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Abstract—This work introduces an experimental methodology
for time-domain modeling of low-voltage surge protective devices
(SPDs), accounting for their sparkover performance as well as
their resistive, inductive, and capacitive behavior. The modeling
procedure is demonstrated through an application to a combination
type SPD connected to the DC side of electric vehicle charging
stations. An equivalent circuit model is developed based on ex-
perimental records acquired from applied voltages and currents
of a wide frequency range and energy content. The developed
lumped-circuit model yields results in very good agreement with
experimental data regarding sparkover voltage, residual voltage,
and energy absorption of SPDs, as illustrated through ATP-EMTP
simulations. The proposed methodology can be an effective tool for
surge protection and insulation coordination studies.

Index Terms—ATP-EMTP, fast-front transients, gas discharge
tube, slow-front transients, surge protection, varistor.

I. INTRODUCTION

MODERN power grids are intrinsically susceptible to
overvoltages as they employ equipment of low insulation

levels [1]. The root cause of more than 40% of unexpected
failures of electronic equipment is lightning, based on the United
States National Fire Protection Association [2]. Thus, extensive
research is conducted focusing on the field performance of surge
protective devices (SPDs) [3], [4], [5], [6], [7], [8] since the
surge protection of low-voltage power grids is of paramount
importance for their reliability. Accurate modeling of SPDs

Manuscript received 21 November 2022; revised 8 May 2023; accepted 31
August 2023. Date of publication 7 September 2023; date of current version
18 January 2024. Paper 2022-PSPC-1276.R1, presented at the 2022 IEEE
Industry Applications Society Annual Meeting, Detroit, MI, USA, Oct. 09–14,
and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY AP-
PLICATIONS by the Power Systems Protection Committee of the IEEE Industry
Applications Society [DOI: 10.1109/IAS54023.2022.9939735]. This work was
supported in part by IEEE Industry Applications Society and in part by IEEE
Foundation Board (IAS Myron Zucker Student-Faculty Grant Program 2022).
(Corresponding author: Thomas E. Tsovilis)

Thomas E. Tsovilis, Alexandros Y. Hadjicostas, and Evangelos T. Staikos
are with the Electrical and Computer Engineering, Aristotle University
of Thessaloniki, 54124 Thessaloniki, Greece (e-mail: tsovilis@auth.gr;
chatzikag@ece.auth.gr; evstaikos@ece.auth.gr).

Georgios D. Peppas is with the Research and Development, Raycap, 66100
Drama, Greece (e-mail: peppas@ece.upatras.gr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIA.2023.3312642.

Digital Object Identifier 10.1109/TIA.2023.3312642

is necessary to properly assess the mitigation of overvoltages,
evaluate the stress of equipment under protection, and carry out
a reasonable risk assessment study against direct and indirect
lightning-related surges [9], [10], [11], [12].

Although extensive work has been done for modeling and
characterization of surge protective components [13], [14], it
is a formidable task to integrate physical models into elec-
tromagnetic transients simulation programs. For practical en-
gineering applications, low-voltage surge protective devices
are commonly modeled following i) a purely resistive ap-
proach based on the voltage-current curves [15], [16], [17] or
ii) frequency-dependent models developed for gapless high-
voltage surge arresters [18], [19], [20]. The accuracy of these
modeling approaches in reproducing the transient performance
of low-voltage SPDs for the entire surge current flow duration
is questionable [21], [22]. Thus, time-domain modeling of the
complex behavior of SPDs in the case of electromagnetic pulses
of variable frequencies and energy content is still an open topic.

This work introduces an experimental methodology for mod-
eling low-voltage surge protective devices. The modeling proce-
dure is demonstrated through an application to a commercially
available combination type SPD, commonly integrated into con-
verters used in electric vehicle fast chargers operating at 1 kV
DC; a preliminary account of this has been provided in [23].
A lumped-circuit model is developed based on standard and
non-standard experiments involving i) lightning and switching
impulse voltages up to 18 kV, ii) impulse current tests up to
30 kA, and iii) sinusoidal voltages.

The efficiency of the developed model, accounting for the
sparkover performance as well as the resistive, inductive and
capacitive behavior of the SPD, is validated through a compari-
son with experimental data regarding sparkover voltage, residual
voltage, and energy absorption. The proposed model reproduces
the recorded surge performance of the DC SPD under study very
accurately, as illustrated through ATP-EMTP simulations; it is
found to be more accurate than Pinceti and Giannettoni model
[18], which is commonly used in the surge protection industry.
The proposed modeling approach can be an effective tool for
surge protection and insulation coordination studies [24], [25],
[26], especially for emerging DC systems such as battery energy
storage systems and electric vehicle charging stations [27], [28],
[29], [30].
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Fig. 1. Schematic diagram of the DIN rail SPD under study.

TABLE I
ELECTRICAL CHARACTERISTICS OF SURGE PROTECTIVE DEVICE

II. SURGE PROTECTIVE DEVICE UNDER STUDY

The device under test was a combination type DIN rail surge
protective device (SPD) shown in Fig. 1 employing metal-oxide
varistors (MOVs) between DC power lines and a gas discharge
tube (GDT) connected between a common bar (CM) and ground
(GND) that practically eliminates the leakage current to earth.
The SPD under study is designed to be connected to charging
stations operating at voltages up to 1 kV DC (UC) and the
protection mode under experimental investigation is the power
line to ground (DC-GND), designated by the red dashed line
in Fig. 1; the basic electrical characteristics of the DC SPD are
given in Table I.

III. EXPERIMENTAL ARRANGEMENTS

For the determination of the transient response of the surge
protective device under study (Fig. 1), standard lightning LI
(1.2/50 µs) and switching SI (250/2500 µs) impulse voltages
and standard impulse currents of 8/20 µs and 10/350 µs wave-
forms were used (Fig. 2(a) and (b)). Taking advantage of the
available interchangeable components (Table II) of the High
Voltage Laboratory of the Aristotle University of Thessaloniki,
the line to ground (DC-GND) protection mode of the SPD
was also stressed with non-standard (very fast-front) lightning
impulse voltages (0.3/44 µs) and impulse currents (1/130 µs);
details on impulse voltage and current waveforms are given in
Table III. The impulse currents were recorded by using current
transformers (Pearson: 301X, 110), and the residual voltage at
SPD terminals was monitored by LeCroy HVP 120 probe (400
MHz) via twisted cables to minimize mutual inductance effects
(Fig. 3).

For the determination of the capacitance and the leakage
current of the DC SPD, sinusoidal (AC) and DC voltages were
applied (Fig. 2(c)) with the aid of a 4.8 kVA AC power supply

Fig. 2. Experimental arrangement: (a) impulse voltages, (b) impulse currents,
and (c) AC/DC voltages.

TABLE II
COMPONENTS OF GENERATORS EMPLOYED IN IMPULSE VOLTAGE AND

IMPULSE CURRENT EXPERIMENTS

Fig. 3. Residual voltage measurement; adapted from [31].

(Agilent 6843A), and a DC power supply, respectively. The
current was measured through the voltage drop, VRCur, across
low inductance high-power resistors, RCur, and a Keithley 196
System DMM current monitor; voltages were monitored by
LeCroy HVP120 probe.

For all configurations (Fig. 2) a Tektronix TDS 3064B digi-
tal oscilloscope (600 MHz) was employed to record the volt-
age/current measurements following the UL 1449 [32] and
forthcoming IEC 61643-01 [33] standard procedures.
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TABLE III
APPLIED IMPULSE VOLTAGES AND IMPULSE CURRENTS

Fig. 4. Proposed model of surge protective devices.

IV. EXPERIMENTAL METHODOLOGY FOR MODELING SPDS

Fig. 4 depicts a generalized equivalent lumped-circuit model
(AB) of surge protective devices that comprises of:

a) an intrinsic capacitance, CS, of the integrated voltage-
switching components (spark gaps, gas tubes, etc.) and a
switch, S(V,t), that closes when the overvoltage leads to the
sparkover of the SPD; if no voltage-switching component
is present (voltage-limiting SPD) the rectangular dotted
frame in Fig. 4 can be replaced by an ideal short circuit as
shown in Fig. 15(a) of Appendix A.

b) a non-linear current-dependent resistance, R(i); the latter
is dominated by field-dependent resistivity of the voltage-
limiting components (varistors, avalanche diodes, etc.)
with an added component of the current-dependent arc
resistance of the voltage-switching components; R(i) also
incorporates the intrinsic resistance of the SPD conductive
paths.

c) an inductance, L, that is associated with the intrinsic induc-
tance of SPD conductive paths [34] and the inductive-like
behavior of the protective components, especially the ef-
fect of holes in surge current conduction via varistors [14],
[35].

Fig. 5. Impulse voltage experiments: (a) open circuit lightning impulse volt-
ages (p.u,), (b) open circuit switching impulse voltages (p.u,), and (c) sparkover
performance of the SPD (DC-GND) for standard lightning impulse voltages.

d) a capacitance, CR, that represents the intrinsic capacitance
of the voltage-limiting components, and a resistance, RS,
that determines the minimal resistive leakage current of
the voltage-switching components; if no voltage-limiting
component is present (voltage-switching SPDs), CR can
be replaced by an ideal open circuit and the CS, RS

should be connected in parallel to series connected R(i)
and S(V,t) i.e., between B and C’ as shown in Fig. 15(b)
of Appendix A.

The voltage-dependent breakdown behavior of the switching
components dominates the sparkover performance of the SPD,
and the current-dependent resistance of the protective compo-
nents together with the intrinsic inductive behavior of the SPD
dominates its surge performance. The lumped elements of Fig. 4
will be determined through an experimental procedure presented
in what follows for the DC SPD under study (Fig. 1).

A. Sparkover Performance

Fig. 5(a) and (b) depict the open circuit (per unit) light-
ning impulse (1.2/50 µs and 0.3/44 µs) and switching impulse
(250/2500 µs) voltages produced by the impulse voltage gener-
ator (Fig. 2(a), Tables II and III), respectively. Fig. 5(c) shows
typical voltage records at the surge protective device terminals
(DC-GND) for applied open-circuit voltages of ∼3 kV and
∼16 kV, 1.2/50 µs. The voltage at the SPD terminals, VSPD,
increases up to the sparkover of the integrated gas discharge
tube, GDT (sparkover voltage, Vs). Due to the sudden drop
of the SPD impedance, VSPD decreases at the time instant
of breakdown (time to breakdown, tb); the higher the applied
voltage, the shorter the time to breakdown and the higher the
sparkover voltage (Fig. 5(c)) attaining values always lower than
the declared protection level, Up, of 3.2 kV (Table I). After
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Fig. 6. Sparkover voltage versus time to breakdown of the SPD (DC-GND) for
different applied impulse voltages; solid line depicts integration method results
acquired under standard impulse voltages (1.2/50 µs and 250/2500 µs).

the breakdown of the GDT, a discharge current flows through
the series-connected GDT and MOV components (Fig. 1); the
residual voltage (∼1 kV) is the sum of the residual voltage of
the MOV and the arc voltage of the GDT at the relatively low
discharge current of the impulse voltage generator (<60 A).

Fig. 6 depicts the voltage-time data points, Vs-tb, of the
sparkover performance of the SPD under study obtained from
lightning and switching impulse voltage tests. As it can be
deduced from the slope of the voltage-time curve for time to
breakdown lower than 100 ns, there is a significant increase
of the SPD sparkover voltage for transients with high voltage
derivative (dV/dt). This observation stresses the need for an
accurate representation of the response time of SPDs integrating
voltage-switching components (spark gaps, gas tubes, etc.) as
well as the investigation of the protection level of SPDs beyond
the standard impulse voltage and current waveforms [36], [22].
The sparkover performance of the SPD under non-standard im-
pulse voltages is modeled by employing the integration method
[37], [38] which can be mathematically described as follows:

DE =

∫ t

t0

(VSPD (t)− V0)
kdt, (1a)

where t (µs) is the elapsed time after the impulse voltage appli-
cation, t0 (µs) is the instant when the applied voltage exceeds a
threshold voltage, V0 (kV), k is a factor accounting for the effects
of the applied voltage amplitude and waveform [37], [39], and
DE (kVk·µs) is the disruptive effect of the voltage at the SPD
terminals, VSPD (kV); breakdown occurs at the time instant, tb,
when DE becomes equal to or higher than the critical disruptive
effect DE∗

DE =

∫ tb

t0

(VSPD (t)− V0)
kdt ≥ DE∗. (1b)

The appropriate values for integration method parameters
shown in Fig. 6 are selected to minimize the deviation of sim-
ulation results with the experimental data points derived from
impulse voltage tests representing fast-front [11] and slow-front

Fig. 7. Impulse current experiments: (a) impulse currents of 8/20 µs,
10/350 µs, 1/130 µs waveform (p.u.) and (b) transient response of the SPD
(DC-GND) for nominal discharge current In: 12.5 kA, 8/20 µs.

[40] transients; V0 is taken from the right side of the curve
(tb→�) and then k, DE∗ are computed to fit the experimental
data associated with the upturn region of the voltage-time curve.

It is important to note that the sparkover voltage and time to
breakdown of the SPD exhibit a statistical behavior since the
breakdown of the voltage switching-components is stochastic
in nature; an alternative statistical modeling approach treating
DE∗ employed in (1) as a statistical quantity is presented in
Appendix B. For the SPD under study, the stochastic sparkover
performance of the integrated GDT depends on several parame-
ters such as electrode morphology, material, and erosion as well
as gas mixture composition and pressure [41], [42].

B. Resistive Behavior

Fig. 7(a) depicts the impulse currents (per unit) of standard
(8/20 µs and 10/350 µs) and non-standard (1/130 µs) waveform
produced by the impulse current generator (Fig. 2(b), Tables II
and III), respectively. Fig. 7(b) shows a typical record of the
transient response of the SPD (DC-GND) under study when
stressed with the nominal discharge current, In, of 12.5 kA,
8/20 µs (Table I). It is noteworthy that the voltage spike of
∼2.7 kV, which is the sparkover voltage of the GDT, precedes
the maximum residual voltage of the SPD (VM ∼ 1.8 kV), and
it is associated with the declared protection level of the SPD
(Up = 3.2 kV, Table I).

The voltage-current characteristic of the SPD can be obtained
by using the residual voltage, VR, at the peak of the current,
IR, in order to avoid inductive effects on voltage measurement
[34] since the current derivative, dI/dt, is practically zero at tR
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Fig. 8. Voltage-current (VR, IR) characteristic curve of the SPD (DC-GND);
data points derived from impulse current tests.

(Fig. 7(b)). Fig. 8 shows the voltage-current, V-I, characteristic
curve of the SPD for impulse currents up to 30 kA, that is dom-
inated by the non-linear resistance, R(I), of the MOV together
with minor added components of the arc resistance of the GDT
and the intrinsic resistance of the SPD conductive path. R(I) can
be mathematically described as follows:

R(I) = V (I)/I =
[
a5 (log(I))

5 + a4(log(I))
4 + a3(log(I))

3

+ a2(log(I))
2 + a1 log(I) + a0

]
/ I. (2)

It must be noted that the V-I curve depicted in Fig. 8, fits the
experimentally derived points (VR, IR) at tR (dI/dt= 0, Fig. 7(b))
and differs from the V-I curve that is commonly provided by the
SPD manufacturers that employ pairs of the maximum residual
voltage, VM, and current, IR, that correspond to different time
instants (tM, tR in Fig. 7(b)). It is important to note that the
resistive behavior of the SPD can be described by a single
voltage-current (VR-IR) curve, that is found to be practically
independent of current waveform (Fig. 8); VR - IR curve and the
associated non-linear resistance, formulated by (2), can be used
as a reference for estimating the inductive behavior of the SPD
presented in what follows.

C. Inductive Behavior

The fact that the residual voltage of the SPD attains a max-
imum value, VM, at tM before the peak of the current at tR
(Fig. 7(b)) signifies the inductive-like behavior of the SPD,
which can be modeled by an equivalent inductance, L (AC’ in
Fig. 4).

The maximum residual voltage of the SPD, VM, can be well
approximated as follows:

VM = R (IM ) · IM + L · dI/dt|t = tM , (3)

where R(I) is given by (2), IM is the current at the time in-
stant tM that the maximum residual voltage occurs, dI/dt is the
current derivative at tM and L is the equivalent inductance. L
can be evaluated based on (3) since all the other parameters

Fig. 9. Surge performance of the dummy SPD under surge current (3 kA,
8/20 µs); L ≈ 130 nH based on (4).

Fig. 10. Equivalent inductance of the SPD.

are known through experimental records. Equivalent inductance
is associated with the intrinsic inductance of the conductive
paths within the structure of the SPD [34], the inductive-like
behavior of protective components, and it is contaminated by the
mutual inductance of the measuring circuit [31]; the latter can
be practically eliminated by employing a voltage measurement
setup as shown in Fig. 3.

An alternative procedure for a simplified estimation of L is
the replacement of the non-linear protective components of the
SPD by copper blocks [34]. Such dummy SPD inductance can
be measured through high precision impedance analyzers or via
the residual voltage, VD (t), of the SPD during surge current
flow, I(t) (Fig. 9); the latter can be formulated as:

VD (t) = RD · I (t) + L · dI/dt, (4)

where RD is the intrinsic resistance of the dummy SPD.
Fig. 10 shows the inductance, L, of the SPD under study

(Fig. 1) determined by (3) and (4) for different impulse current
experiments. It is obvious that the equivalent inductance depends
on i) impulse current waveform and ii) current derivative; it
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Fig. 11. Capacitive behavior of the SPD components under sinusoidal voltages
(AC: 300V rms /1 kHz); (a) MOV and (b) GDT.

is important to note that the dummy SPD analysis underes-
timates the equivalent inductance of the SPD since it ignores
the inductive-like behavior of the surge protective components,
especially the transient behavior of MOV for very fast-front
surges [35]. A constant L approach, determined at standard
impulse currents based on (3), will be shown that provides a
satisfactory agreement with experimental results; however, as
it can be deduced from Fig. 10 and it is implied in literature
[22], [43], [44], the inductive behavior of the SPD is dynamic
in nature and L may vary during surge current flow.

D. Capacitive Behavior

The experimental setup of Fig. 2(c) is used to employ sinu-
soidal voltages to SPD components in order to determine the
capacitances at the SPD equivalent circuit model (CR and CS in
Fig. 4). For the SPD under study an AC voltage of 300V/ 1kHz
was applied to the MOV (DC to CM in Fig. 1) and to the GDT
(GND to CM in Fig. 1). The current flowing through the MOV
or GDT (Fig. 11) at this voltage level (pre-breakdown region)
can be described as follows [45]:

I (t) = IC (t) + IR (t) , (5)

where IC(t) is the capacitive component and IR(t) is the resistive
component of the current. Considering that the current at the time
instant of zero voltage, t0, is purely capacitive, the capacitance
of the MOV, CR, or GDT, CS shown in Fig. 4 can be defined as:

C =
I (t0)

dV/dt|t=t0

. (6)

A constant C approach is followed, although it is discussed
in literature that varistor capacitance CR may vary with voltage

Fig. 12. ATPDraw model of the charging station DC SPD.

TABLE IV
ATP-EMTP MODELING OF THE SPD

and voltage derivative [45], [46] since the capacitive behavior
of the SPD does not significantly affect its surge performance.

The maximum continuous operating voltage of the SPD is
applied and the leakage current to the ground is measured
(Fig. 2(c)); thus RS shown in Fig. 4 is estimated (>10 GΩ).

V. ATP-EMTP SIMULATION RESULTS AND COMPARISON

WITH EXPERIMENTAL DATA

A. ATP-EMTP Simulation Model of the SPD

The surge protective device under study (Fig. 1) can be
modeled by using the equivalent lumped-element circuit (Fig. 4)
that is integrated into ATP-EMTP [47] as shown in Fig. 12; this
ATPDraw model reproduces the non-linear performance of the
integrated gas discharge tube (GDT) and metal-oxide varistors
(MOVs). Modeling details are given in Table IV.

B. Comparison With Experimental Data

The efficiency of the developed ATP-EMTP simulation model
(Fig. 12 and Table IV) has been validated through comparison
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Fig. 13. Voltage at the SPD (DC-GND) under: (a) 6.3 kV, 1.2/50 µs,
(b) 18.0 kV, 250/2500 µs, and (c) 2.7 kV, 0.3/44 µs. Measured Vs (V):
(a) 2020, (b) 1640, and (c) 2200.

with experimental data. A comparison against the experimen-
tally derived sparkover voltage of the surge protective device
(SPD) under study is considered for a wide range of light-
ning (1.2/50 µs, 0.3/44 µs) and switching impulse voltages
(250/2500µs) up to 18 kV. From Fig. 13 it is evident that there is a
good agreement between the simulated and measured sparkover
voltages of the SPD. The simulation error was generally less
than 10% (max 14.8%) as detailed in Table V for 3 impulses
per voltage level; the simulation accuracy is satisfactory when
considering the expected spread of the sparkover voltage of the
integrated GDT [41], which is typically declared within 20%
by GDT manufacturers [48]. Nevertheless, to further improve
the accuracy of the predictions of the proposed deterministic
modeling approach on the sparkover performance of SPDs, an
alternative statistical method is proposed in Appendix B; this
method yields a range of sparkover voltage instead of a fixed
value (Fig. 18).

Fig. 14 shows simulation results together with voltage and
current records from impulse current tests. The computed resid-
ual voltage of the SPD (VM, VR as defined in Fig. 7(b)) with the
proposed model is in very good agreement with the experimental
data (simulation error < 6%) derived from impulse current tests
up to 30 kA, 8/20 µs, 2.5 kA, 10/350 µs and 6.2 kA, 1/130 µs
(Table VI); these upper limits were about 50% of the surges
producing irreversible degradation to SPD components. On the
contrary, the agreement of the Pinceti and Giannettoni (P&G)
model [18] (details in Appendix A), commonly used in surge
protection industry, is not always adequate, besides the use
of 2 non-linear resistive elements, especially for non-standard
current waveforms and peak values afar the reference level of
10 kA; the latter is understandable since the P&G model has been
developed for high voltage surge arrester and a lot of technical
data required as inputs are not provided by manufacturers of
low-voltage SPDs. A necessary modification of the original

TABLE V
SIMULATION ERRORS IN SPARKOVER VOLTAGE OF THE SURGE

PROTECTIVE DEVICE

TABLE VI
SIMULATION ERRORS IN RESIDUALVOLTAGE AND ENERGY ABSORPTION OF THE

SURGE PROTECTIVE DEVICE
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Fig. 14. Voltage and current at the SPD (DC-GND): (a) In:12.5 kA, 8/20,
(b) Iimp: 2.5 kA, 10/350 µs, and (c) 6.2 kA, 1/130 µs. Measured data [VM (V),
VR (V), E (J)]: (a) (1830, 1620, 346), (b) (1320, 1313, 1702), and (c) (3220,
1518, 1412).

P&G model is introduced by the authors to yield simulation
results with acceptable errors (<15%) as shown in Fig. 14(a).
Model has been adapted as follows: i) non-linear resistances A0,
A1 were calculated based on the residual voltage VR, instead
of VM, at 10 kA, 8/20 µs ii) L0, L1 were computed based on
resistive residual voltage VR at 10 kA 8/20 µs and VM at 10 kA
1/T2µs instead of using VM values at 10 kA, 8/20µs and 1/T2µs;
an application is shown in Appendix A.

It is noteworthy that the proposed model predicts the devel-
opment of a maximum residual voltage beyond the protection

level of the SPD for ∼6 kA, 1/130 µs, whereas the adapted
P&G model underestimates (6%) the overshoot of the residual
voltage (inset graph Fig. 14(c), measured VM = 3.22 kV); this
overshoot is important when considering the very fast-front
transient performance of SPDs in cases such as subsequent
lightning strokes [41] and nuclear electromagnetic pulses [49].

In order to evaluate the efficiency of the developed model
to reproduce the SPD transient behavior for the complete surge
current duration an additional comparison is made for the energy
absorption, E, of the SPD defined as:

E =

∫
VSPD (t) · I (t) dt, (7)

where VSPD(t) is the voltage across the SPD during surge
current flow, I(t). The proposed model yields results in excellent
agreement with the recorded energy absorption, that is one of
the main parameters determining the SPD failure probability,
with simulation errors generally lower than 3% (max 4.8%)
whereas the adapted P&G model computations are associated
with errors up to 15% (original model yields errors up to 25%).
These results are very encouraging when considering that the
measurement error of voltage and current records is within 3%
and that voltage-current characteristics of metal-oxide varistors
of the same type may vary up to 10% [50].

VI. CONCLUSION

A novel experimental methodology has been introduced for
modeling low-voltage surge protective devices (SPDs). An ap-
plication has been made to a combination type SPD connected
to the DC side of electric vehicle charging stations and an
equivalent lumped-element circuit model has been developed.
The experimental investigation of the transient performance of
the DC SPD for a wide range of impulse voltage (2.5 kV–18 kV)
and impulse current (0.5 kA – 30 kA) tests has shown that:
� The sparkover performance of the SPDs can be evaluated

through voltage-time (Vs-tb) curves derived from impulse
voltage tests. The integration method proved an efficient
tool for modeling the sparkover performance of the SPD
against overvoltages with time to front in the range of
∼0.3–250 µs and time to half of ∼40–2000 µs.

� The resistive behavior of the SPDs can be described by
a single voltage-current (VR-IR) characteristic curve, de-
rived from residual voltage measurements at the time in-
stant of the peak of the impulse current (zero current deriva-
tive). The voltage-current curve is found to be practically
independent of the surge current waveform unlike the V-I
curves provided by SPD manufacturers that employ pairs
of the maximum residual voltage and peak current that
correspond to different time instants.

� The maximum residual voltage of SPDs during surge cur-
rents is associated with the intrinsic inductance of SPD
conductive paths and the inductive-like behavior of the
integrated protective components. The inductive behavior
of the SPD can be modeled through a lumped inductance
that is found to be dynamic in nature. A constant inductance
estimated at nominal discharge current can be adopted as
a simplified approach for modeling the overshoot of the
residual voltage at the wavefront without compromising
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the accuracy at the wave-tail for a wide range of surge
currents with time to front between ∼1–30 µs and time to
half between ∼20–400 µs.

� The capacitive behavior of the SPD, that does not signifi-
cantly affect its transient behavior, can be evaluated at the
time instant of zero voltage under low frequency tests.

The developed model has been incorporated in ATP-EMTP;
a comparison of simulation results with experimental data has
shown that:
� The proposed model yields satisfactory results for standard

and non-standard (very fast-front) impulse voltages with
simulation errors less than 15% in the SPDs sparkover
voltage. The integration method-based approach predicts
satisfactorily the SPD performance for fast-front and
slow-front overvoltages; a statistical modeling approach
is needed for further improvement in the prediction of the
sparkover performance of SPDs.

� The proposed model yields excellent results for standard
and non-standard (very fast-front) impulse currents with
simulation errors generally less than 5% in the SPDs
residual voltage and the associated energy absorption. The
inclusion of a series inductance in series with a single
current-dependent resistance, masking the capacitive be-
havior of the SPD, yields very good results in modeling
the transient behavior of the SPD for a wide range of
surge currents. The Pinceti & Giannettoni model, besides
its frequency-dependent behavior, is less accurate on mod-
eling low-voltage SPDs, especially under non-standard
impulse currents; a necessary modification is proposed for
model implementation to low-voltage SPDs so as to yield
simulation results with acceptable errors.

APPENDIX A
EQUIVALENT CIRCUIT MODELS

Equivalent circuit models of voltage-limiting and voltage-
switching SPDs are shown in Fig. 15.

Pinceti and Giannettoni model [18] employed at AC branch
of Fig. 4 (DC to CM in Fig. 1). Original model details, and
values as adapted by the authors for low-voltage SPDs are given
in Fig. 16.

APPENDIX B
STATISTICAL APPROACH FOR MODELING THE SPARKOVER

PERFORMANCE

The integration method, presented in Section IV-A, is inher-
ently deterministic with simulation errors up to 15%; however,
by treating the critical disruptive effect DE∗ as a statistical
quantity rather than a fixed value, the stochastic sparkover
performance of the SPDs can be modeled yielding a range
of sparkover voltage under the same overvoltage conditions.
As an illustrative example for the DC SPD under study, the
following equation defines the criterion of breakdown at time
instant (t = tb) that DE becomes equal to or higher than the
critical disruptive effect DE∗

DE=

∫ tb

t0

(VSPD (t)−V0) dt ≥ 0.005 · (1+6 · r)=DE∗ (8)

Fig. 15. Proposed model of surge protective devices. (a) Voltage-limiting SPD
and (b) voltage-switching SPD.

Fig. 16. Original and adapted Pinceti and Giannettoni (P&G) model [18].

Fig. 17. Code in MODELS language for determining DE∗.

where r takes random values between 0 and 1 for each simulation
run, t (µs) is the elapsed time after the impulse voltage appli-
cation, t0(µs) is the instant when the applied voltage exceeds
a threshold voltage, V0 (kV), tb is the time to breakdown,
DE (kV·µs) is the disruptive effect of the voltage at the SPD
terminals, VSPD (kV); DE∗ is uniformly distributed between
0.005 and 0.035 kV·µs based on (8). Such a statistical variation
of DE∗ can be integrated into ATP-EMTP environment through
MODELS language [51] as shown in Fig. 17.

Employing (8) in ATP-EMTP (Fig. 17) for multiple simula-
tion runs, a range of sparkover voltage is obtained even under
the same overvoltage conditions; this is shown in Fig. 18, which
depicts the borders of the voltage-time variation corresponding
to the range of DE∗ (0.005–0.035 kV·µs). As an illustrative
example, Fig. 19 shows the SPD sparkover simulation results
under 11.2 kV, 0.3/44µs for the mean value of DE∗ (0.02 kV·µs)
employed in the conventional integration method that yields
error on sparkover voltage of∼15% and the value of 0.011 kV·µs
that lies within the statistical range of DE∗ that accurately
predicts the sparkover voltage (error < 1%).
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Fig. 18. Sparkover voltage versus time to breakdown under fast-front tran-
sients based on the statistical modeling approach.

Fig. 19. Sparkover performance of the SPD under study for different DE∗
values; comparison with experimentally derived sparkover performance under
11.2 kV, 0.3/44 µs.
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