2714

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 52, NO. 3, MAY/JUNE 2016
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Abstract—This paper proposes a method capable of reproduc-
ing the particular operating conditions of a hot strip mill and
predicting the evolution of the main electrical variables from both
the characteristics of the steel to be milled and the specific fea-
tures of the rolling mill. The method analyzes the load torque and
the motor-speed evolution in the stands of the roughing and finish-
ing mill drives, according to the steel to be milled. In this study,
three types of carbon alloy steel are considered, thus involving dis-
similar hardness characteristics. The main stands of the mill, the
power network, and the filter banks have been modeled. The rela-
tionship between the grade of steel and both the electrical demand
and various power quality parameters is discussed. The results can
be used as a part of an expert system for the automatic estimation
of the electrical demand in a hot rolling mill.

Index Terms—Electrical demand, finishing mill, hot rolling mill,
power system harmonics, roughing mill, steel.

I. INTRODUCTION

TEELMAKING is an energy-intensive process. Although

the majority of energy is consumed by the upstream
processes (e.g., blast furnaces, basic oxygen furnaces, and elec-
trical arc furnaces), the energy consumption in the downstream
mills is far from insignificant. Out of the downstream processes,
the hot rolling operation is certainly the largest consumer of
energy, both in the form of fuel gas and electricity.

The electrical consumption in the hot rolling operation is
more than 70 kWh/ton. The main consumers are the rolling
stands and the coilers. However, auxiliary equipment can-
not be neglected because it represents 25% of the electrical

energy [1], [2].
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A large part of the steel production costs is due to energy
usage. Savings can be achieved by producing in a more efficient
way. Furthermore, more energy-efficient production processes
lead to a reduction in the environmental impact. Therefore, it
is useful to identify the energy usage of the production process
and also the quality of energy.

Energy is considered to be strategic for the iron- and steel-
making sectors. Energy typically represents 15%—-20% of the
operating costs of a steel plant, and has also direct implications
for greenhouse gas regulatory compliance costs. hot rolling
operation represents approximately 8% of the total energy con-
sumption in an integrated steelworks. Hot rolling is the process
with the largest electrical energy demand, accounting for 20%
of the total consumption (approximately 80 kWh/ton), and one
of the most critical ones in terms of power quality. Not only is
the average load considerable, but the dynamic load variation is
also large because the mill repeatedly runs through its process
cycle [1].

The aim of this paper is to obtain a better understanding of
electric energy usage in the hot rolling operation and to define
and validate major opportunities for daily energy predictions.

A. Short-Time Prediction of Electrical Demand and Power-
Quality Parameters

It is crucial to estimate the power demand of a steel plant both
in the design stage and under different operating conditions.
Estimation allows for guaranteeing the ability of the plant to
withstand the anticipated load, calculating the nominal capac-
ity of the lines, designing the protections, etc. Hybrid solutions
for filtering and compensating for reactive power are becoming
more common in this type of facilities. Such an ad hoc design
requires a thorough analysis of reactive power variations and
a study of the planned injection of harmonics into the network.
Moreover, the aforementioned estimation is necessary to ensure
the stability of the voltage at the point of common coupling,
the electromagnetic compatibility of the system with the net-
work, the minimization of operation losses, and the elimination
of penalties from utilities [3].

Most of the electrical variables that characterize power qual-
ity and the electromagnetic compatibility of a hot rolling mill
are related to the particular rolling conditions at the instant
of analysis. Considering the high order of magnitude of the
driven power and the strongly nonlinear characteristic of the
load (Fig. 1), the variability of the conditions has a great impact
on the main representative parameters of power quality.
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Fig. 1. Evolution of measured line current rms value during coil rolling.

These electrical magnitudes are highly dependent on the
rolling-process conditions, the chemical composition of the
steel slab, and the mechanical characteristics that the final coil
is intended to have. Hence, the interest in developing an ana-
lytical method capable of reproducing the particular operating
conditions of a hot rolling mill and predicting the evolution of
the main electrical variables that are involved.

B. Daily Prediction of Hot Strip Mill Consumption

Daily prediction of large facilities’ consumption allows for
significant savings in the cost of electricity. If the energy market
liberalization is taken into account, a prediction can be lever-
aged to improve the negotiation with the utility and obtain more
competitive prices in the electricity market.

Therefore, it is crucial to monitor and record (e.g., by using
a SCADA system) the electrical variables of the process along
with its key operating parameters to predict their influence on
the electrical consumption.

However, the high variability of the operating conditions of
the process can hamper the drawing of conclusions regarding
the independent influence of each variable. Therefore, models
that reproduce the operation of the facility as closely as possi-
ble are advisable. Such models should be compared to actual
variables and validated afterward. Once validated, the models
become an important source of information to identify trends in
consumption. These trends can be analyzed by varying a selec-
tion of influential variables; such a study is very complicated
when conducted just on the basis of field measurements.

II. HOT ROLLING MILL
A. Roughing and Finishing Mills

The modeled hot rolling mill is a classic facility mainly com-
prising one roughing and six finishing mill stands (Fig. 2). The
behavior of additional equipment such as coiling machines,
edgers, and crop shear has not been reproduced in the model
because the major consumption of electricity is associated with
the roughing and finishing mills.

The roughing mill consists of two stands, one at the top
side and the other one at the bottom side. The drives are
circulating-current-free and double-cascade-connected cyclo-
converters. The double-cascade configuration allows for a bet-
ter power factor by means of asymmetric and bias voltage
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Fig. 2. Schematic of the rolling-mill train.

TABLE I
MAIN CHARACTERISTICS OF THE STANDS
Motar Transformer
Stands F;“WL; Poles Cycloconverter power (MVA)

F1 8.0 6 Circulating-current-free 14.4

F2 8.0 6 Circulating-current-free 14.4

F3 8.0 6 Circulating-current-free 14.4

F4 8.0 6 Circulating-current-mode 15.7

F5 8.0 6 Circulating-current-mode 15.7

F6 8.0 6 Circulating-current-mode 15.7

Top roughing 7.5 12 Circulating-current-free 14.4
Bottom roughing 7.5 12 Circulating-current-free 14.4

control. The rated data for the main equipment are shown in
Table 1.

The finishing mill consists of six stands, three of them
(F1, F2, and F3) being driven by means of circulating-
current-free, double-cascade-connected, 12-pulse three-phase
cycloconverters. The other stands (F4, F5, and F6) are
driven from -circulating-current-mode, 12-pulse three-phase
cycloconverters.

Circulating-current control allows for the increase in the
demand of reactive power when the plant operates at low load.

Since the 1970s, synchronous motors fed by thyristor-based
cycloconverters controlled by field-oriented control (FOC) have
been extensively used in hot rolling mills. Since the 1980s, the
trends in steel mill drives have been to use pulsewidth modula-
tion (PWM)-based voltage source inverters (VSI). Despite the
technological improvement that the use of inverters involved,
in the 1990s, up to 10 hot rolling mill lines based on cyclocon-
verters were installed. This technology is used today by many
rolling-mill plants [4], [5].

The development of new high-power semiconductors and
multilevel inverter topologies has led to an increased applica-
tion of PWM-controlled VSI ranging from 0.5 MVA to approx-
imately 30 MVA. Converters for steel mill drives must achieve
good dynamic properties and a low torque ripple, control reac-
tive power consumption, and harmonic current injection, and
be characterized by a high efficiency and adjusted complex-
ity and dimensions. In addition to the application of FOC in
inverter-fed motor drives with various PWM schemes, such as
carrier-based, hysteresis band control and space vector modula-
tion, the recent application of direct torque control (DTC) to ac
drives in plate rolling mills has been claimed as achieving the
highest torque and speed performance ever attained with vari-
able speed drives, making it possible to control the full torque
within a few milliseconds and reduce the impact of load shocks.
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B. Distribution Network Topology and Filtering System

The hot rolling mill is connected to a 138-kV, 60-Hz, 3600-
MVA power distribution network through a 75-MVA, 138/34.5-
kV transformer. The eight stands of the hot rolling mill are fed
from a 34.5-kV bus. Four banks of passive filtering are also
connected to these same bars. The filtering system comprises
one C-filter, two second-order high-pass filters, and one tuned
filter. The global passive filter enables the compensation for
45 Mvar at 34.5 kV (Fig. 3). The passive harmonic filter has
been designed to improve the harmonic response and provide
the reactive-power compensation [6].

As shown in Fig. 4, H.g(s) is the transfer function of
a current-divider that considers the relationship between the
power system current [, and the current injected from the load 1

__ Zs(9)
Zy(s)+ Zs(s)

(D

Fig. 5 shows the attenuation provided by the filtering system
in coordination with the impedance of the power distribution
system. The transfer function H.4s(s) is based on the single-
phase equivalent circuit assuming that the system is balanced
[7]. The attenuation factor of the filter bank is mainly effec-
tive for high frequencies. Therefore, although high-frequency
components are attenuated, some interharmonics on the low-
frequency side are still present and, in some cases, could be
amplified due to parallel resonances.

III. ANALYSIS METHOD

The developed analysis method is aimed to identify the key
variables influencing the electrical behavior of the main stands
of a hot rolling-mill plant. This process is based on both the

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 52, NO. 3, MAY/JUNE 2016

H 4. (dB) RI1=2.41; '.Rfu_:{'S: Frequency components
145Hz | 2 z I that can be amplified
A || AR RI=145Hz; R2=210Hz
0 Ll V| [l295He R3=295Hz i
Tuned frequencies of HI=2.6;) [}
passive filters 156 Hz ! \
H1=2.6; 156 Hz [ rr3=s; N\ __H—
H2=4.08;245Hz 360Hz | )
H3=6; 360 Hz H2=4.08} He=10; )
_30 H4=10; 600 Hz 245Hz G600 Hz
10 100 1000 104 1 (Hz)

Fig. 5. Frequency response of H g4 (s).

250

200

£

Z 150
<

g 100
g

S 50

ok — Electromagnetic torque 5
— Load torque
750 Il Il Il Il Il Il Il Il
20 40 60 80 100 120 140 160 180
Time (s)

Fig. 6. Calculated electromagnetic torque versus measured load torque in
stand F2.

characteristics of the steel to be milled and the particular fea-
tures of the rolling mill. The method provides the evolution of
the main electrical variables that are involved.

The demand of active and reactive energy, the consumption
of active and reactive power, and the current harmonic injec-
tion into the power distribution system are the main variables
of interest to be calculated. The results have been compared to
the corresponding measurements in an actual rolling plant and
then validated.

The main stands of the mill, the power network, and the fil-
ter banks have been modeled by using a program for simulating
electrical power systems [8]. Each stand has been modeled by
including a 33/1.15-kV step-down transformer, which converts
the 6-pulse topologies of the individual rectifiers to 12-pulse
cycloconverter topologies. Each stand includes six transform-
ers (two transformers per phase). Cycloconverters with their
corresponding control stage have also been modeled [9] (bias
control, asymmetrical control, circulating current control, etc.),
as well as the synchronous motor vector control that determines
the modulation index and the phase angle of the control signal.

The load torque developed by the rollers of each stand is
applied to the motor (Fig. 6). The control system uses the
speed as a reference (Fig. 7). Both variables are subject to the
necessary adaptations to the speed-reducer gearboxes and the
consequent performance ratio. Therefore, torque and speed are
the inputs to the developed electric model.

The FOC method is used to control the synchronous motor
[10]. This strategy pursues the decoupling of flux and torque
control. Therefore, the flux can be mostly fixed by the field
windings, while the armature current is used to achieve the
motor torque. The motor torque is set through a speed control
loop that tracks the speed reference and takes the load torque as
a disturbance. All of the main loops of the FOC method have
been modeled (Park transformations, flux observer, armature
current, field current and speed loops). There are three different
control loops.



ORCAJO et al.: DYNAMIC ESTIMATION OF ELECTRICAL DEMAND IN HOT ROLLING MILLS

160

1401 N

)
=]
T
I

Speed (r/min)
IS
=
L

%
S
T
I

—— Motor speed
— Reference speed

60 N

. . . . . . . .
20 40 60 80 100 120 140 160 180
Time (s)

Fig. 7. Speed control in stand F2; calculated motor speed versus measured
reference speed.

1) Speed loop: To set the flux and motor torque references
after tracking the speed reference and performing the field
weakening.

2) Flux loop: To estimate the flux position through an
observer and control the field current.

3) Current loop: To track the armature current components
(mostly torque current).

The cycloconverter firing signal generator has also been
modeled. The voltage reference set by the motor control and
the currents are the inputs of the generator and are used for the
inhibition of the current-free cycloconverter firing pulses.

Furthermore, the generator uses the cosine-wave crossing
technique for the gate signal generation and other secondary
control techniques for enhancing the reactive-power consump-
tion. Such control techniques are as follows.

1) Asymmetric control is a strategy used in cascade cyclo-
converters based on the nonidentical firing signals
between the two series-connected bridges. The effect is
an asymmetric firing in the cascade bridges. It has been
implemented in the circulating-free-current cycloconvert-
ers (R1, R2, F1, F2, and F3).

2) Reactive control through circulating current aims to con-
sume a higher reactive current in the circulating-current-
mode cycloconverters (F4, F5, and F6) when the overall
reactive consumption of the plant is low (e.g., in the
standstills) and the filters overcompensate for the reactive
power.

3) Bias control aims to achieve voltages with higher rms
values at the converter output through third harmonic
injection. This kind of control leads to a higher voltage
level feeding the motor and, therefore, a decrease in the
input reactive power.

IV. TYPES OF STEEL, CHEMICAL, AND ALLOY
COMPOSITION

Three grades of steel with different carbon content are con-
sidered, thus involving different hardness characteristics. Steel
types “A,” “B,” and “C” have low, medium, and high carbon
content, respectively. Characteristics of steel are documented in
AISI/SAE standard (American Iron and Steel Institute / Society
of Automotive Engineers). The chemical composition of each
type of steel and its physical and mechanical properties can be
obtained from the aforementioned standard (Tables II and III).
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TABLE I1
CHEMICAL COMPOSITION OF THE THREE TYPES OF STEEL

Element Steel A-content (%4) Steel B-content (%) Steel C-content (%5)

Iron 99.3-99.7 99.16-99.6 98.46-98.92
Manganese =0.6 0.3-0.6 0.6-0.9
Carbon =0.12 0.1-0.15 0.47-0.55
Sulfur <0.045 <0.05 < 0.05
Phosphorous < 0.045 =0.04 = 0.04
TABLE III

MECHANICAL PROPERTIES OF THE THREE TYPES OF STEEL

Properties Steel A Steel B Steel C
Tensile strength (MPa) 325 370 690
Yield strength (MPa) >280 310 580

Elastic modulus {GPa) 210 190-210 190-210

Poisson’s ratio 0.27-0.3 0.27-0.3 0.27-0.3

Elongation at break (%) 28 (in 80 mm) 19 (in 50 mm) 10 {in 50 mm)

Hardness, vickers 105 108 207
Density (g/em®) 7.872 7.87 7.85

Standard SAE J403 1010 [11] is used for type “A” steel and
Standard SAE J403 1012 [12] for type “B” steel. The SAE stan-
dards between 1005 and 1015 are used for steel whose carbon
content is between 0.06% and 0.18%. Standard SAE J403 1050
[13] is used for type “C” steel. SAE standards between 1035
and 1053 are used for steel whose carbon content is between
0.32% and 0.55%.

V. MILL PROCESS: INFLUENCING VARIABLES

The slab reaches the roughing mill free of mill scale, where
it is given the correct thickness to enter the finishing mill train.
Five to seven passes are run in the four-high reversing stand to
roll the slab down to the required transfer-bar thickness. The
number of passes depends on the measurements of the slab,
the steel plate to be obtained, the grade of steel, and the final
rolling temperature in the train. The steel plate leaving the
roughing mill train is subject to a single pass in the continu-
ous finishing train, then partially cooled but coiled while still
hot. The finishing mill train consists of six nonreversible two-
high arrangement stands where the required final thickness is
achieved. The temperature varies between 800 °C and 1250 °C.
Hot rolling must be conducted at the appropriate temperature,
both on the surface and inside the material [14], [15].

For the determination of the mechanical conditions of the
rolling mill, mathematical models able to interrelate the pro-
cess variables with the characteristics of the steel sheet are
used. The models provide data about reductions in stands, roll
speeds, temperature at the end of the last stand, cooling rate,
coiling temperature, etc. Several programs allow for estimat-
ing the rolling conditions, such as StripCam and HSMM (Hot
Strip Mill Model). Both programs are capable of interrelating
the rolling-process variables with the mechanical properties of
the steel to be obtained [15], [16].

VI. SYNCHRONOUS MOTORS LOAD TORQUE AND SPEED

Rolling conditions for each type of steel are described as fol-
lows. The required load torque and speed of the motors are
calculated from the following summarized conditions.
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A. Flat Rolling

In flat rolling [17], the thickness is reduced by an amount
called the draft

d=ty—t; 2)

where d is the draft, ¢y is the starting thickness, and ¢ is the
final thickness.When selecting the draft, it is necessary to opti-
mize the mill operation within the limits set by the rated power
of the motors. The true strain € undergone by the work in rolling
depends on the previous and subsequent stock thicknesses

3)

e=In—.
f

The average flow stress Y7, applied to the work material in
flat rolling, is determined from the true strain

“4)

Values of the strength coefficient K and the strain-hardening
exponent n depend on the composition, the heat treatment, and
the work hardening. The higher the carbon content is, the higher
the strength coefficient results (Fig. 8). The average flow stress
is used to estimate the rolling force and power.

An approximation of the rolling force F' can be calculated
from the average flow stress

F=Y; w-L )

where w is the material width and L is the contact length, which
considering R the roll radius is approximately
L=\/R-(to—ty). ©6)
The power P required to drive two powered rolls is twice as
much as the product of the torque for each roll and the angular
velocity. The torque for each roll 7" is

T=05-F-L )
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and the active power is

P=F L w, (®)
where w, is the rotational speed in radians per second. The
active power demanded by the motors must be correctly dis-
tributed by choosing the strip thickness at the delivery side of
each stand. Temperature and deformation resistance play an
important role in the distribution of forces in the stands.

B. Steel Types: Rolling Conditions

The behavior of the three types of steel has been obtained
from their chemical composition (see Table II). Fig. 9 shows
K -strength coefficient and n-strain-hardening exponent at the
rolling temperature during the corresponding passes. The strip
thickness at the delivery side of each stand has been chosen
(Figs. 10 and 11) by considering the constraints on the power
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TABLE IV
GEOMETRY OF THE SLAB FOR DIFFERENT TYPES OF STEEL
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TABLE V
VALIDATION OF THE TENSILE STRENGTH FROM SIMULATION

Element Steel A Steel B Steel C
Slab length (m) 10 11 11
Slab width (mm) 1259 1224 1248
Slab weight (ton) 22.75 23.78 24.68
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and speed of the stands and the measurements of the slab and
the rolls (Table IV).

The average flow stress is obtained from (4) and, then, the
force and torque applied by each roller are calculated from
(5) and (7). Constraints to the speed/frequency and maximum
power at the stands must be considered to set the speed of the
rolls. The mechanical conditions in Figs. 12 and 13 correspond
to rolls’ data. Speed limits for stands F1 and F2 are observed

Tensile strength Steel A Steel B Steel C
Simulation (MPa) 355 352 661
Standard (MPa) 325 370 690
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Fig. 15. Measured load torque at the stands during steel milling.
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Fig. 16. Measured motor speed in the stands of the rolling mill during steel
milling.

in Fig. 14. These stands are subject to higher torques in the fin-
ishing mill and, therefore, the constraints on speed are more
severe. The tensile strength obtained from the estimation of the
mechanical rolling conditions is compared to that provided by
the standard (Table V).

Estimation is validated because the values of the tensile
strength have the same order of magnitude. The evolution of the
load torque and the motor speed at the stands of the roughing
and finishing mill drives, corresponding to motor conditions,
are shown in Figs. 15 and 16. In the case of the finishing
mill, the ratios of the gearboxes incorporated into the stands
must be considered: F1 =5.2; F2=4.5; F3=23.0; F4 =
1.478: F5 =1.0; and F'6 = 1.0. The roughing mill does not
incorporate any gearboxes.

VII. POWER AND ENERGY DEMAND

The demanded active power is directly calculated from the
values of the torque and speed of the rolling-mill motors, the
performance ratio of the drives and the transformer, and stand-
line losses. Reactive-power values are mainly obtained from
the cycloconverter mean trigger angle (Fig. 17). All repre-
sented records in this section have been calculated. The analysis
procedure has been validated in Section VIII using on-site mea-
surements. This angle depends on the load angle ¢ and the
cycloconverter modulation index m. The relationship among
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the load angle, the modulation index, and the displacement
factor at the input cos(®;) is as follows [19]:

cos(®;) = m . (9)

. 2
144 x cos(Pg) + Py - sin(Py)
7 - cos(Pyp)

In the case of synchronous motors fed from the cyclocon-
verters, the output displacement factor is close to unity because
vector control forces the synchronous motor to operate with
unity power factor. The highest input displacement factor is
reached when the output voltage is maximum and, therefore, the
modulation index is equal to 1 [20], [21]. At low-modulation
index operation (low load), higher values of reactive power
are absorbed by the cycloconverter, whereas the active power
absorbed by the cycloconverter increases and the reactive power
decreases with a high modulation index [22]. The reactive
power () is estimated from the active power and the input
displacement factor

Q = P - tan(d,). (10)

The reactive-power demand in stands F4, F5, and F6 is
controlled by the active control of reactive power [23], [24].
Overcompensation in the distribution network is avoided at
low-load intervals because the extra reactive power from the fil-
ter banks is demanded by these stands. These stands are forced
to consume an extra reactive power )y to compensate for the
reactive power injection from the filter banks. Qg is calculated
by subtracting the reactive power injected by the different filter
banks and the reactive power consumed by the stands, which
is associated with the particular loading conditions. Such a dif-
ference is divided by 3 when positive in order to distribute it
among the three stands with circulatory current. Each stand will
provide a maximum value of reactive power depending on the
maximum power that the converter can drive and the active and
reactive power associated with the loading conditions.

Fig. 18 shows four kinds of reactive power: the reactive
power associated with the particular loading conditions, the
maximum reactive power that the drive can deliver through the
circulating current, the reactive power consumption associated
with the circulating current, and the final demand of reactive
power associated with stand F4.
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A. Roughing Mill

In this section, a comparative analysis of the active and
reactive power consumption in the roughing mill has been
performed (Fig. 19). Type-C steel requires seven passes.

Steel types A and B require only five passes. The maximum
consumption is limited by the maximum power that the drives
can deliver. Both active and reactive energies increase with the
steel hardness. The demand of active energy for type-C steel is
39% greater than that required for type-A steel.

B. Finishing Mill

The study conducted for the roughing mill is also performed
for the finishing mill train (Fig. 20). In this case, the maximum
values of active-power demand have the same order of magni-
tude and the difference between the types of steel relies on the
duration of the mill period. Fig. 19 shows a difference of 20 s
over a maximum period of 120 s.
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Fig. 23. Evolution of the rms value of the current upstream of the PCC and of
the phase voltage at the PCC.

C. Global Demand

Possible overlapping of roughing and finishing mill trains
must be considered for a global analysis of the demand. When
overlapping does not occur, the consumption is sequential and
the demands of active and reactive power are those correspond-
ing to these trains, although not synchronized.

Fig. 21 shows that the active and reactive powers flow
downstream and upstream of the point of common coupling
PCC. These variables are used to estimate the energy demand
(Fig. 22) and the evolution of the rms value of the current
and voltage (Fig. 23). Knowledge of the evolution of the rms
value of the voltage at the coupling point is crucial to ensure
compliance with the requirements set by standards [25].

The frequency components of the currents demanded by the
stands are dependent on the number of converter pulses and
the output frequency of the cycloconverter, and, the motor
speed. The amplitudes and phase angles of these compo-
nents are quantities that depend fundamentally on the analyzed
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frequency, the modulation index of the cycloconverter, and the
filtering inductive impedances of the circuits [21].

The frequency components from the stands, along with the
frequency response of the filter stage and the distribution net-
work (Fig. 5), allow for performing the analysis of the dynamic
evolution of the total harmonic distortion (THD) of the voltage
at the coupling point (Fig. 24).

VIII. VALIDATION OF THE RESULTS

The validation of the electric model is demonstrated by
comparing its results with on-site measurements during the
rolling of type “A” steel. To obtain the calculated variables,
the rolling process is simulated and the main variables are esti-
mated according to the flowchart shown in Fig. 25 [26]. The
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evolution of the main electrical variables for the same type of
steel is shown in Figs. 26-28, which is obtained from on-site
measurements, and is compared with the similar evolution of
the calculated variables.

The sampling frequency is 25 kHz for the calculated vari-
ables and 100 Hz for the measured variables. The mea-
sured THD of the voltage is a time-averaged record, whereas
the calculated THD has been obtained at a higher register-
ing frequency. Because torque and speed, which feed the
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model, experience a significant change in the process that is
reproduced, the electrical variables also experience significant
dynamic variations.

The achieved adjustment as shown in the Figs. 26-28 is accu-
rate. The major discrepancies occur at periods of low load,
due to the fact that only the most significant loads have been
modeled (finishing and roughing mill) and the impact of these
discrepancies is not relevant to the overall analysis.

IX. CONCLUSION

The relationship among the properties of the steel to be
milled, the mechanical conditions of the rolling mill, the tech-
nical features of the roughing and finishing mills, and the
involved electrical variables has been obtained. The proposed
method provides a powerful analytical tool for the prediction
of the electrical demand and the power-quality parameters. The
continuous variability of the process operating conditions can
hinder the drawing of conclusions from actual measurements
regarding the independent influence of each variable.

A complete hot-strip-mill facility has been modeled. Each
stand of the roughing and finishing mills has been simulated.
The electric distribution system of the factory with the exist-
ing passive filtering stage has been modeled as well. The model
has been tested with several load profiles by using the torque
and speed variables as input data, and with on-site measure-
ments of voltage, current, active and reactive power, torque,
and rolling speed. A database with three steel types has been
analyzed, which allows for correlating the type of steel with the
electrical demand and several power-quality parameters. A sim-
ple algorithm has been developed to set a correlation between
the mill operation conditions and the electrical demand of the
facility. The influence of several mechanical variables and elec-
trical variables on power demand and power quality has been
analyzed.
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