
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 30, NO. 1, JANUARY/FEBRUARY 2024 3800207

A Back-Illuminated SPAD Fabricated With 40 nm
CMOS Image Sensor Technology Achieving

Near 40% PDP at 940 nm
Eunsung Park, Won-Yong Ha, Hyo-Sung Park, Doyoon Eom, Hyun-Seung Choi, Dae-Hwan Ahn,

Woo-Young Choi , Member, IEEE, and Myung-Jae Lee , Member, IEEE

Abstract—This article introduces a back-illuminated (BI) single-
photon avalanche diode (SPAD) based on 40 nm CMOS image
sensor (CIS) technology which is the most advanced technology
node for the fabrication of a SPAD up to date. It’s based on a
P-well (PW) and deep N-well (DNW) junction, and the DNW is
deeply implanted to form a wide absorption region resulting in very
high and wide photon detection probability (PDP). Thanks to the
retrograde DNW, the premature edge breakdown phenomenon is
completely prevented and the whole area of the planar junction be-
comes a high-efficient avalanche multiplication region. In addition,
an anti-reflection coating on the backside of the SPAD and a metal
reflector at the bottom reduce the reflection of incoming photons
and improve the efficiency at long wavelengths, respectively. With
the most advanced CIS technology for BI SPADs, the presented
SPAD accomplishes a dark count rate (DCR) of 70 cps/µm2, peak
PDP of 81% at 675 nm, and PDP of 39% at 940 nm. The timing
jitter is 79 ps full width at half-maximum width (FWHM), which
is the best timing jitter performance among BI SPADs reported so
far. All the values are obtained with the excess bias voltage of 6 V.

Index Terms—Avalanche photodiode (APD), back-illuminated
single-photon avalanche diode (SPAD), CMOS image sensor (CIS)
technology, detector, diode, geiger-mode avalanche photodiode
(G-APD), high-volume manufacturing, integrated optics device,
integrated optoelectronics, integration of photonics in standard
CMOS technology, light detection and ranging (LiDAR), near
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I. INTRODUCTION

A S SINGLE-PHOTON avalanche diode (SPAD) based sen-
sors have proven their feasibility in various scientific and

industrial applications which require high sensitivity, they have
been getting a lot of attention [1], [2], [3], [4]. In addition, the
development of SPADs in deep-submicron CMOS technologies
enables the capability of monolithic integration with on-chip
electronics that perform the functions of time-resolved mea-
surement and histogram process required for time-correlated
single-photon counting (TCSPC) and consequently large arrays,
while reducing production costs. As a result, the CMOS-based
SPAD sensor solutions are being applied to various applications
requiring time-resolved imaging, such as light detection and
ranging (LiDAR) to control and navigate autonomous vehicles
[3], [4], [5], [6], airborne laser mine detection system (ALMDS)
to identify a target in military applications [7], service drones [8],
machine vision [9], security, and biomedical imaging including
fluorescence lifetime imaging (FLIM) [10], positron emission
tomography (PET) [11], and near-infrared optical tomography
(NIROT) that can diagnose the human brain and body [12]. One
challenge of the CMOS-based approach is that the on-chip elec-
tronics occupy a considerable area and it becomes more severe
as more functionalities like counting, timestamping, processing,
and compression are required, which results in a small area to
implement the SPAD, i.e., low fill factor (FF) [13], [14]. Such a
trade-off not only limits the spatial resolution of a SPAD sensor
but also increases the chip size and cost. In order to overcome the
trade-off, a possible solution is using a more advanced CMOS
technology. A SPAD in a deeper-submicron CMOS technology
has a comparative advantage in terms of power consumption as
well as FF, but it still suffers from the space problem with the
on-chip electronics. Furthermore, as the doping concentrations
increase as the technology node decreases, the available deple-
tion regions become narrower, resulting in a high tunneling noise
and low and narrow photon detection probability (PDP). Another
critical issue with the CMOS-based SPAD sensor solutions is
that the PDP in the near-infrared (NIR) range is low, and unlike
the fill-factor problem it cannot be dramatically improved even if
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TABLE I
PERFORMANCE COMPARISON OF STATE-OF-THE-ART FI AND BI SPADS

an advanced CMOS technology is utilized [15], [16]. The reason
is that the PN junctions are usually formed within 1∼3µm under
the surface while the penetration depth of NIR in Si is much
deeper than the junctions.

A recent paradigm shift in CMOS SPADs is the development
of back-illuminated (BI) SPADs in CMOS image sensor (CIS)
technology compatible with three-dimensional stacking tech-
nology. The stacking technology places the CMOS circuitry
under the SPAD array so that significantly improves the FF
while enabling higher functionality, lower power consumption,
and larger array production. In addition, since it is possible to
select and utilize a more appropriate CMOS technology for the
top-tier and bottom-tier chip, respectively, the SPAD can avoid
the negative effects caused by high doping concentrations, and
as a result, dark count rate (DCR) and PDP can be significantly
improved. Furthermore, as the top-tier chip is fabricated a BI
CIS technology, the junction of the SPAD is formed at a deeper
position compared to that of the front-illuminated (FI) case, and
thus higher PDP can be achieved in the NIR wavelength range.
To date, there have been several attempts on the BI 3D-stacked
SPADs and various results have been reported [17], [18], [19],
[20], [21], [22], [23], [24]. Table I shows the performance
comparison between FI and BI SPADs reported lately, and it
clearly shows that the SPAD PDP at 940 nm can be greatly
increased with the BI approach.

Although these attempts report substantial performance im-
provement, especially in NIR efficiency, it can be increased
further, and particularly the timing jitter performance should
be improved to achieve a better depth resolution of SPAD-based
sensors.

In this paper, we present and fully characterize a single BI
SPAD fabricated in 40 nm CIS technology which is the most
advanced CIS technology for SPAD fabrications. Thanks to
the wide absorption region, high E-field at the planar junction
enabling efficient avalanche multiplication, optimized backside
etching/thinning, and the use of a metal reflector and anti-
reflection coating (ARC), the proposed SPAD achieves an excel-
lent peak PDP of 81% at the wavelength of 675 nm along with
high PDP in the NIR wavelength range. In addition, it achieves
the best timing jitter, 79 ps at the full width at half maximum
(FWHM) among the BI SPADs reported so far. This article is
organized as follows. In Section II, the SPAD structure and its
TCAD simulation result are explained. Section III presents the

Fig. 1. Cross-section of the proposed BI SPAD.

full characteristics of the SPAD including a demonstration of the
active area, I-V characteristics, noise, temperature dependence,
sensitivity, and timing performance. Section IV concludes this
paper.

II. SPAD STRUCTURE AND TCAD SIMULATION

Fig. 1 shows the cross-section of the proposed BI SPAD
fabricated in SK hynix 40 nm CIS technology. The SPAD is
based on a P-well (PW) and deep N-well (DNW) junction, and a
virtual guard ring (GR) based on the retrograde DNW surrounds
the junction to prevent the premature breakdown at the edge of
the junction. The SPAD is implemented in a round shape with
a 5 µm diameter active area, 2 µm GR, and 0.5 µm cathode,
resulting in a FF of 25%. The GR and cathode sizes were chosen
as conservative design parameters, and therefore the FF can be
improved in future generations with optimized parameters and
the use of microlens. In addition, it can be further improved by
sharing the cathode between SPADs. The thickness of the Si
epi layer remained after the backside etching/thinning process
is optimized considering the absorption coefficient in silicon and
the depth of DNW.

Through this process, the BI SPAD is able to achieve a wide
spectral range as well as high efficiency. In addition, thanks to
the metal reflector that covers the active area completely and
the ARC formed on the top of the SPAD backside, the detection
efficiency can be further improved.

In order to demonstrate the depletion region and E-field pro-
file, TCAD simulation was performed at the excess bias voltage,
VE, of 1 V. The simulation area in Fig. 2 corresponds to the
red-dashed square in Fig. 1. Thanks to deep and retrograded
DNW, the virtual GR prevents the premature edge breakdown
completely so that a wide avalanche multiplication region is
uniformly formed at the planar PW/DNW junction, which con-
tributes to achieving a high and wide efficiency along with the
wide depletion region over 1 µm and broad absorption region
based on the lightly-doped deep DNW.
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Fig. 2. TCAD simulation result for the BI SPAD: E-field profile at VE = 1 V.

Fig. 3. (a) Micrograph of the BI SPAD and light-emission-test results at
VE = (b) 1 V and (c) 6 V.

III. EXPERIMENTAL RESULTS

Fig. 3(a) shows the micrograph of the BI SPAD having
an anode and cathode pad which is used for experiments in
this paper. Fig. 3(b) and (c) show light-emission-test results at
VE = 1 V and 6 V, respectively. The area emitting light clearly
indicates that the SPAD does not suffer from any premature
edge breakdown and has a uniform and high E-field over the
active area. In order to investigate more precisely the effective
active region where a photon-generated carrier can trigger an
avalanche multiplication, a measurement with a laser-scanning
microscope was performed. The laser beam passes through the
optical system and reaches the scanning equipment consisting
of a single Galvo mirror that can scan the X-Y axis. When the
single Galvo mirror scans over the SPAD, the number of SPAD
output pulses varies depending on the location of the laser, and
the number of the pulses is measured with an oscilloscope in

Fig. 4. Laser-scanning-microscope result of the BI SPAD: 3D-plot at
VE = 4 V.

Fig. 5. I-V characteristics of the BI SPAD without and with illumination at
room temperature.

real-time. The result is shown in Fig. 4 at VE= 4 V with a 637 nm
continuous laser. It clearly demonstrates that the avalanche
multiplication occurs over the whole active area and the FWHM
is about 5.2µm. This result proves again that the proposed SPAD
does not suffer from premature edge breakdown, matching well
with the TCAD-simulation and the light-emission-test results
shown in Figs. 2 and 3, respectively. The full width at tenth
maximum (FWTM) is about 6.7 µm, which means that some of
the photon-generated carriers at the GR region contribute to the
avalanche multiplication.

The I-V characteristics of the SPAD in Fig. 5 show that the
breakdown voltage is about 23.2 V and the SPAD has very low
dark currents below 1 pA, which is the minimum limit of the
measurement setup at room temperature. The breakdown in the



3800207 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 30, NO. 1, JANUARY/FEBRUARY 2024

Fig. 6. Output waveforms of the device at three different bias conditions.

Fig. 7. DCR and normalized DCR of the BI SPAD versus VE at room
temperature.

dark condition occurs at a larger reverse bias voltage than under
illumination, and it indicates that the number of dark carriers is
low, which should result in a low DCR performance.

The inset of Fig. 6 shows a simple schematic for measuring the
proposed SPAD. An external passive quenching resistor of 200
kΩ was used to measure the output voltage pulses, and a reverse
bias voltage was applied to the cathode. The measurements
were performed with a high-performance digital oscilloscope.
Although the measured pulse widths are a little wide due to the
external capacitance components, it can be seen that the height
of each output pulse matches well with the applied VE.

DCR measurement was performed at room temperature as
a function of VE, from 0.5 V up to 6 V, and the result
is shown in Fig. 7. The SPAD exhibits a low DCR, about
0.2 cps/µm2 at VE = 0.5 V, and therefore VE can be increased
to enhance the PDP performance. At VE = 6 V, it still shows
below 100 cps/µm2 DCR. One of the factors increasing DCR in
the BI SPAD is the dangling bonds on the Si epi surface after
the backside etching/thinning process. However, thanks to the

Fig. 8. Temperature-dependent-measurement results: (a) Breakdown voltage
variation versus temperature and (b) normalized DCR versus VE at four different
temperatures.

structural advantage of the proposed SPAD, i.e., isolating the
SPAD active region from the P-epi using DNW, the SPAD is
not exposed to the dangling-bond defects so that it can achieve
a low DCR even at the high excess bias condition.

The temperature dependence of the breakdown voltage was
investigated from 0 to 90 °C with a temperature chamber, and
the results are shown in Fig. 8(a). The temperature coefficient
of the breakdown voltage is about 19 mV/K. The DCR was also
characterized at different temperatures, from 0 to 90 °C, and
the device shows acceptable DCR, below 1 kcps/µm2, even at
90 °C as can be seen in Fig. 8(b). The measurement results
indicate the main contributor to its DCR is the trap-assisted
thermal generation, and this can be confirmed by the activation
energy, Ea, extracted from the Arrhenius plot depicted in Fig. 9.
The extracted value is 0.44 eV at VE = 6 V, and it implies that
the traps can be generated by the implantation of phosphorus
[25].

Fig. 10 shows the PDP spectra of the BI SPAD for VE from 4
to 6 V. The SPAD achieves a peak PDP of 81% at 675 nm and
PDP of about 39.2% at 940 nm at VE = 6 V. It is notable that
the cut-off wavelength in PDP appears at around 450 nm, and it
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Fig. 9. Arrhenius plot with extracted activation energy and the coefficient for
the curve fit at VE = 6 V.

Fig. 10. PDP spectra of the BI SPAD at three different VE.

corresponds to the penetration depth of about 400 nm in silicon.
It means that the remaining P-epi thickness above the deep DNW
after the backside etching/thinning process is just about 400 nm,
which was done by considering the photon absorption coefficient
and the deeply formed DNW. Therefore, the SPAD can collect
most of the photon-generated carriers, achieving a wide spectral
range and very high PDP. Such performance will play a key role
in many applications that require high PDP.

The timing-jitter measurements were performed at room tem-
perature. A 940 nm picosecond pulsed laser was used as the laser
source and a high-performance oscilloscope providing TCSPC
function was used to measure the time difference between the
laser triggering pulse and the SPAD output pulse. Fig. 11 shows
the result of normalized histogram values on a log scale. The
result shows the FWHM value at VE = 6 V and the result is 79
ps. The excellent timing jitter of this SPAD is achieved thanks to
the wide and high E-field at the junction and the DNW blocking
diffused carriers from the P-epi.

Fig. 11. Timing jitter of the BI SPAD at VE = 6 V when using a 940 nm
picosecond pulsed laser.

Fig. 12. Inter-avalanche time histogram measured at VE = 6 V along with a
fitted exponential curve.

Fig. 12 shows the inter-avalanche time histogram of the SPAD
at VE = 6 V. Although the dead time is relatively large, about
1.6 µs, because the measurement was conducted by using an
external passive quenching resistor, it can be greatly improved
with an integrated active recharge circuit. As the measured
histogram is well matched with the exponential curve, which
indicates the Poissonian nature of the SPAD output pulses, it
suggests that the afterpulsing probability is negligible with a
dead time longer than 1.6 µs.

IV. CONCLUSION

We demonstrate a high-performance BI SPAD fabricated in
40 nm CIS technology. Through the TCAD simulation, light-
emission test, and laser-scanning microscope, the avalanche
multiplication area is clearly demonstrated, and the device
is fully characterized, including temperature-dependent noise
characteristics. The thickness of the Si epi selected in consid-
ering both the depth of avalanche multiplication region and
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photon absorption coefficient enabled wide-spectral PDP and
best timing jitter. Thanks to the wide absorption region, high and
wide E-field at the planar junction, optimized backside process,
metal reflector, and ARC, the proposed SPAD achieves a DCR
of 70 cps/µm2, peak PDP of 81%, PDP of 39.2% at 940 nm, and
timing jitter of 79 ps at VE = 6 V. The SPAD achieves, to the best
of our knowledge, the highest PDP and the lowest timing jitter
among reported BI SPADs so far. We expect that this SPAD can
play a key role in various applications.
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