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Abstract—We present a single-photon avalanche diode (SPAD)
developed in 55 nm bipolar-CMOS-DMOS (BCD) technology,
which achieves high photon detection probability (PDP) while its
breakdown voltage is lower than 20 V. To enhance the PDP perfor-
mance, the SPAD junction is optimized with lightly-doped-drain
and high-voltage-well layers which are provided in the BCD pro-
cess. In addition, the dielectric layers over the SPAD are properly
etched to reduce multilayer reflections so that the photon collection
efficiency can be maximized. The SPAD achieves a peak PDP of
89.4% at 450 nm wavelength with the excess bias voltage of 7 V,
while its breakdown voltage is 16.1 V. At the same bias condition,
the device shows a dark count rate (DCR) of 38.2 cps/µm2. It also
achieves a timing jitter of 55 ps at 940 nm with the 7 V excess
bias. This new high-performance SPAD implemented in such an
advanced node BCD technology operating at a low breakdown
voltage is expected to have a major impact on several single-photon
applications, especially biomedical sensing and imaging.

Manuscript received 1 April 2023; revised 28 June 2023; accepted 31 July
2023. Date of publication 9 August 2023; date of current version 15 December
2023. This work was supported by the Korea Institute of Science and Technology
through Institutional Program under Grant 2E32242. (Corresponding authors:
Edoardo Charbon; Woo-Young Choi; Myung-Jae Lee.)

Won-Yong Ha was with the Post-Silicon Semiconductor Institute, Korea
Institute of Science and Technology, Seoul 02792, South Korea, and with
the Department of Electrical and Electronic Engineering, Yonsei University,
Seoul 03722, South Korea. He is now with the Institute of Electrical and
Microengineering, École Polytechnique Fédérale de Lausanne, 2002 Neuchatel,
Switzerland (e-mail: james62473414@gmail.com).

Eunsung Park, Doyoon Eom, and Hyo-Sung Park are with the Post-Silicon
Semiconductor Institute, Korea Institute of Science and Technology, Seoul
02792, South Korea, and also with the Department of Electrical and Elec-
tronic Engineering, Yonsei University, Seoul 03722, South Korea (e-mail:
es.park@kist.re.kr; dja1995@kist.re.kr; phs0817@kist.re.kr).

Francesco Gramuglia, Daniel Chong, Shyue Seng Tan, Michelle Tng,
and Elgin Quek are with the GLOBALFOUNDRIES Singapore Pte.
Ltd., Singapore 738406 (e-mail: francesco.gramuglia@epfl.ch; daniel.chong@
globalfoundries.com; jason.tan@globalfoundries.com; jinghuamichelle.tng@
globalfoundries.com; elgin.quek@globalfoundries.com).

Pouyan Keshavarzian, Ekin Kizilkan, Claudio Bruschini, and Edoardo
Charbon are with the Institute of Electrical and Microengineering,
École Polytechnique Fédérale de Lausanne, 2002 Neuchatel, Switzer-
land (e-mail: pouyan.keshavarzian@epfl.ch; ekin.kizilkan@epfl.ch; clau-
dio.bruschini@epfl.ch; edoardo.charbon@epfl.ch).

Woo-Young Choi is with the Department of Electrical and Elec-
tronic Engineering, Yonsei University, Seoul 03722, South Korea (e-mail:
wchoi@yonsei.ac.kr).

Myung-Jae Lee is with the Post-Silicon Semiconductor Institute, Korea
Institute of Science and Technology, Seoul 02792, South Korea (e-mail:
mj.lee@kist.re.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSTQE.2023.3303678.

Digital Object Identifier 10.1109/JSTQE.2023.3303678

Index Terms—Avalanche photodiode (APD), bipolar-CMOS-
DMOS (BCD) technology, detector, electronic photonic integration,
fluorescence correlation spectroscopy (FCS), fluorescence lifetime
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photon timing, semiconductor, sensor, silicon, single-photon
avalanche diode (SPAD), single-photon counting, single-photon
imaging, standard CMOS technology.

I. INTRODUCTION

S INGLE-PHOTON avalanche diodes (SPADs) are devices in
high demand for various applications, especially in biomed-

ical practices [1], [2]. They could replace photomultiplier tubes
(PMTs) thanks to their compactness and high sensitivity in to-
mography applications such as near-infrared optical tomography
(NIROT) [3] and time-of-flight positron emission tomography
(ToF-PET) [4]. They also play a key role in fluorescence-lifetime
imaging microscopy (FLIM) [5], fluorescence correlation spec-
troscopy (FCS) [6], and Raman spectroscopy [7], [8], [9], [10],
[11].

SPADs fabricated in CMOS technology are of great interest
due to such advantages as low-cost fabrication, mass production,
and monolithic integration capability with circuitry. Further-
more, with the technology scaling down, the advantages of
CMOS-SPADs are becoming more pronounced in terms of
pixel resolution, footprint, and functionality. Many attempts
have therefore been made to develop SPADs based on ad-
vanced CMOS technologies [12], [13]. As technology nodes
scale, however, the doping concentrations of implants typically
increase, which presents a challenge for the development of
CMOS-SPADs as it narrows the width of the depletion region,
resulting in a higher dark count rate (DCR) and lower photon
detection probability (PDP) [13], [14].

To address this problem, Gramuglia et al. [15] and Ke-
shavarzian et al. [16] reported a SPAD based on 55 nm bipolar-
CMOS-DMOS (BCD) technology. The BCD technology pro-
vides deeper and/or lower-doped layers compared to CMOS
technology, and this facilitates the implementation of SPADs
with very low DCR and high PDP at higher excess bias voltages
(VE). Also, the BCD technology makes high-voltage transistors
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Fig. 1. Cross-sections of the BCD-SPADs.

available to designers, thus enabling pixels that allow for a high
excess bias voltage [16]. One downside of the BCD-SPAD is
the relatively high breakdown voltage (VB), typically over 30
V, which results in higher power consumption and limits its
applicability range.

Another approach is to use backside-illuminated (BSI) CMOS
image sensor (CIS) technology with 3D stacking. While the
recent reports by Shimada et al. [17] and Morimoto et al. [18]
demonstrated excellent SPAD performance based on 90 nm
BSI CIS processes, the BSI 3D stacking approach may not be
appropriate for cost-effective applications. Furthermore, until
now, both of these approaches have been commonly unavailable
from a foundry.

In this article, we present a SPAD fabricated in 55 nm BCD
technology. In order to achieve high performance while main-
taining the VB less than 20 V, the junction is formed with P-type
lightly-doped-drain (PLDD) and high-voltage N-well (HVNW)
layers. In addition, the dielectric layers above the SPAD are
properly etched away to reduce the multilayer reflection. The
resulting SPAD achieves outstanding performance in terms of
PDP, DCR, and timing jitter with a low breakdown voltage of
16.1 V.

II. DEVICE STRUCTURE AND SIMULATION

A. Device Structure

Fig. 1 shows cross-sections of two SPAD configurations Both
SPADs have the identical device structure, where PLDD and
HVNW layers form a 9 µm diameter PN junction and a total
diameter of 14.4 µm as shown in Fig. 2. Both layers are standard
in this technology, and the merits of using such layers are: (i)
the PLDD generates less implantation-induced defects, enabling
low-noise SPAD operation, and (ii) the HVNW provides a proper
depletion region with the PLDD layer, which is wide enough
to prevent band-to-band tunneling but, at the same time, not
so wide as to significantly increase the breakdown voltage. To
prevent premature edge breakdown, the SPADs are designed in
a round shape and a P-epi guard ring with a width of 2 µm is
implemented at the edge of the junction. A lightly-doped deep

Fig. 2. Doping-concentration profile of the BCD-SPADs.

Fig. 3. E-field profile of the BCD-SPAD obtained with TCAD simulation.

N-well (DNW) is used for the cathode connection, and it also
makes the absorption region larger and consequently increases
the PDP. To maximize the SPAD detection efficiency further,
a few of the SPAD’s dielectric layers above the multiplication
and guard-ring regions are etched away, thus forming a canyon.
We implemented two SPADs with and without the canyon. By
comparing their performance, the effect of the canyon can be
clearly demonstrated.

B. TCAD Simulation

In order to check the SPADs’ E-field profile, TCAD simula-
tion using Okuto’s avalanche breakdown model was performed
when the VB and VE were 16 V and 7 V, respectively [19]. As
can be seen in Fig. 3, the E-field strength at the edge of the
junction is reduced by the P-epi guard ring.

Therefore, we are able to avoid the premature edge breakdown
phenomenon and form a high and uniform E-field at the planar
PLDD/HVNW junction. In addition, the simulation to check
the breakdown probability of the device was conducted using
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Fig. 4. Breakdown probability profile of the BCD-SPAD obtained with TCAD
simulation.

Fig. 5. Simplified raytracing result of the BCD-SPAD without the canyon
obtained with TCAD simulation.

the McIntyre model as shown in Fig. 4 [20]. With the shallow
junction, it is expected that the proposed devices achieve high
PDP at 400∼500 nm which corresponds to about 0.1 to 1 µm
penetration depth of photons inside silicon. Finally, the effects
of the canyon etch were investigated using ray-tracing simula-
tions. In these simulations, the transmitted and reflected light is
represented by the reddish and bluish arrows, respectively. The
several dielectric layers on top of the non-canyon-etched SPAD
result in many reflections as shown in Fig. 5. On the other hand,
the light reflections are reduced in the SPAD with the canyon
etch as can be seen in Fig. 6. The simulation results indicate

Fig. 6. Simplified raytracing result of the BCD-SPAD with the canyon
obtained with TCAD simulation.

Fig. 7. I-V characteristics of the BCD-SPADs under dark and illumination
conditions.

that more photons reach the active region with the canyon etch,
thereby leading to a higher PDP.

III. EXPERIMENT RESULTS

A. I-V Characteristics

Fig. 7 shows the I-V characteristics of the fabricated BCD-
SPADs with and without illumination measured using a semi-
conductor device analyzer at room temperature. As both SPADs
are based on the same front-end-of-line (FEOL), they show
similar results, small dark currents and high avalanche multipli-
cation. Thanks to the high doping concentration of the PLDD,
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Fig. 8. Results of light emission tests of BCD-SPADs: (a) SPAD without the
canyon before VB, (b) SPAD without the canyon at VE = 3 V, (c) SPAD with
the canyon before VB, (d) SPAD with the canyon at VE = 3 V.

both SPADs have a low VB of about 16.1 V, matching well with
our expectations from the TCAD simulation. In addition, the
dark currents of both SPADs increase at a higher voltage than
the VB under illumination, which indicates the number of dark
carriers is relatively low [4].

B. Light Emission Test

Light emission tests of both SPADs are conducted to confirm
the suppression of premature edge breakdown as shown in Fig. 8.
The light-emitting area indicates the avalanche multiplication
region when a higher excess bias than its VB is applied. There-
fore, the test results clearly demonstrate that a high E-field, over
the critical E-field of silicon, is uniformly formed in the planar
junction of both SPADs. Moreover, as the edge of the junction
is not brighter than the center, the devices don’t exhibit any
premature edge breakdown, which was expected from TCAD
simulation results shown in Figs. 3 and 4.

C. Photon Detection Probability

The PDP measurements were performed from 400 nm to 950
nm in 25 nm steps for the two SPADs at VE = 1, 3, 5, and 7 V as
displayed in Figs. 9 and 10, respectively. The tests were based on
the continuous light technique at room temperature [21]. In the
setup for these measurements, coherent and uniform light was
illuminated to the SPAD and a reference photodiode by using an
integrating sphere and a monochromator. The optical intensity
of the reference photodiode was then measured for calculating
the number of photons impinging on the SPAD. The SPAD was
quenched with an external passive quenching resistor of 100 kΩ
and the outputs were monitored by the oscilloscope. The dead
time was about 2.5µs, with which it was checked that the SPADs
do not suffer from any afterpulsing.

Fig. 9. PDP of the BCD-SPAD without canyon as a function of the wavelength
at four different excess bias voltages.

Fig. 10. PDP of the BCD-SPAD with canyon as a function of the wavelength
at four different excess bias voltages.

As both SPADs are based on a shallow junction, they have a
peak PDP at around 450 nm. Moreover, the presence of fewer
dielectric layers allows more photons to reach the silicon with
fewer reflections, as expected with the simulations in Fig. 5 and
Fig. 6, and therefore near 90% peak PDP is achieved with canyon
etching when VE is 7 V, while the default structure shows about
82% peak PDP at the same bias condition.

D. Dark Count Rate

DCR is comprised of primary and secondary pulses. Ther-
mally generated carriers and tunneling are dominant components
in primary pulses, while the secondary pulses, known as after-
pulses, are avalanches caused by the release of trapped carriers
[22]. That is to say, the DCR of a SPAD is mainly affected by the
FEOL and should not be affected by the canyon implementation.
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Fig. 11. DCR of the BCD-SPADs as a function of excess bias.

DCR measurements were conducted with a passive quenching
resistor of 100 kΩ and an oscilloscope. As can be seen in Fig. 11,
the DCR difference between the SPADs with and without canyon
etch is almost negligible, and therefore it can be concluded that
the canyon etch process over the SPAD does not influence its
noise performance. The SPADs show very low DCR, about 0.03
cps/µm2, at VE = 1 V so that it can be operable at a higher VE

to increase its PDP performance. When VE is increased to 7 V,
the DCR is about 40 cps/µm2.

E. Timing Jitter

The timing jitter performance is an important factor for bio-
medical applications that requires precise sensing such as ToF
PET [23]. The timing jitter is the statistical fluctuation in time
between the absorption of the photon and its corresponding
avalanche breakdown [22]. It is dominated by carrier transit time,
such as drift, diffusion, and avalanche multiplication time [24].
The timing jitter performance of the SPADs was measured using
the time-correlated single-photon counting (TCSPC) technique
at VE = 7 V with a 940 nm picosecond pulsed laser having
a 30 kHz repetition rate. Both SPADs have excellent timing
jitter performance, about 66 ps FWHM, including the jitter of
the laser and laser driver as shown in Figs. 12 and 13. Both
show almost identical jitter values because they share a common
SPAD structure. The timing jitter could be decreased further with
integrated circuitry as well as an optimized setup [25].

IV. DISCUSSIONS

The proposed devices are compared with state-of-the-art
SPADs fabricated in 90 nm processes and below in Figs. 14 and
15. The previously-reported SPADs that have lower VB than the
present SPAD reported in this article suffer from very low peak
PDP as well as very high DCR [13], [14]. Compared to the
SPADs which have higher VB, our SPAD still exhibits higher
peak PDP and lower or comparable timing jitter [15], [17],
[18]. We further improve the detection efficiency of our SPAD
without sacrificing other performance characteristics. Therefore,

Fig. 12. Timing jitter of the BCD-SPAD without canyon.

Fig. 13. Timing jitter of the BCD-SPAD with canyon.

Fig. 14. Peak PDP vs VB comparisons of SPADs fabricated in 90 nm or more
advanced processes.



3800410 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 30, NO. 1, JANUARY/FEBRUARY 2024

TABLE I
PERFORMANCE SUMMARY AND COMPARISON WITH SPADS FABRICATED IN 90 NM OR MORE ADVANCED PROCESSES

Fig. 15. Peak PDP vs timing jitter (FWHM) comparisons of SPADs fabricated
in 90 nm or more advanced processes.

the proposed SPAD achieves the highest peak PDP with ex-
cellent timing jitter performance in spite of the reduced VB,
while showing reasonable DCR performance. Table I lists the
performance summary of the SPADs and shows the performance
comparisons with the state-of-the-art SPADs.

The demonstrated SPAD can be an excellent candidate for
several biomedical applications, where high PDP, low timing
jitter, and low VB are required. For example, the high PDP of
the proposed SPAD at around 450 nm is greatly beneficial to PET
applications. In addition, the low timing jitter can substantially
improve the sensitivity and resolution of ToF-PET systems.
Other biomedical applications such as FLIM and time-domain

Fig. 16. Different biomedical applications and their requirements [26], [27],
[28], [29], [30], [31].

Raman spectroscopy also require such a high PDP in the visible
wavelength range. Moreover, as the proposed device achieves
reasonable NIR efficiency with the use of lightly-doped DNW,
it’s expected that the SPAD can be also utilized in NIROT
applications. In addition, the low VB offers an advantage to
biomedical equipment in terms of power management and con-
sumption, which is expected to play a major role in portable
diagnostic and surgical systems.

Many multi-pixel SPAD sensors targeted at biomedical ap-
plications are actually co-integrated with the corresponding
quench/recharge and data acquisition circuits. Therefore, the
overall pixel efficiency, also called photon detection efficiency
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Fig. 17. Peak performance and target wavelength of typical CMOS/BCD-based SPAD sensors for biomedical applications reported in [25], [26], [27], [28], [29],
[30]. For the proposed SPAD we used different excess bias voltages and a fill factor of 40%, assuming no microlenses were used. (a) Reported PET applications vs
SPAD at 450 nm, (b) Reported FLIM applications vs SPAD at 450 nm, (c) Reported NIROT applications vs SPAD at 700 nm, (d) Reported Raman spectroscopy
applications vs SPAD at 450 nm.

(PDE), is defined as PDE=PDP×fill factor (FF). Fig. 16 shows
the PDE and normalized DCR range of typical CMOS/BCD-
based SPAD sensors for biomedical applications [26], [27], [28],
[29], [30], [31]. The fill factor of the SPAD is determined by the
ratio of the active area of the SPAD to the total area of the device.
With an active area diameter of 9µm and a total diameter of 14.4
µm, the fill factor of the device is about 40%. Also, as shown
in Fig. 17, the sensors in different biomedical applications are
compared to the peak performance of the proposed SPAD at
different excess bias voltages, taking into account a FF of 40%.
Considering the various target wavelengths of each technology,
the non-identical peak performance of the SPAD is used for
the comparison. For PET, FLIM, and Raman spectroscopy,
the SPAD’s performance at 450 nm, where the device has the
maximum efficiency in their target wavelengths, is compared
to the SPAD sensors as can be seen in Fig. 17(a), (b), and
(d). On the other hand, the performance at 700 nm is used to
compare NIROT’s sensors. Although an ideal sensor would be
placed in the top left corner of the plot, the proposed SPAD can
be optimized in terms of the PDP and DCR according to each
application by adjusting its excess bias voltage. It should thus be
able to satisfy the demanding requirements of most biomedical
applications.

V. CONCLUSION

We have demonstrated and characterized high-performance
SPADs based on 55 nm BCD technology. With the use of layers
available in BCD technology, the SPAD structure is optimized
for low-noise and high-efficiency operation with a low VB. In
order to enhance its efficiency, we use canyon etch to reduce
multilayer reflections. The resulting SPAD has a VB of 16.1 V,
peak PDP of 89.4% at 450 nm, DCR of 38.2 cps/µm2, and timing
jitter of 66 ps at VE = 7 V. It’s expected that the proposed SPAD
has a great potential for several biomedical applications.
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