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Abstract—Potential solutions for unlocking operational flexibil-
ity from data centres are investigated. Two types of data cen-
tres, in terms of their cooling facilities, are modelled in order
to provide an in-depth assessment of potential variations in data
centre performance based on their energy consumption and server
temperatures. Using synthetic datasets generated from year-long
building dynamic simulations under distinct system conditions,
four machine learning (ML) models are designed and trained
to predict data centre energy consumption and server tempera-
tures. Three different ML algorithms are considered, including
random forest, XGBOOST, and multiple linear regression, which
all achieve high accuracy ranging from 93.8% to 98.1% for the
mean absolute percentage error. The resulting ML models are then
utilised to represent a system-wide fleet of data centres, which
are integrated within a power system unit scheduling framework
for potential demand shifting based on (system) carbon intensity.
Five alternative flexibility scenarios are introduced and compared,
with the objective of determining the achievable flexibility from a
system-wide portfolio of data centres, focusing on concerns relating
to server temperatures. On average, a 6.5 % load reduction is seen to
be achievable for a winter day during periods of high CO- intensity.

Index Terms—Artificial intelligence, climate change, CO-
intensity, data analysis, data centre, demand response, machine
learning, renewable energy.

I. INTRODUCTION
A. Background

Recently, the world gathered in Glasgow to reach a new
agreement on tackling climate change, where the majority of
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participating countries agreed to reinforce their commitments,
and to intensify activities in the power and energy sector to
reduce related carbon emissions. Ireland, which is often seen as
a leader in decarbonising its electricity network, introduced a
new target of up to 80% of renewables by 2030, as an important
measure to tackle climate change, and to achieve climate
neutrality no later than 2050, similar to other EU countries [1].
Meanwhile, the world is witnessing increasing demand for
computing resources and data centre power due to digitisation,
e.g. IT workloads have rocketed sixfold between 2010 and 2018
worldwide, with ensuing environmental consequences [2].
Electricity demand growth in Ireland, for example, over the
next ten years is largely expected to come from new data centres,
with projections that they will consume approaching 30% of
demand by 2030. In 2020, 11% of total Irish electricity demand
was dedicated to the data centre industry, contributing 1.85% of
Ireland’s total carbon emissions in the same year [3]. This rapid
digital transformation of businesses is an obstacle to reaching
a zero-carbon EU by 2050, unless initiatives are implemented
to make data centres carbon-neutral, or more environmental
friendly. For example, the “Climate Neutral Data Centre Pact”
was agreed by major industry players and the trade association
for cloud infrastructure services and data centres in Europe to
achieve climate neutrality by 2030 [4]. Recently, the concept
of carbon intensity has garnered significant interest, especially
regarding how it should be accurately quantified and how to
promote its acceptance by end users to change their consumption
patterns. Commonly used by TSOs, the total CO, emission
produced in the system divided by the total system demand is
referred to as the “average emission rate” [5]. So, end uses,
and particularly large scale ones, such as data centres, could
potentially reduce their consumption during periods of high CO,
intensity, and shift their demand profile towards periods of lower
carbon intensity. Given the relative size of data centres, and
their overall share of electrical demand, it is not unreasonable
for them to provide a greater than proportionate share of
“carbon-aware load shifting”. Indeed, obtaining equivalent
flexibility from a similarly sized block of demand composed
of a varied group of small enterprises, public facilities, and
residential customers would be more challenging [6].

B. Literature Review

In recent years, considerable effort has focussed on reducing
data centre energy costs, improving energy efficiency and/or
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reducing carbon emissions, but mostly from an individual data
centre perspective [7], [8], [9], [10]. Many challenges still re-
main in unlocking data centre flexibility, with the most basic
approaches relying upon on-site backup generation, uninter-
ruptible power supply units (UPS), or battery energy storage
systems. However, utilising UPS systems to provide demand re-
sponse is typically not possible, unless additional functionalities
are incorporated within the power electronics converters [11].
Alternatively, flexibility can be obtained from delay-tolerant IT
workloads [12], such that, for example, model predictive control
can be applied to optimise data centre operation and increase
the system-wide renewables share. A real-time energy manage-
ment system has also been proposed [9], with the objective of
minimising data centre energy costs, but the underlying model
only considers limited energy performance details and external
power system scheduling influences are not considered [13].
Data centre optimisation within a microgrid has also been in-
vestigated, while the potential of using data centres to provide
a fast frequency response using UPS and flexible IT workloads
has also been evaluated [11].

Similarly, the impact of data centre growth on power system
operation has been investigated [10], demonstrating reductions
in both electricity price variability and carbon emissions. Mi-
crosoft recently introduced a low-carbon scheduling policy for
its Kubernetes service [ 14], while Google has introduced carbon-
aware scheduling for their data centres by adjusting virtual server
capacity based on system-wide carbon intensity [8]. Although
potential solutions involving IT workload re-scheduling have
been discussed by big tech companies [8], [14], questions still
surround the impact of IT workload re-scheduling on other facil-
ities, such as cooling, and the overall impact on CO» emissions,
power system operation, and even energy markets.

Analysis of data centres either tends to consider them in great
detail [15], or relies upon greatly simplified models [10], [13],
which essentially treat all types of data centres as being the same.
In practice, however, individual data centres are quite varied,
especially in relation to their cooling facilities, such that for
relatively mild and humid climates, external airflow is typically
used to cool the servers. However, if 24/7 cooling is instead
required, then the nature of the cooling facilities will change.
Servers represent the major data centre load, with cooling facili-
ties coming next, but they are correlated with server temperatures
and IT workload. Ultimately, server temperatures are the main
concern for safe data centre operation and, hence, they define the
main challenge for demand-side management approaches, due
to sensitivity towards secure functioning to deliver requested IT
workloads.

C. Research Gap & Main Contributions

1) Dynamic Modelling Approaches of Data Centres: A wide
range of numerical models have been proposed for analysing
building energy performance [16], [17]. For example, computa-
tional fluid dynamics (CFD) simulates air flow and temperature
distribution in buildings, such as data centres, to study thermal
behaviour [18]. However, computational times are long, and
real-time energy management is not feasible [16]. Alterna-
tively, various numerical approaches have evolved, including

a Laplacian model to predict temperature distributions [19].
Building and energy simulation models, such as IES-VE, Energy
Plus [15], DOE-2, have also been used to design and optimise
buildings and HVAC systems, and to determine baselines and
probable retrofit energy savings. They can predict a building’s
thermal performance, but the slow processing time is again a
barrier for modelling a fleet of buildings. Resistance-capacitance
(RC) network models have also been applied, whereby an elec-
trical analogy is used to simplify building thermal performance
and the temperature profile of individual components; however,
the modelling simplifications can result in less accurate results.
Data-driven methodologies, which have gained much interest
lately for examining building energy systems [17], are surrogate
models produced from actual data or synthetic profiles, and they
can estimate a building’s energy use and/or interior temperature
more quickly than earlier techniques.

From a power system perspective, and/or implementation of
demand response programmes, the thermal performance of each
building is generally not seen as being that critical, and, instead,
focus is placed on the aggregated electrical power consumption
of multiple loads, and simplified models are employed to reduce
computational time. However, a model which could predict the
energy consumption of individual buildings, while providing
reasonably fast computation time, such that a sufficiently large
and diverse fleet of buildings could be simulated and aggregated
to system level would be preferable. Given their ability to
tackle non-linear and complex patterns, while still achieving
predictions with high accuracy, machine learning (ML)-based
methods, as part of data-driven approaches, offer a potential
solution for energy prediction in complex energy systems, which
makes them superior to other solutions. However, availability of
data can often present an implementation challenge for such
methods. The concept of surrogate data centre models for pre-
dicting the thermal performance, server temperature and energy
usage of data centre using machine learning techniques has not
previously been investigated.

ML models require historical training data, and here, synthetic
data from different scenarios is leveraged for emulator training.
The energy performance of data centres is formulated as a regres-
sion ML problem for two data centre types, with discussion on
the main technical challenges for flexibility provision from data
centres, and their potential impact on power system operation.
The dynamic data centre building simulation employed here
is merely a tool to support investigation of the feasibility of
a system-wide fleet of data centres implementing a demand
response programme.

2) Integration of ML Within Optimisation Framework:
Al and ML algorithms have attracted interest from research
and industrial sectors for providing insightful and sustainable
decisions. To date, focus has been placed on classical optimi-
sation frameworks, such as mixed-integer linear programming
(MILP) [10], or Al-based decision making methodologies,
such as “reinforcement learning” [17], in which ML/deep
learning methods are often used to define system components.
Reinforcement learning requires knowledge of the system state
and understanding of the impacts of individual choices on overall
system performance, which can be impractical or computation-
ally costly, particularly for power systems, which are naturally
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Fig. 1. Model overview, incorporating physics-based data centre models,
representative ML models for a system-wide fleet of data centres, and a power
system network, for optimal data centre load shifting based on power system
CO3, intensity.

complex and uncertain [20]. Integrating ML algorithms into
classical optimisation frameworks represents an alternative
method [21]. However, executing multi-period optimisation has
not previously been considered, including incorporating an ML
end use model within a typical optimisation framework.

The main contributions of the current work can be outlined
as: 1) dynamic modelling of data centres, with the aim of
assessing their energy performance, before generating a syn-
thetic ML training dataset to efficiently predict their electricity
consumption and server temperatures, 2) investigating distinct
flexibility solutions for data centres in terms of IT workload re-
scheduling, cooling equipment, and battery utilisation, 3) bridg-
ing ML model and optimisation frameworks for time-shifting of
data centre demand based on (system) carbon intensity, and 4)
studying the impact of carbon-aware load shifting from a power
system perspective. The remaining paper is organised as follows:
Section II presents an overview of the modelling structure.
Section III presents the data centre dynamic modelling using
IES-VE software, and introduces the machine learning models.
The optimisation framework, including data centre flexibility, is
presented in Section IV, and simulation results for the considered
test system with different flexibility measures are illustrated in
Section V. Section VI concludes the paper.

II. MODEL OVERVIEW

Data centres are viewed here as flexible loads, such that their
electricity consumption can be partially shifted away from high
intensity CO» periods towards low intensity periods, based upon
artificial intelligence and optimisation techniques, as shown in
Fig. 1. At the top level, an actual data centre. with two types
of cooling systems, is modelled and simulated using IES-VE, a
dynamic building simulation tool [22] to determine data centre
power consumption and server temperature behaviours. In the
middle level, an application programming interface (API), de-
veloped in Python, scrapes actual IT workloads from available
online platforms, such as Google, to refine the IES-VE simu-
lation model parameters. Subsequently, synthetic datasets (for
each cooling type) are formed from the IES-VE outputs, based
on simulating year-long variations in IT workloads and server
temperature setpoints against time-varying meteorological data.

ML models are subsequently trained to predict data centre power
consumption and server temperatures, depending on the type of
cooling, and with an aggregated system-wide fleet of data centres
obtained through combining differing numbers of ML models
for each cooling type, with randomised parameters (IT load and
temperature setpoints). Finally, in the bottom layer, data centres
are supplied with forecasts of (power system) carbon intensity
by the TSO, which cause them to adjust (time shift) their load
consumption patterns. Individual data centres are connected to
different electrical network buses, with different IT workloads
and temperature setpoints. In addition, an API, “Smart Grid
Dashboard, EirGrid” [23], collects real-time/historical infor-
mation relating to system demand, wind power, and carbon
intensity for the Irish grid. Subsequently, a multi-period optimal
DC power flow (OPF) optimisation is solved, incorporating data
centres with the ability to shift their loads based on the carbon
intensity input.

III. DATA CENTRE MODELLING
A. IT Workload

Data centre workload is defined by the volume of arriving
jobs submitted by users, with each job assigned to a specific
tier [8], such that higher tier jobs permit almost zero tolerance
to disruptions and must be completed immediately upon arrival,
while lower tier jobs are more delay tolerant and can be com-
pleted any time before their deadline. Here, jobs are divided
into two categories, namely inflexible (interactive or real-time)
or flexible (delay tolerant or batch) jobs [24]. Examples of
flexible IT workloads include data compaction and distributed
computation for processing videos. In contrast, inflexible IT
workloads include streaming of videos on Netflix, YouTube,
tweeting on Twitter or posting a photo on Instagram, which
represent tasks that must be performed immediately.

Considering the impact of realistic IT workloads, compris-
ing both flexible and inflexible categories, on data centre en-
ergy consumption and internal server temperatures, is often
neglected [10], [11]. To this end, historical data [25] for the
year 2020 in Ireland is normalised here to reflect the national
inflexible IT workload, accounting for, for example, utilisation
of Gmail, YouTube, Blogger, Websearch, Google Sites, and
Google Docs. Regarding the flexible IT workload, a Microsoft
Azure Cloud Computing Service dataset for a large company
in Ireland has been anonymised. The flexible IT workload data
has, subsequently, been randomised to capture a diverse fleet
of commercial companies using cloud computing services. The
aggregated approach tends to reduce workload forecast uncer-
tainty. Normalised data for the inflexible dataset is illustrated in
Fig. 2(a) for one week for various categories, while Fig. 2(b)
shows the aggregated inflexible and flexible IT workload. As
per [24], it is assumed that the inflexible and flexible workloads
are roughly equal.

B. Data Centre Dynamic Model

In order to study the energy performance of data centres, the
IES-VE commercial software [22] is used, which incorporates
the dynamic thermal physics of data centres. After an initial data
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Fig. 2. (a) Normalised inflexible IT workload for a typical week based on
historical data in Ireland, consisting of Gmail, YouTube, Blogger, Websearch,
Google Sites, and Google Docs (b) Normalised IT workload comprising flexible
and inflexible IT workloads based on historical data.

Fig. 3.  Data centre building configuration for dynamic simulation using soft-
ware IES-VE.

gathering campaign, the data centre model is developed using the
building dynamic simulation software IES-VE. The simulated
facility is a real data centre of approx. 40,000 m” with a total vol-
ume of approx. 330,000 m*. The building consists of two main
parts: cell rooms, where servers and IT equipment are located
(approx. 19,000 m?) and auxiliary facilities (remaining 21,000
m?). The cells consist of 24 different units, approx. 800 m? each
(see Fig. 3), while the auxiliary rooms and facilities include:
administrative rooms, offices, backup generation units, electrical
units, mechanical and storage rooms, UPS units, amenities and
personnel facilities. Each cell unit is modelled assuming a 60 cm
steel framing structure for the external walls, with a total U value
of 0.22, lighting internal gains modelled considering fluorescent
lighting with 7 W/m? intensity, and IT equipment and servers
modelled with 2500 W/m? intensity.

Two cooling strategies, “standard” and “free,” are considered
with further details provided later in Section III-B1 and III-B2.
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Fig. 4. Data centre configuration (a) standard (b) free cooling.

Generally speaking, for standard cooling, each cell unit is con-
sidered as a single thermal zone served by a dedicated air-side
heating, ventilation, and air conditioning (HVAC) system. The
HVAC is modelled as a packaged single-zone computer room
air-handling (CRAH) unit, consisting of a chilled-water cooling
coil (no heat), a variable volume fan, and relative humidity zone
control. For the free cooling configuration, a similar HVAC
system is considered with the addition of an outside air econo-
mizer with a dry-bulb temperature high limit. The chilled water
loop was modelled considering electric water-cooled chillers
with variable speed pumps on the secondary circuit with a total
installed cooling capacity of 90 MW. The model considers out-
door temperature, external relative humidity, and IT workloads
as input files, before determining the internal server temper-
atures, average building temperature, cooling system controls
and equipment, and server energy consumption. In this study,
simulations are performed for a one year period with a time
step resolution of 30 minutes. Due to the complexity of the
physical model, a year-long simulation for a single data centre
takes approx. 4 hours, with standard cooling, and free cooling
models running separately on a PC with Core 17-8750H, CPU
@ 2.20 GHz, and 16 GB of RAM.

1) Standard Cooling Model: A simplified configuration for a
data centre with standard cooling is shown in Fig. 4(a), including
backup generators and batteries in addition to the main grid sup-
ply connection. Server temperatures must be maintained within
a specified range for correct equipment operation and safety rea-
sons. Chillers are used to cool the servers, with circulating cold
water (supplied by the chillers) cooling the hot air. (1) represents
on/off operation of the cooling system based on the temperature
setpoint, 757 and 797" is the server temperature. 7°7 must
remain within the range Tmin < ST < Tmaz g ensure that
the servers operate safely and reliably, where T7%%/™" is the
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TABLE I
SYNTHETIC TRAINING DATASET BASED ON IES-VE

Scenarios Cooling type Temperature setpoint (°C)
I Standard cooling
il Standard cooling | ~ N(u = 26,02 = 0.25)
1II Free cooling 26
IV Free cooling ~ N(p=26,02 =0.25)

maximum/minimum allowable temperature range.

On, if TServer > TST
A= Off’ ifTServer < TST (1)
No change, Otherwise

2) Free Cooling Model: In contrast to standard cooling,
which is entirely dependent on chillers for cooling down the
servers, free cooling can also employ outside air, with a logic
controller able to switch between both options. If outside air is
being used for cooling purposes, the mixer in Fig. 4(b) combines
the hot air from the servers with the outside airflow to cool the
servers. Otherwise, the mixer blocks external airflow and only
the chillers are used for server cooling. The control logic to
utilise outside air is summarised in (2), where 7% represents
the outdoor temperature and 0 is a safety deadband. The on/off
chiller control logic is similar to (1).

: amb< ST
T—{ if T <T”* +0

if 7o > ST

3) Scenarios & Simulation Results: In order to analyse and
compare the performance of standard and free cooling, before
constructing individual ML models (Section III-C), four dif-
ferent IES-VE scenarios have been considered, as summarised
in Table I. The same outdoor temperature and external relative
humidity annual profiles are applied for each scenario, as mea-
sured at a Dublin weather station for 2020, along with the same
IT workload. Year-long simulations are performed assuming,
(1) a fixed temperature setpoint of 26 °C and (2) a randomised
temperature setpoint with a mean of 26 °C and variance, 6%, of
0.25, as outlined in Table I. In reality, a random temperature
variation is not realistic, but it is applied here to support training
of the machine learning model. A training set consisting of
4 x 8760 x 2 = 70,080 rows of data is subsequently generated
at a 30-minute resolution.

For the same operating conditions, and in an Ireland context,
free cooling requires approx. 11% less electricity annually, due
to the available opportunities for outside air cooling. However,
standard cooling enables tighter control of the server tempera-
tures, most noticeably when IT workloads are higher. Fig. 5(a)
shows a comparison of the power consumption from both free
and standard cooling arrangements for a one week winter period,
with an average outdoor temperature of 7.9 °C and an average
external relative humidity of 89%, considering only inflexible
IT workloads. It can be seen that the IT workload is the main
driver for power consumption, but, as expected, free cooling
helps to reduce dependency on the chillers. For the time period
shown in Fig. 5(a), data centres with free cooling consume
an average/maximum of 20.5/24.6 MW, which increases to
23.0/31.4 MW with standard cooling. Fig. 5(b) shows a pie chart
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Fig. 5. Data centre (a) power consumption, (b) energy consumption for free
and standard cooling, for one week period.

TABLE II
INPUT FEATURES AND TARGET VARIABLES (GREY HIGHLIGHT)

Feature description Size | Features
Hourly meteorological N External relative humidity (RH)
information Outdoor temperature (°C)
Calendar information 4 Year, month, day, hour
Holiday N Weekend and public holiday
(one-hot code) Weekdays

Flexible workload +
IT workload ! Inflexible workload
Chiller setpoint 1 75T at ¢
Hourly server 4 Toerver at ¢ — 1,6 — 2,6 — 3,6 — 4
temperature
Hourly power 1 Total consumption
consumption (chillers + equipment + servers)
Server temperature 1 Tserver at ¢

of energy consumption for the same period, showing that chillers
account for 3.7% using free cooling, but 12.1% with standard
cooling.

C. Machine Learning

Machine learning algorithms are now introduced with the
aim of predicting data centre power consumption and server
temperatures.

Typical load and temperature forecasting features are incor-
porated to predict the target variables of interest, i.e. power
consumption and server temperature, as outlined in Table II
. IT workload is considered as an input variable due to its
large impact on both target variables. Outdoor temperature,
external relative humidity, temperature setpoint, and calendar



MISAGHIAN et al.: ASSESSMENT OF CARBON-AWARE FLEXIBILITY MEASURES FROM DATA CENTRES USING MACHINE LEARNING 75

information are also considered. Temporal and holiday features
are transformed from categorical data to numerical data through
a one-hot encoding procedure to capture the impact of normal
working days, and otherwise. The thermal inertia of the building,
and its impact on the temperature and power consumption of the
servers, is recognised by including lagged values of the server
temperatures for 4 hours (i.e. t — 1,t —2,¢t — 3, and t — 4).
For training and testing purposes, the dataset has been split
70:30, with each data feature normalised using the MinMaxS-
caler approach [26], based upon the training dataset. Three
distinct ML regression models have been employed, namely
multiple linear regression (MLR), random forest regression
(RF), and extreme gradient boosting (XGBoost) to predict the
target variables of interest. The choice of algorithms is based
on industry deployment and consideration of some principles:
1) complex models to be avoided, while also reducing the
number of variables; 2) following the international performance
measurement and verification protocol (IPMV) [27], all mea-
surement and verification activities should be transparent and
adaptable to future changes; and 3) lightweight loading on cloud
system services, e.g. Microsoft Azure, to enable organisations
to focus on business operations rather than complicated IT
infrastructure maintenance. For reasons of transparency, inter-
pretability, flexibility to future changes, and accessibility across
all cloud system services, MLR would be anticipated to be a
preferred option, subject to meeting modelling performance re-
quirements. For similar reasons, the RF approach is also popular,
and unlike other ML models, such as k-nearest neighbours, its
default settings appear to work well across a wide variety of
datasets [28]. XGBOOST is selected as it offers one of the
fastest ML approaches with high resilience and flexibility, as
seen in Kaggle ML contests [29]. In each case, 4 separate ML
models are required, representing power consumption and server
temperature, for standard and free cooling data centres.
Multiple Linear Regression: MLR is a well-established ML
approach that aims to find the relationship between several
independent variables and one dependent variable, (3),

Y =0 +8Xi++30Xo+ -+ Xy + ¢ ©)

where, for each observation, Y is the dependent variable, X} is
a vector of independent variables, and 3y, Ox, and € represent
a constant, slope coefficients, and the model error. MLR can be
understood, in an ML context, by considering input X as the
training dataset and input Y as the target variable, with [ to
be suitably selected to represent the influence of the considered
features in the dataset [30].

Random Forest Regressor: Random forest proceeds in an it-
erative manner to perform binary feature splits, and, in so doing,
create a decision tree structure. By randomly selecting feature
subsets, rather than investigating all possible splits, individual
nodes are split based on the “best” feature, until further splits are
no longer possible. RF employs a minimum number of “leaves”
in order to reduce the likelihood of problem overfitting [28].

Gradient Boosting Regressor: Finally, gradient boosting (GB)
attempts to achieve a “good” prediction from an ensemble

TABLE III
PERFORMANCE EVALUATION FOR IMPLEMENTED ML MODELS

ML Models | L2r8et MAE RMSE | MAPE | R?
variable
MLR Temp 065°C | 082°C | 97.81% | 093
07
Power | 134 MW | 175 MW | 93.82% | 089
Standard o o
Lo RE Tomp 057°C | 074°C | 98.10% | 0.94
model Power | 112MW | 152 MW | 9491% | 0.92
xceoost 061°C | 079°C | 97.96% | 0.93
b LIIMW | 148 MW | 94.92% | 0.92
ower
MLR - 135°C | 178°C | 9581% | 0.76
0y
Power | 1IOMW | 153 MW | 93.53% | 0.88
Free o Q
cooling RF Tomp 111 °C 1.5°C | 96.56% | 0.82
model , 0.88 MW | 121 MW | 95.30% | 0.93
ower
XGBOOST | Temp 121°C | 165°C | 9625% | 0.80
b 0.86 MW | 115 MW | 9541% | 0.93
ower

of “poor” prediction models, which is achieved by combin-
ing “poor learners,” based on the prediction errors, to cre-
ate a “good learner”. In particular, XGBRegressor (XGBR) is
an efficient open-source representation of the GB algorithm,
capable of achieving high computational performance [29].
Table III summarises a performance evaluation for the consid-
ered ML models, where common forecasting evaluation metrics
are considered, including mean absolute error (MAE), root mean
squared error (RMSE), mean absolute percentage error (MAPE)
and R-squared value. In general, it tends to be easier to predict the
server temperature for the standard cooling over the free cooling
model, while the reverse is true for the power consumption,
which follows from the nature of the cooling mechanism in
each case. A range of approaches are available to improve
performance, with hyperparameter tuning playing a vital role. A
hyperparameter is a parameter whose value is established prior
to the learning process. A number of tuning methods, such as grid
search [30], are available, while FLAML [31] has been used here
to optimise the hyperparameter values, e.g. number of estima-
tors, maximum number of leaves. Given the similar performance
of the three ML approaches, the MLR approach is ultimately
chosen as it avoids additional non-linearities and complexities
as part of the later optimisation problem (Section III).

Fig. 6 shows predictions of the server temperature and power
consumption using standard cooling, based on the inputs defined
in Table II. Considering the MLR coefficients, the predicted
server temperatures for the free cooling models tend to be much
more sensitive to IT workload compared to the standard cooling
models (~45%), since the server temperature is quite depen-
dent on previous hours. In contrast, the power consumption in
standard cooling models is more influenced by the IT workload
(18%) relative to the free cooling models.

So far, ML models of individual data centres have been
developed to predict electrical demand and server temperatures.
Subsequently, an aggregated system-wide flexible load is esti-
mated through simulating individual stochastic devices, formed
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Fig. 6. Server temperature and power consumption MLR prediction for data
centre with standard cooling.

from differing numbers of data centre types (standard or free
cooling), with randomised parameters (IT load and temperature
setpoint). The aggregated ML approach adopted provides an op-
portunity to obtain insight over critical components of each data
centre within the considered system-wide fleet from a high-level
perspective, while ensuring fast, yet accurate, prediction of their
behaviour.

IV. OPTIMISATION FRAMEWORK
A. Power System Scheduling

The optimisation framework involves a multi-period optimal
power flow, which aims to minimise the total operating (fuel)
cost, subject to technical constraints for generating units, battery
storage, system non-synchronous share [10], and power flow
network limits. Additional constraints are introduced in Sec-
tion I'V-B to capture carbon-aware scheduling of the data centres,
which bridges to the ML model, Section III-C. The optimisation
framework and DC power flow constraints are based on [32].
The objective function is defined in (4):

Min.d > C(Pyy)+ Y VOLL.LS; 4)

g,t 7,

where, C'(P,,) is the operational fuel cost of unit ¢ at time
t, generating power P,;. VOLL is the value of lost load
(due to load shedding) at bus ¢, LS, ;. Technical constraints,
such as maximum/minimum power and ramp up/down rates
for generating units, battery energy storage systems and their

- e Cl-

Default cluster capacity, Y‘fTC

Virtual cluster boundary,
6DTC
t

Flexible
cPU (new)
Flexible
(original)

Inflexible

Time

Fig. 7. Virtual boundary to regulate cluster-level capacity.

associated constraints, and generation-demand balancing are
also considered, as per previous studies [32].

B. Assessment of Carbon-Aware Flexibility Measures

Given the commitment of major technology companies to-
wards achieving sustainable development goals and reducing
carbon emissions, an understanding of flexibility measures that
can be provided by data centres, as an increasingly significant
load sector, is required. Furthermore, the EU emissions trad-
ing system provides an additional motivation for companies to
increase their flexibility. Consequently, various technological
options are now investigated, based on following a carbon in-
tensity signal, to increase the operational flexibility available
from data centres. As stated in Section III-C, multiple linear
regression is adopted here to predict the power consumption and
server temperature of the data centre population. Data centres
are typically connected to the power system via a number of
power distribution units (PDUs) on medium-voltage feeders.
The PDUs support IT and cooling equipment, with each PDU
supplying a few thousand machines, within an overall cluster.
An operating system handles I'T jobs within a cluster, and assigns
tasks across available machines, in terms of allocating resources,
e.g. CPU/RAM, job start times [8].

1) IT Virtual Boundary: A virtual boundary can be defined to
reduce cluster-level CPU capacity (by adjusting availability for
incoming flexible tasks) when (power system) carbon intensity
is high, and then raising the virtual boundary (making more
CPUs available) when carbon intensity is low. Consequently,
flexible IT workloads can be delayed until resources become
available, as demonstrated in Fig. 7, where, cis; represents
the time-varying carbon intensity for hour ¢, being higher here
during the middle of the sample day. Given an upper bound on
cluster-level capacity, YdDT A% for a given day, d € D, the
(initial) flexible IT workload is subsequently reduced beneath
the imposed virtual boundary, based upon a time-varying co-
efficient 0;. The coefficient is inversely related to the system
carbon intensity, i.e. §; ~ k/cisy, where k is a constant. If the
IT workload, 1 TtD TC in each data centre, DT'C, accounts for
both flexible and inflexible categories at time ¢, (5) forces the
flexible IT workloads to be shifted towards low carbon intensity
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periods, subject to all tasks being completed by the end of the
day, (6).

t=24
> ITPTC < 5P7C y premos vdeD  (5)
t=1
t=24
> AT =0 (6)
=1

The power consumption, PP7¢ and equivalent server tem-
perature, T;7¢"Y¢", are calculated using the MLP approach
for each data centre server. Since changes in IT work-
load can significantly affect the server temperatures, mini-
mum/maximum thresholds are imposed, 727 ¢ min.server apq
TPTC maz,server - Gimilarly, data centre power consumption
is limited to PPTC:maz and the chiller setpoints are main-
tained within minimum/maximum boundaries, TP min,ST
and TPTCmaz.ST o ensure safe operation.

2) Flexibility From Chillers: Given that the temperature set-
point, 757 affects the power consumption and server temper-
ature, adjusting the max/min temperature boundaries, based on
carbon intensity, can be applied, whereby higher temperatures
are permitted during periods of high carbon intensity (with a
consequent reduction in power consumption), subject to server
safety limits.

3) On-Site Generation: Since most data centres include
some form of on-site generation, if only with limited storage
capacity, individual data centres could alternatively be discon-
nected from the main grid, and operated with on-site battery
storage/UPS, or even renewables.

V. CASE STUDY

The impact of data centre carbon aware scheduling on power
system operation is now studied, based on a modified and
simplified model of the Irish power system, including the Re-
public of Ireland and Northern Ireland [33], which consists of
25 conventional units, 11 (aggregated) wind farm clusters, and
three battery energy storage systems. A Python-based energy
API scrapes data from the EirGrid smart grid dashboard [23], to
obtain real-time/historical data regarding system demand, wind
generation, and COs intensity. A total of 10 data centres is
assumed, each connected to a specific bus, accounting for ~ 11%
of the total electrical demand. Since IT workload is the main
driver for data centre power consumption, a national TSO-level
perspective is assumed. IT workloads and temperature setpoints
are slightly randomised to capture the variability associated with
individual data centres, while hourly profiles for the outside
temperature and relative humidity for Dublin are obtained from
Met Eireann. Finally, the optimisation problem is coded in
Python and solved via Pyomo.

Six scenarios are defined, as part of assessing the potential
flexibility from a system-wide fleet of data centres: (1) a “Base”
scenario assumes that data centre power consumption is fixed
and inflexible across the entire year, (2) ‘100% Flex” permits
the entire data centre load to be flexible, subject to the total
aggregated load being unchanged at the end of each day, (3)
“FlexIT-NoTemp” is similar to [8], whereby flexible IT loads
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Fig. 8. System electrical demand, before and after applying carbon aware
signals to data centres, a winter day.

TABLE IV
CARBON AWARE FLEXIBILITY MEASURE SCENARIOS
. q Aggregated Demand standard
Scenarios | Operating demand (GW) deviation (MW)
cost (pu)
Base 1 131.1 1002
100% Flex 0.95 131.1 879
FlexIT 0.90 127.4 669
-NoTemp
FlexIT 0.94 130.6 777
+Temp
FlexChiller 0.98 130.7 938
FlexChiller 0.92 130.4 710
+FlexIT

can be shifted/re-arranged within each 24 hr period, but server
temperature constraints are not imposed, (4) “FlexIT+Temp”
is similar to (3), except that server temperatures must be re-
stricted within safety margins, where Tmin.server — 15 °C,
Tmazsserver = 37 °C, (5) “FlexChiller” assumes that the IT
workload is fixed, but chiller temperature setpoints can be ad-
justed based on carbon intensity, as described in Section IV-B2,
and finally (6) “FlexChiller+FlexIT” is analogous to (4), but
with the additional ability to adjust chiller temperature setpoints.
Scenario (4) differs from scenarios (5) and (6) in that the tem-
perature setpoint can fluctuate between fixed boundaries, while
(5) and (6) enable the setpoint boundaries to vary based on the
carbon intensity.

A representative winter (January) day is now considered,
with summary optimised scheduling results, based on the six
flexibility scenarios, presented in Fig. 8 and Table IV. For
scenarios (2)—(4), the IT virtual capacity of each data centre is
adjusted for each timestep based on the estimated COs intensity.
Fig. 8 shows the system demand, with load reductions seen
from high intensity CO5 periods towards low intensity periods,
relative to the “Base” scenario. For the given day, the highest
COs period occurs between 9 am to 5 pm, leading to load
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TABLE V
COMPARISON OF DATA CENTRE MODELLING COMPLEXITY APPROACHES

Current
Paper

Ref. [8]

Ref. [10] | Ref. [11] Ref. [13]

Data centre

modelling Data-driven

Piecewise linear
model for CPU and X X
power consumption

Component based
approximation

Aggregation

s an——— Bottom-up X

% total
demand

% total
demand

3

Flex Onssite v x
generation

v v

IT v v
measures

X v

Cooling v X

system
Carbon

X X

Incentive

Carbon

Reserve Reserve

Power System network v X

XX X |X| X

X v

reductions of 6.5%, 8.3%, 4.5%, 0.5%, and 5.5% for the “100%
Flex,” “FlexIT-NoTemp,” “FlexIT+Temp,” “FlexChiller” and
“FlexChiller+FlexIT” scenarios, respectively. For “100% Flex,”
the daily power consumption is unchanged, based on how
the scenario is defined. However, for “FlexIT-NoTemp” and
“FlexIT+Temp,” daily load reductions of 2.8% and 0.5% are
achieved, due to re-scheduling IT workloads towards times when
the cooling requirement is reduced (lower IT loads and lower
ambient temperatures), particularly for “FlexIT-NoTemp,” given
that server temperatures do not restrict the ability to reschedule
the IT workload. Similarly, 0.6% and 0.3% load reductions
are observed by adjusting the chiller temperature setpoints. On
average, a 5.2% operating cost reduction is achieved due to the
additional flexibility provided by the data centres compared to
the “Base” scenario.

Comparing the various carbon aware approaches against the
“Base” scenario, it can be seen that the load profile becomes
somewhat flatter, achieving standard deviation reductions of
12.2%, 33.2%, 22.5%, 6.4%, and 29.1% for the ‘100% Flex,”
“FlexIT-NoTemp,” “FlexIT+Temp,” “FlexChiller” and “Flex-
Chiller+FlexIT” scenarios. The reduced variability also im-
plies that the ramping requirements for online (conventional)
generators are noticeably reduced. “FlexIT-NoTemp” is most
effective at reducing the total operational cost, and flattening
the load profile, with “FlexChiller+FlexIT” next in line, but, by
scenario design, excessive variations in server temperature are
not considered.

For the same winter day, Fig. 9 and Fig. 10 show the flexible IT
workload and server temperatures for the “FlexIT-NoTemp” and
“FlexIT+Temp” scenarios. Data centres 1-5 employ standard
cooling, while 6-10 utilise free cooling. In both cases, the IT
workload is shifted from the middle of the day to early morning
or late night periods, avoiding the carbon intense periods. As
seen in Fig. 9(b), server temperatures are kept well below 32 °C.
Not surprisingly, the free cooling data centres reach higher
server temperatures, while standard cooling achieves lower
temperatures, due to 24/7 operation of their cooling systems.
Fig. 10(a) shows that IT workloads are significantly shifted
from the middle of the day, but for a few data centres, server
temperatures approach 150 °C since temperature constraints do
not apply, which is, of course, not acceptable. However, bounds
on server temperatures, as outlined in Fig. 9(b) will restrict the

—— CO3 inensity — Initial Flex. IT workload

N N
(=) [$)]
1 1

Flexible IT workload (p.u)
o
1
CO; intensity (%)

Temperature (°C)

Fig. 9. “FlexIT+Temp” scenario: (a) IT flexible workload, (b) server temper-
atures, where each dotted line / coloured circle represents an individual data
centre.

ability to shift load at certain times, which will further depend
on the nature of the cooling (standard or free) employed by
individual data centres, and the external power system / time of
year conditions on ambient temperature, I'T workload, etc.
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Fig. 10. “FlexIT-NoTemp” scenario: (a) IT flexible workload, (b) server
temperatures, where each dotted line / coloured circle represents an individual
data centre.

A. Modelling Complexity & Results Comparison

A range of different modelling and analysis approaches have
previously been proposed for assessing the available flexibility
from data centres. The present work is compared here against
four alternative approaches [8], [10], [11], [13], and five indices
are considered relating to modelling complexity, as summarised
in Table V. The present research is the only option that applies
a data-driven method, taking into account not only physical
dynamic models of data centres but also ML techniques for
reducing the computational time. Furthermore, for system-wide
aggregation, a bottom-up strategy is implemented here, whereby
a cluster of data centres is represented as multiple ML models
with stochastic parameters. Although [10], [11] study a system-
wide fleet of data centres, it is fairly simply assumed that data
centres account for a given percentage of overall grid demand,
and specific data centre models are not included. In contrast,
models of individual data centres are the focus of [8], [13].

In terms of measures for adjusting the power consumption of
data centres, each study is different: for example, the present
study and [8] propose avoiding consumption during carbon

intensive periods, while [10], [11] focus on how data centres
can support power systems with high renewable shares. The
results presented here align with those provided in [10], in terms
of data centres supporting system-level flexibility needs, and
how IT workload rescheduling can reinforce available flexibil-
ity [8]. However, notably, the present study also considers how
restrictions on server temperature (and other) variations limit
the available flexibility at certain times, while measures such as
adjusting chiller temperature setpoints are shown to improve the
available flexibility.

B. Replicability, Scalability, and Generalisability

The generalisability of the proposed model is not affected by
the modelling approach applied in this study. Fundamentally,
its generalisability and scalability are constrained by data avail-
ability, which fast digitalisation of the industry is helping to
avoid. In addition, the integrated modelling approach adopted
here has limited weighting placed on building archetypes, as
the main objective was to create a system-wide heterogeneous
fleet of data centres by considering 1) different types of cooling
systems, 2) distinct weather conditions, in terms of temperature
and relative humidity, and 3) randomised IT workloads. Indeed,
the uncertainty associated with modelling multiple end uses can
be mitigated by randomising the primary inputs and associated
parameters. Representing the data centre response in the form
of a large and diverse fleet helps to reduce the uncertainty
surrounding the available demand response [34].

VI. CONCLUSION

The potential flexibility from data centres, in order to shift
their energy consumption based on a carbon intensity signal is
presented. Using detailed thermodynamic simulations of free
cooling and standard cooling data centres, a representative
dataset of data centre dynamic behaviour is created. Machine
learning models are subsequently designed and trained to predict
the power consumption and server temperature of individual
(free or standard cooling) data centres. A fleet of data centres
is represented by a suite of ML models, which is then inte-
grated within a power system unit scheduling framework. Five
flexibility scenarios are introduced and compared, with the aim
of determining the achievable flexibility from a system-wide
portfolio of data centres, focusing on concerns relating to server
temperatures. The consequent impacts on the system demand
load profile are assessed, including reduced flexibility require-
ments, and maximum upward ramp rates.

As part of future work, it is intended to consider how best
to define carbon intensity and carbon footprint for a system,
and specifically how the network location of data centres should
play into reducing the observed carbon intensity. A much wider
range of system conditions should also be considered, as part
of judging the cost effectiveness and utilisation of individual
implemented strategies. The work here has also focussed on
demand shaping, but it is recognised that data centres can
potentially provide various reserve products, including a fast
frequency response, which would be particularly valuable in
supporting system stability as part of the transition towards low
inertia power systems.
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