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Abstract—Graphene is establishing itself as a new photonic ma-
terial with huge potential in a variety of applications ranging from
transparent electrodes in displays and photovoltaic modules to sat-
urable absorber in mode-locked lasers. Its peculiar bandstructure
and electron transport characteristics naturally suggest graphene
could also form the basis for a new generation of high-performance
devices operating in the terahertz (THz) range of the electromag-
netic spectrum. The region between 300 GHz and 10 THz is in
fact still characterized by a lack of efficient, compact, solid state
photonic components capable of operating well at 300 K. Recent
works have already shown very promising results in the develop-
ment of high-speed modulators as well as of bolometer and plasma-
wave detectors. Furthermore, several concepts have been proposed
aiming at the realization of lasers and oscillators. This paper will
review the latest achievements in graphene-based THz photonics
and discuss future perspectives of this rapidly developing research
field.

Index Terms—Terahertz (THz), detectors, modulators, field ef-
fect transistors, far-infrared, lasers, plasma waves, plasmonics.

I. INTRODUCTION

S INCE the initial demonstration of microwave devices and
of the first semiconductor laser more than 50 years ago,

both electronics and photonics have experienced a rapid evo-
lution. The progress in solid-state high-frequency components
was driven by the need of ever-shorter wavelength in precision
Radar systems and by the demand for ever-higher bandwidth
in wireless communication links. Likewise, the extension of the
wavelength in semiconductor lasers from the near-infrared of the
first GaAs laser diodes to the ultraviolet was stimulated by the
need of small, compact visible sources for optical data storage
and retrieval, displays, optical sensing, and medical treatment.

For the terahertz (THz) region (0.3–10 THz, λ ∼ 1 mm–
30 μm), on the contrary, the first compelling applications are
just now being identified. The interaction between THz waves
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and matter was indeed a mostly neglected research area for a
long time, until milestone progresses in the technology to pro-
duce and detect THz waves were achieved at the beginning of
the 1980s. The most significant advancements were the design
of ultrafast switches [1], [2], the demonstration of optical recti-
fication [3], and the use of photoconductive antennas [4]. Even
more important was the realization of free-space electrooptical
sensing [5], which allows an extremely wide detection band-
width from 100 GHz up to 50 THz.

The development of the above-mentioned components and
techniques in turn allowed the invention of THz time-domain
spectroscopy (TDS) [6] and, later on, the first use of THz TDS
for imaging [7].

The availability of a reliable technology to produce and detect
THz radiation with high SNRs has then prompted in the last
decade a major surge of research aiming at the use of THz
radiation for a variety of commercial applications in a variety
of fields ranging from industrial process and quality controls, to
medical diagnosis, biochemical analysis, and security screening
[8]–[10].

Despite these advances, generation and detection of THz ra-
diation in these systems takes place indirectly from the conver-
sion of an optical beam, meaning also that the high dynamic
range achievable is the result of a coherent detection scheme
requiring a rather complex and costly setup. Although many
competing, compact, electrically controlled, solid-state tech-
nologies already exist for the direct generation, manipulation,
and detection of THz waves [11], they all suffer from one or
more drawbacks that are currently still limiting the widespread
exploitation of THz photonics.

The unique optoelectronic properties of graphene make it
an ideal platform for a variety of photonic applications [12],
including fast photodetectors [13], transparent electrodes in dis-
plays and photovoltaic modules [14], optical modulators [15],
plasmonic devices [16], and ultrafast lasers [17]. Owing to its
high carrier mobility, gapless spectrum, frequency-independent
absorption, and the possibility to deeply alter its dielectric con-
stant through electrical gating, graphene is a very promising
material for the development of modulators, sources, and de-
tectors operating across the far-infrared. Theoretical proposals
have in fact been quickly formulated right after the first graphene
breakthroughs, but in the last 1–2 years very promising device
implementations have indeed begun to be realized. Here we will
review the main achievements in this very recent, but rapidly
progressing field, and will discuss the opportunities for new
performance improvements and further exciting discoveries.
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II. MODULATORS AND PLASMONIC DEVICES

Many possible applications of THz photonics require high-
speed modulation or switching of the THz beam. One can for
instance consider high-throughput wireless communications in
short-range links; another possibility is the development of fast
spatial light modulators to circumvent the difficulties and costs
of 2-D detector arrays in imaging systems. Among available
THz sources, quantum cascade lasers [18] can already support
very high modulations rates up to tens of GHz [19]; these,
however, are not yet room temperature devices, and the direct
current modulation of the lasers often poses other problems, like
simultaneous AM and FM contributions, instabilities, necessity
of using small low-power lasers, etc.

For such reasons, researchers have been pursuing the devel-
opment of separate electrooptic modulation components that
can be used independently of the chosen source-detector com-
bination.

Graphene lends itself naturally as an excellent material for
broadband electrooptic modulators in the infrared range, thanks
to the possibility of controlling the absorption coefficient of
interband transitions [15]. Shifting the chemical potential via
electrostatic gating below and above half the frequency of the
impinging radiation, the absorption can indeed be tuned from
the flat characteristic 2.3% value of graphene to basically zero,
owing to Pauli blocking of the transitions. Higher modulation
amplitudes can then be achieved employing multiple stacked
layers. In the THz, however, this mechanism is not directly
applicable since, for such low energies, the optical properties
are mainly dominated by the intraband electronic response of
the 2-D electron gas (2DEG).

In the far-infrared region of the electromagnetic spectrum, the
most successful approach to electrooptic modulation compatible
with room temperature operation is to exploit the variation of
dielectric constant (real and imaginary part) with the charge-
carrier density of a semiconductor structure. This variation can
in fact be quite large and easily obtained by electrical gating.

The simplest configuration is based on a gated 2DEG in a
GaAs/AlGaAs heterostructure modulating the absorption (and
hence the transmission) of the THz wave propagating across
the device [20], [21]. Although the response of the 2DEG is
largely broadband, the attainable modulation depth is just a few
percents, with further limitations arising from the signal loss due
to the metallic gates employed and from the relatively large RC
constants resulting from the large wavelength-size gates, which
restrict operation to the kilohertz range.

Despite the Dirac-like relativistic dispersion of the bands [22],
the free-electron contribution to the ac conductivity of graphene
is not different from that of a conventional massive 2DEG, pro-
vided the Drude weight expression is written in terms of the
cyclotron mass [23]. A graphene-based THz modulator concept
can then be easily implemented following the same configu-
ration just described for semiconductor heterostructures [20].
On the other hand, the typically larger conductivity achievable
in graphene sheets should immediately lead to higher modula-
tion depths, with a further added possibility of substituting also
the metallic gate with a graphene layer [24]. The latter con-

Fig. 1. (a) Operating principle of the graphene THz modulator: intensity
of intraband absorption varies with chemical potential owing to the different
density of states available. (b) Scheme of the actual device implementation.
(c) Transmission as function of radiation frequency for zero and 50 V gate bias.
(Adapted by permission from Macmillan Publishers Ltd: [25], copyright 2012).

figuration would be highly beneficial; a simple transfer-matrix
analysis shows in fact that the achievable modulation ampli-
tude for the transmitted THz wave is the largest when gate
and channel possess similar conductivities [24]. Furthermore, a
graphene gate would also decrease attenuation with respect to a
metal one. Overall, modulation depths close to 100% have been
predicted.

First practical realizations have been obtained in the last
year using a SiO2 /lightly p-doped Si substrate (sufficiently
transparent in the THz) with a ring-shaped electrode to con-
trol the graphene charge density, as schematically sketched in
Fig. 1 [25]. A modulation amplitude as large as 15% has been
demonstrated around 600 GHz. As expected, the amplitude is
also relatively frequency independent when interference effects
and substrate contributions are removed. Soon after, a modified
configuration devised to operate in reflection has been optimized
to maximize the electric field amplitude at the graphene sheet
position [26]. In this latter work, a modulation depth of about
64% has then been achieved. This latter device concept has also
been developed into a 4 × 4 modulator array suitable for first
practical imaging applications [27].

A more sophisticated configuration for electronic THz mod-
ulation relies on the use of plasmonic metamaterials. A periodic
metallic structure is employed with the purpose of producing a
resonance in the optical response, with an electric field inten-
sity efficiently confined in specific regions of space. The width
and intensity of this resonance are strongly dependent on the
losses of the substrate material in the region where most of
the field is localized, and the losses can then be tailored by
locally changing the charge carrier density via electrical gat-
ing [28], [29]. Although in this case the operation of the modu-
lator is limited to a relatively narrow bandwidth, roughly defined
by the resonance, large modulations of more than 50% can be
reached thanks to the field enhancement [30]. Furthermore, by



8500109 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2014

Fig. 2. (a) AFM images of graphene microribbon samples with widths ranging
from 1–4 μm. (b) Electrical-gating control of plasmon resonance in a microrib-
bon sample. The terahertz radiation is polarized in the plane orthogonal to the
grating. The resonance blue-shifts and gains oscillator strength with increasing
carrier concentration. The inset shows free-carrier absorption for polarization
parallel to the grating. (Adapted by permission from Macmillan Publishers
Ltd: [33], copyright 2011).

integrating a high-electron-mobility transistor into each unit cell
of the metamaterial, switching speeds above 10 MHz can be ob-
tained [31].

Collective charge excitations (plasmons) in graphene [16] nat-
urally present strong similarities to the electromagnetic waves
propagating at the boundary between a metal and a dielectric
(surface plasmons). Specifically, they are characterized by a
transverse magnetic polarization and by an exponentially de-
caying electric field amplitude in the direction orthogonal to the
graphene plane. Being the electron motion frozen in the plane,
and owing to the Dirac-like band profile, graphene plasmons
present a qualitatively different dispersion and display tighter
field localization and reduced propagation losses than metal
surface plasmons [32]. Moreover, plasmon charge can be elec-
trostatically controlled, making graphene the ideal solution for
the implementation of reconfigurable metamaterials to be used
as THz modulators.

Electromagnetic radiation cannot couple directly to 2-D plas-
mon excitations, but the issue can be addressed using structures
engineered on a subwavelength scale. One simple geometry is a
periodic grating of graphene microribbons as that described in
Fig. 2 [33].

The plasmon resonance energy scales as n1/4 (n being the
carrier density) for Dirac plasmons in a microribbon array and
with w−2 , w being the ribbon width. Providing electrical gating
through an ion gel top electrode allows then a modulation of
the THz transmission of up to 15% of the value at the charge
neutrality point as reported in Fig. 2 [33].

More recently, THz switching devices in which the change in
conductance of a graphene layer is used to externally modulate
the LC resonance of a periodic pattern of metallic metaatoms
have been proposed [34]. In this case, the graphene sheet is in
direct contact with hexagonal metallic rings and is sandwiched
between two metallic electrodes shaped in the form of strongly
subwavelength gratings embedded in a dielectric. The latter are
used to provide the necessary gate bias but are also transparent
to THz radiation, acting basically as wire grid polarizers. Fig. 3
shows the device construction and a colormap of the relative
modulation of the transmission as function of frequency and
gate voltage.

Fig. 3. (a) Schematic configuration of a reconfigurable graphene-based meta-
material. (b) Microscope image of the actual device; the hexagonal metaatoms
and wire-grid electrode are visible. (c) Transmission, amplitude, and phase
modulation as function of terahertz frequency and gate voltage. (Adapted by
permission from Macmillan Publishers Ltd: [34], copyright 2012).

In the proximity of the resonance, modulation amplitudes as
large as 47% have been recorded, with a phase modulation of
about 32◦ [34]. In a further device featuring a metamaterial with
multilayer graphene, record values of 58% (corresponding to
14%/μm) and 65◦ have been achieved [34]. Multilayer stacks,
in fact, enhance plasmonic resonances, an effect that is a direct
consequence of the n1/4 scaling law for the energy (n1/2 for the
amplitude) of Dirac plasmon resonances [35].

Beyond modulators, further electrooptic THz devices are ob-
viously possible and being considered. Among these, the most
interesting are probably reconfigurable graphene-based anten-
nas where response frequency and radiation pattern are electri-
cally controlled [36], [37]. Dynamically tunable metamaterials
for “cloaking” applications have also been proposed [38].

Finally, it has to be mentioned that optically controlled THz
modulators exploiting the interband absorption of a laser pump
to change the semiconductor carrier density are also possible.
In this respect, the use of graphene on top of the semiconductor
(e.g., silicon) has been shown to yield better results, thanks to
a transfer of photoexcited electrons from the semiconductor to
the higher mobility graphene layer [39].

III. DETECTORS

Photodetection of far-infrared radiation is relevant for a va-
riety of strategic imaging applications, ranging from medical
diagnostics to process control and homeland security. THz rays
can in fact penetrate commonly used dielectric materials, oth-
erwise opaque for visible and mid-infrared light, allowing de-
tection of substance-specific spectroscopic features and a sub-
millimeter diffraction-limited lateral resolution. In this perspec-
tive, the development of a breakthrough solid-state technology
for fast, room-temperature (RT) THz detectors, eventually inte-
grated in high-speed multipixel arrays, is highly desired.
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Commercially available THz detectors are based on thermal
sensing elements that are either very slow (10–400 Hz modu-
lation frequency for Golay cells or pyroelectric elements, with
noise equivalent powers (NEP) in the 10−10 WHz−1/2 range)
or require deep cryogenic cooling (4 K for superconducting
hot-electron bolometers), while those exploiting fast nonlinear
electronics (Schottky diodes) are usually limited to low-THz
frequencies for best performances [40].

More recently, electronic devices based on the gate-
modulation of the conductance channel by the incoming ra-
diation have been realized in high-electron-mobility transistors
(HEMT), FET, and Si-MOSFET architectures, showing fast re-
sponse times and high detectivities [41], as well as the possi-
bility of implementing multipixel focal-plane arrays [42]. This
approach was also recently extended to InAs nanowire FETs
operating as RT detectors in the 0.3–3 THz range [43], [44].

The operating mechanism of a FET detector is not trivial
[41], [45], [46], but can intuitively be interpreted as deriving
from the nonlinear dependence of the FET channel current on
the gate voltage near the pinch-off point. These devices have
the advantage that the responsivity can be maximized with the
gate bias VG , while measuring the output at the drain with
no source–drain bias applied, thus dramatically improving the
SNR. THz detection in FETs is mediated by the excitation of
plasma waves in the transistor channel. On one hand, a strong
resonant photoresponse is predicted in materials having plasma
damping rates lower than both the frequency ω of the incoming
radiation and the inverse of the wave transit time τ in the channel.
This requires mobilities of at least several thousand cm2 /Vs at
frequencies >1 THz. Under these conditions, stationary states
arising from the quantization of plasma waves over the gate
length are excited whenever Vg is such that nπs/(2Lg ) = ω,
where n is an odd integer, s the plasma-wave velocity, and Lg

the gate length. On the other hand, when plasma oscillations are
overdamped, i.e., decay on a distance smaller than the channel
length, broadband THz detection is predicted [41]. In this case,
the oscillating electric field of the incoming radiation applied
between source and gate electrodes produces a modulation of
both charge density and carrier drift velocity. Carriers travelling
toward the drain generate a continuous source–drain voltage,
Δu, controlled by the carrier density in the channel. This can
be then maximized by varying Vg .

Resonant photodetection is still to be fully demonstrated at
RT, although some suggestive evidences were reported for high-
electron-mobility transistors [47], [48], while the large, spec-
trally sharp, and tunable responsivity enhancements with respect
to the nonresonant case are still to be achieved. High mobility
at RT is therefore crucial to take full advantage of resonant
detection.

The naturally occurring 2DEG in a doped graphene sheet has
a very high mobility even at RT [22]. Furthermore, it supports
plasma waves that are weakly damped in high-quality sam-
ples [16], [32]. Thus, single-layer and bilayer graphene FET
(GFET) plasma-based photodetectors could outperform other
THz detection technologies.

The practical development of graphene-based photodetectors
has been mainly limited so far to the visible to near-infrared

Fig. 4. (a) Schematic diagram of a graphene bilayer phototransistor. (b) Cor-
responding band profile. (From ref. [53], copyright (2009) by the American
Physical Society).

range, exploiting the creation of electron–hole pairs following
light absorption [13], [49]–[51]. In the THz range, however, the
photon energy is just a few meV, and light absorption is pre-
vented by Pauli blocking, owing to the unavoidable doping of as-
produced graphene samples, and charge inhomogeneities [52].
In the last few years, however, two technological approaches
have been proposed and theoretically investigated.

A. Graphene Bilayer Field-Effect Phototransistor

The proposed technology is based on a graphene bilayer chan-
nel separated by a dielectric layer from the back gate [53]. The
latter provides the formation of a 2DEG in the channel when the
back gate is biased positively with respect to the source and the
drain: a top electrode serving as the top gate is also present and
biased negatively (see Fig. 4). The device operation is associated
with the variation in the source–drain electron current under il-
lumination, when electron–hole pairs are generated across the
bilayer bandgap created in the high-transverse field region be-
low the gate. The photogenerated electrons are swept out to the
conducting sections, whereas the photogenerated holes accu-
mulate in the depleted section, lowering the potential barrier for
the injected electrons. High-k dielectrics for the gates are pre-
dicted to allow a rather high detectivity in the range of photon
energies above a bias-dependent cut-off frequency in THz. The
responsivity (Rv ) values can be larger, even at RT, than those
of cryogenically cooled quantum well and quantum dot infrared
photodetectors (QWIPs and QDIPs), mainly thanks to the rela-
tively large quantum efficiency of the interband absorption and
to the photoelectric gain. Moreover, since the cutoff photon en-
ergy depends on the applied voltages such device technology can
be easily implemented to realize detectors with voltage-tuned
spectral characteristics and multicolor RT detector arrays.

B. Multiple Graphene-Layer (GL) Structures With Reverse
Biased p–i–n Junctions

Devices with multiple graphene structures have been pro-
posed with either p- and n-doped sections in the GLs near
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Fig. 5. Schematic diagram of multiple-GL structures with (a) doped and
(b) electrically induced p–i–n junctions. (Reprinted with permission from
ref. [54], copyright 2010, American Institute of Physics).

the Ohmic side contacts [see Fig. 5(a)], or with split gates
which provide the formation of the electrically induced p- and
n-sections [see Fig. 5(b)]. The gates are properly separated from
the graphene by an insulating SiO2 or HfO2 layer [54].

The predicted operating principle is here similar to a stan-
dard p–i–n photodiode, i.e., associated with the interband pho-
togeneration of the electrons and holes in the intrinsic sections
by the incoming THz radiation. The photogenerated electrons
and holes propagate under the electric field created by the bias
voltage in the directions toward the n-section and p-section, re-
spectively. A dc or ac photocurrent is therefore induced in the
circuit. The authors underline the increased Rv of the proposed
structures with respect to QWIPs having a number N of quan-
tum wells equal to the number of graphene layers. Here indeed
Rv ∝ N , while in a QWIP Rv is N -independent. Another in-
teresting point is that such proposed detector, if operating in
different spectral ranges, would exhibit the same dark current,
in contrast to QWIPs or QDIPs where any transition of lower
photon frequency would require lower ionization energy and,
hence, exponentially higher dark current. Multiple-GL struc-
tures could also surpass narrow-gap and gapless semiconductor
photodetectors like HgCdTe, owing to the relatively low ther-
mogeneration rate mediated by optical phonon absorption, with
respect to the high rate mediated by strong Auger processes that
is typical of the latter class of materials.

From an experimental point of view, cryogenic graphene
bolometric detectors have been recently developed, and their
operation demonstrated in the mid-infrared [55]. Graphene is
indeed particularly well suited for bolometer devices that de-
tect temperature-induced changes in the electrical conductivity
caused by the absorption of light. Its small electron heat capacity
and weak electron–phonon coupling lead in fact to large changes
in the electron temperature. The proposed technology indeed
exploits the small electron–phonon scattering and broadband
photon absorption of graphene to realize a sensitive and broad-
band photon detector. When light is absorbed by a dual-gated
bilayer graphene (DGBLG), the electrons heat up easily due to
their small specific heat (see Fig 6). The weak electron–phonon
interaction creates a bottleneck in the heat path, decoupling elec-

Fig. 6. Schematic of bolometer device geometry with electric-field-effect gat-
ing. (Reprinted by permission from Macmillan Publishers Ltd: [55], copyright
2012).

trons thermally from the phonon bath. Light illumination causes
a resistance change ΔR in the sample. This photon absorption-
induced ΔR is then converted to a detectable electrical signal.

The observed photoresponse is dominated by thermal effects,
with the majority of the optical energy lost first to hot electrons
and then to acoustic phonons. The developed detector exhibits an
electrical NEP of about 33 fWHz−1/2 at 5 K), which corresponds
to an optical NEP of about 1.5 pWHz−1/2 when considering the
2.3% absorption coefficient of a graphene monolayer. A high
intrinsic speed (>1 GHz at 10 K) is also demonstrated [55].

Recent theoretical papers [56], [57] have analytically shown
the advantages of graphene as a basis for novel THz plasma
waves devices. The spectrum of plasma waves is extremely sen-
sitive to the electron (hole) mass and the plasma properties of
a 2DEG become more pronounced with decreasing effective
masses and increasing electron mobility. Although the disper-
sion of plasma waves in gated graphene is strongly nonlinear
and density dependent, for fairly long wavelengths compared to
the gate-graphene distance, a linear approximation holds quite
well. The resulting plasma velocity s considerably exceeds that
of electron (hole) III-V 2DEGs, being s = ωp /k � 106 m/s, even
at rather low electron densities. As a result THz plasma waves
could be resonantly excited even in relatively large-scale de-
vices. Moreover, since s is strongly electron density dependent,
ωp should be tuneable in a wide range with the gate voltage VG .
Furthermore, since s � vF , with vF being the electron Fermi
velocity, the Landau damping of plasma waves is negligible, and
the plasma wave damping is ≈1/2τ where τ = μEf /v2

F e, i.e., it
is mainly associated with single-particle electron (hole) scatter-
ing. As a result the quality factor Q determining the sharpness of
the plasma resonances Q = ωpτ is directly linked to the mobility
μ, meaning that graphene-based heterostructures with elevated
mobilities should show very pronounced plasma resonances.

A first device concept proposed is based on the use of a two-
layer graphene heterostructure; the graphene layers are sepa-
rated by a thin barrier and each of them is supplied with an
ohmic contact (see Fig. 7) and connected with a properly de-
signed antenna. In this case, THz detection is achieved thanks
to both the resonant excitation of plasma oscillations by the
incoming THz beam and the nonlinearity of the intergraphene-
layers [57] tunneling current.

The developed analytical model clearly shows that at fre-
quencies close to ωp or its harmonics, the detector responsivity
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Fig. 7. Schematic diagram of a double gated graphene heterostructure. (From
ref. [57], copyright 2012, Institute of Physics).

Fig. 8. RT responsivity as a function of VG for detectors based on SL-FET
(with data for different angles between the beam polarization axis and the
antenna axis) (a) and BL-FET. (b) Different background colors identify regions
below and above the Dirac point. Insets: SEM micrographs. The detector consists
of a log-periodic circular-toothed antenna patterned between the source and gate
of a GFET. The drain is a metal line running to the bonding pad. (From ref. [58])

exhibits sharp maxima provided the plasma oscillation quality
factor Q � 1. Since s depends on the bias voltage V0 , both
ωp and, hence, the position of the responsivity peaks can also
be voltage tuned according to Δωp = ωΔV0 /(4V0). Of course
a pronounced resonant response of the detector requires the
frequency of electron and hole collisions with impurities and
acoustic phonons to be sufficiently low; predictions indicate
that electron collision rates of the order of a THz (i.e., mo-
bilities of 106 cm2 /Vs) are sufficient. A substantial shift of the
positions of the resonant maxima toward lower frequencies with
increasing graphene length 2 L is expected, due to the decrease
in the characteristic plasma frequency. Moreover, the use of
an inter-GL layer material having lower potential barrier and
a pronounced exponential behavior of I−V characteristics is
predicted to further improve the detector performance.

More recently graphene has been used for THz detection
by employing a simple top-gate antenna-coupled configuration
for the excitation of overdamped plasma waves in the channel
of a FET [58]. Single- (SL) and double-layer (BL) graphene
flakes mechanically exfoliated on Si/SiO2 substrates were used
to fabricate the top gate FETs. Log-periodic circular-toothed
antennas at the source and gate electrodes were used to couple
the 0.3 THz radiation of an electronic source. A 35-nm-thick
HfO2 layer was used as the gate dielectric. The whole channel
length was 7–10 μm, while the gate length was 200–300 nm.

Fig. 8(a), (b) plots Rv measured in SL and BL graphene FETs
at RT, while sweeping VG from –1 to +3.5 V and modulating
the THz source at 500 Hz. Each SL curve corresponds to a
different relative orientation between the source electric-field
polarization and the antenna axis. In the case of the SL device
the photoresponse drops rapidly with angle until it becomes al-
most zero when the incoming polarization is orthogonal to the

antenna axis, confirming the efficacy of the dipole antenna. The
dependence of Δu from σ−1dσ/dVG is in qualitative agreement
with the prediction of a diffusive theoretical model [58], thereby
proving that the detectors operate in the so-called broadband
overdamped regime [45]. Together with the expected photovolt-
age change in the vicinity of the Dirac point, a further sign
switch around VG = 0 is observed in all cases, suggesting a pos-
sible contribution of thermoelectric origin [51], [59]. This arises
from the presence of the ungated p-doped graphene regions, and
subsequent formation of p–p–p or p–n–p junctions, depending
on VG .

In the case of the BL device, the responsivity curve is in
excellent agreement with that predicted by the diffusive plasma-
wave detection model up to the Dirac point (2.5 V). However,
no change of sign is here visible, with a strongly enhanced
response above the Dirac point with respect to that predicted.
This suggests an additional contribution to the photovoltage,
this time of constant sign. Its magnitude grows rapidly with VG ,
eventually dominating in the regime in which a p–n–p junction
is present. Interband transitions driven by the THz field at the
p–n junction with the resulting generation–recombination noise
could here play a nonnegligible role. Maximum responsivity
values of 150 mV/W and minimum NEPs = 30 nWHz1/2 have
been reached [58]. Further advances are expected by achieving
the resonant detection regime, and also by understanding and
exploiting the new physics emerging in BL samples, which may
lead to even better device concepts.

Similar results were obtained at higher frequencies up to 3.11
THz for back-gated graphene transistors [60] reaching maxi-
mum photovoltage signals of a few μV.

IV. LASERS AND OTHER SOURCES

Research aiming at the development of compact, monolithic,
electrically driven THz sources has seen in the last years the
emergence of quantum cascade lasers (QCLs) [18], [61] and res-
onant tunneling diodes (RTDs) [62], [63] as the most promising
device technologies. RTDs, however, are still restricted to max-
imum emission frequencies around 1 THz, with output powers
of the order of a μW. QCLs, instead, still require cryogenic
cooling below 200 K [61], and the implementation of complex
mechanical systems to achieve broad tuneability of the emission
wavelength [64].

The gapless energy spectrum of electron and hole bands
in graphene, together with the strong interaction with optical
phonons of relatively high energy, has prompted scientists to
examine the possibility of achieving interband population inver-
sion and THz gain through optical pumping [65]. The problem is
definitely nontrivial, owing to the contribution of both interband
and intraband processes to the dynamic conductivity in the THz
range (and hence to absorption or gain) [66]. Furthermore, the
electron relaxation dynamics is far from obvious, with the inter-
play of optical phonon emission, electron–electron scattering,
etc. While population inversion does seem to occur when only
electron relaxation mediated by phonons is considered, thanks
to a bottlenecking effect, electron–electron collisions provide a
very quick thermalization channel and tend to wash out peaks
of negative optical conductivity [67].
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Experimental results are at the moment rather inconclusive
on the effective presence of gain in optically pumped graphene.
Several time-resolved optical-pump/THz probe studies have
been performed and are consistent with a fast subps intraband
thermalization process followed by a slower interband recom-
bination [68]–[71]. They report, however, different spectral de-
pendence and sign for the differential THz transmission, as a
consequence of the varying experimental conditions: quality
and doping of the graphene sample, frequency and intensity of
the pump, etc. The extraction of the absolute value of the dy-
namic conductivity from the data is then further complicated by
the likely modifications of the sample reflectance under optical
pumping conditions.

In any case it is clear that the maximum amplification by a sin-
gle graphene layer, for an electromagnetic wave traversing the
layer, is limited by the same 2.3% constant value characterizing
interband absorption. For this reason, laser device configura-
tions employing waveguide propagation in the graphene plane
have been proposed [72]. A clever idea is also to couple the in-
terband stimulated emission to a plasmon mode. Plasmon gain
values in graphene are, in fact, predicted to be very large due
to the small group velocity and the strong confinement of the
plasmon field [73]. It is also apparent that the larger the ex-
citing photon energy, the more electron–electron collisions are
effective in thermalizing the carrier distribution and suppressing
bottlenecking effects. Therefore, the use of a low-energy mid-
infrared pump has been suggested [66] as well as the possibility
of current injection in a planar p–i–n configuration [74].

The ultrafast electron relaxation in graphene can however be
strongly suppressed in a magnetic field sufficiently high to cre-
ate well-separated Landau levels. Indeed pump-probe results in
the near-infrared, thereby probing high-index (n ≈ 100) Lan-
dau states, show a reduction of a factor of about two in the
Auger-like electron–electron scattering rate when going from 0
to 6 T magnetic field [75]. These data also suggest that for lower
Landau levels such processes may then be almost completely
suppressed, making graphene an interesting candidate for the
implementation of a tuneable THz Landau-level laser [76].

Beyond the development of a THz source based on stimulated
emission arising from optical transitions between electronic
states, graphene can be considered as an interesting template
also for the implementation of an electronic high-frequency
oscillator. This approach is based on the availability of an elec-
tronic device exhibiting a negative differential resistance (NDR)
in the transport characteristics; when inserted into a proper res-
onant circuit, this would then lead to self-oscillation, like is the
case for RTD and Gunn diode microwave and THz sources.

Recent studies have shown that three-terminal graphene de-
vices based on FETs show a clear NDR regime for high source–
drain bias (see Fig. 9) [77]. This behavior is peculiar of the
ambipolar nature of transport in zero-bandgap graphene tran-
sistors. It is in fact associated with the competition between
electron and hole conduction as the source–drain bias Vds be-
comes larger that the gate–source one Vgs .

In essence, in this regime, a portion of the channel close to
the drain starts developing where the chemical potential is in the
valence band, with low carrier density, thereby increasing the

Fig. 9. (a) Schematic of a three-terminal top-gated graphene NDR device.
(b) Source–drain current as function of source–drain bias for top-gate voltages
ranging from 0 to 2.5 V. (Adapted with permission from ref. [77], copyright
2012, American Chemical Society).

channel resistance. This region keeps extending till at Vds = 2Vgs
the channel becomes symmetric with equal extension and charge
of the n and p regions. Further increase of Vds produces this
time a reduction of the resistance (superlinear Ids − Vds curves).
This concept is particularly appealing for the development of
radiation sources because the gate electrode offers the possibility
to control and modulate the NDR, and thereby the operation and
output power of the oscillator [77].

Theoretical investigations have also examined the character-
istics of ballistic transport in a graphene tunneling transit time
device based on a lateral p–i–n junctions induced by appropriate
gates [78]. Regions of negative (though small) dynamic con-
ductivity are predicted to arise in the THz frequency range for
reasonable device parameters. An alternative solution would be
to employ electron tunneling across a graphene (n)–insulator–
graphene (p) heterostructure, which has indeed been predicted
to show a very pronounced NDR regime in the transport across
the junction [79], [80]

Finally, photocurrent measurements, performed with high
temporal resolution employing a pump-probe scheme, have
been performed on freely suspended graphene samples featur-
ing coplanar metal stripline electrodes that act as a near-field
antenna and waveguide up to THz frequencies [81]. Photocur-
rent oscillations with Fourier components up to 1 THz have
been recorded, which are interpreted to originate from the THz
radiation emitted by the photocurrent transient optically excited
in the electron–hole graphene plasma. This result is quite en-
couraging for the prospective development of graphene-based
photoconductive switches for time domain spectroscopy.

V. CONCLUSION

Graphene has great potential to revolutionize electronics and
photonics worlds in the next decade. It is then quite fitting that
scientists are now pinning great hopes on this material as a
new low cost solid-state technology that would finally allow
full tackling of the THz portion of the electromagnetic spec-
trum. In the space of just a few years graphene has already
shown state-of-the-art modulator performances, and detectors
are rapidly coming along. On the source side the potential is
instead almost completely unexplored, and a lot of new physics
is bound to emerge in the near future from research in this direc-
tion. Perspectives are anyway very bright and more possibilities
will open up when graphene elements will be integrated with
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existing technologies, like quantum cascade lasers, to improve
specific device parameters. With photonics dominated by III–V
semiconductor compounds and electronics by Silicon, is possi-
bly Carbon the actual future of what is in between?
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