biologic tissue, e.g. in ophthalmology and brain surgery.
Looking into the future, one may envisage engineered ceramic
Cr?* -laser materials with desirable laser and nonlinear proper-
ties. This will allow, for example, the practical use of the effect
of simultaneous generation of two phase matched frequency
combs in one and the same laser, one at the fundamental fre-
quency and one at second harmonic that we recently observed.
Such a “double pulse” femtosecond comb source might become
compact and cost-effective frequency transfer device for preci-
sion metrology and transportable optical frequency standards.

Note Added in Proof: Dramatic improvements of laser pa-
rameters listed in Table I have been achieved since the final
revision of this paper. In particular, a GHz-class femtosecond
Cr:ZnS with up to 0.8 W of output power at 0.96 GHz repetition
rate has been demonstrated in out group and is due to be reported
at ASSL 2014 conference. At CLEO 2014 the authors of Ref.
[99] reported a Kerr-lens mode-locked ceramic Cr:ZnS laser
with up to 2 W of output power and up to 0.25 W of intracavity
SHG.
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