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A New Technique to Infer Plasma Density, Flow
Velocity, and Satellite Potential From Ion

Currents Collected by a Segmented
Langmuir Probe

Akinola Olowookere and Richard Marchand

Abstract— Compared with other types of Langmuir probes,
segmented probes are arguably the least often used, to diagnose
the state of plasma. With linear dimensions of the order of cen-
timeters, these probes would induce perturbations, which would
make them impractical in many laboratory plasma experiments.
Their size, and the fact that they consist of several equipotential
faces or “segments,” from which individual currents are collected,
introduces additional complexities in the construction of inference
techniques for their characteristics. In this work, we focus on
the use of spherical segmented probes mounted on a satellite
and present new techniques to infer plasma (ion) densities, flow
velocities, and satellite potentials, from currents collected by
two segmented probes biased to two different fixed potentials
relative to a spacecraft. This is done by carrying out 3-D kinetic
self-consistent particle-in-cell (PIC) simulations to compute the
response of a probe to space plasma under different environment
conditions of relevance to satellites in low-Earth orbit (LEO) at
low and mid-latitudes. Computed currents and the corresponding
known plasma and satellite parameters used as input in the
simulations are then used to create a solution library with which
regression-based inference models are constructed, following
standard machine learning techniques. The models trained with
a subset of our synthetic dataset are found to yield excellent
agreement with data in distinct validation sets. The models
constructed with synthetic data are then applied to in situ
measurements made with segmented Langmuir probes mounted
on the Proba-2 satellite, and the inferences are compared with
densities reported on the Proba-2 data portal. The advantage of
our approach is that it readily produces uncertainty margins that
are specifically related to the inference technique used.

Index Terms— Kinetic simulations, regression techniques,
space plasma, spherical segmented Langmuir probe.

I. INTRODUCTION

THE interaction of spacecraft with ionospheric plasma
causes perturbations, which affect the measurements

made with particle sensors. Several studies are being done
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to better understand the physical properties of space and
laboratory plasma using different instruments. For example,
different flow meters have been used on satellites to determine
the plasma direction of flow [1], [2]. IAP was flown on DEME-
TER to measure the direction of ion bulk velocity, in addition
to their energy distribution and plasma (ion) density [2], [3].
Similarly, ion drift velocities can be determined with the
thermal ion imager (TII) on Swarm [4]. In addition, VEIS on
the WIND satellite and flowmeter on Dynamics Explorer B
have been used in studying the plasma flow directions [5],
[6], [7]. Mach probes have also been used to measure the
plasma flow speed or Mach number. There are several types
of Mach probes such as the parallel Mach probe which consists
of two directional probes separated by an insulator [8]. Using
the upstream and downstream ion saturation currents of the
probes, the Mach number can be determined, from which
the velocity is obtained using different theoretical approxima-
tions [8], [9], [10], [11]. Other types of Mach probes include
the rotating Mach probe, the Gundestrup probe, and the vico-
Mach probe, and their detailed operation can be found in the
literature [8], [9], [12]. Another multipurpose Langmuir probe
used to measure the plasma velocity is the spherical segmented
Langmuir probe, first flown on DEMETER [13]. The probe
is designed to leverage the angular anisotropy of the current
collected by each of its six segments to determine the plasma
bulk velocity [13]. This type of Langmuir probe was later
implemented on the European Space Agency (ESA) micro
satellite, Proba-2. It consists of seven equi-potential segments,
or spherical caps and a guard holding them together [14].
Numerical modeling of the spherical segmented Langmuir
probe has also been done using particle-in-cell (PIC) simu-
lations to investigate the variations in the collected currents of
each of the segments, and the results obtained are similar to
what is reported for DEMETER [15], [16].

In the following, we apply kinetic simulations and regres-
sion techniques to construct the inference models for mea-
surements made with a segmented probe. The goals are:
1) to characterize the response of each segment on the probe
to different plasma velocities and environment conditions;
2) to construct regression models to infer plasma densi-
ties, transverse flow velocities, and satellite potentials of the
satellite; and 3) to assess the skill of the inference models.
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Fig. 1. Illustration of the geometry of the segmented probe used in the simulation (right) and an icosahedron (left).

We consider two geometries. The first one is for a sphere
probe with 20 segments at the centers of the 20 triangles
of a regular icosahedron. This idealized geometry is chosen
for its symmetry, and it is used to make a first assessment
of the regression method. The second geometry represents
the actual Proba-2 spherical segmented probe. In both the
cases, the equipotential post to which the probes are attached
is included in the simulations. The synthetic datasets are
constructed for both the geometries; a subset of which is
used to train models, which can then be assessed by applying
them to make inferences with a distinct subset used as the
validation set. The models trained with synthetic data are then
applied to the actual in situ current measurements obtained
from the Proba-2 data portal, for the segmented probes [17].
Our model inferences are then compared with data available
from the Proba-2 portal. In the remainder of this article,
the approach used to create the two synthetic datasets is
explained. The two machine learning techniques used to train
our models are presented in Section II, while the inference
model constructed using the two synthetic datasets and the
validation results are presented in Section III. The trained
models are then applied to the in situ measurements in
Section IV, and the summary of our findings is presented in
Section V.

II. METHODOLOGY

First, an idealized segmented Langmuir probe used in the
simulations is constructed on a regular icosahedron with
20 triangular faces, 12 vertices, and 30 edges. The coordinates
of the center of each triangular face are used as the centers
of the 20 caps (segments) on the probe. The advantage in this
idealized geometry is to leverage the fivefold symmetry of the
structure and minimize the number of required simulations.
Fig. 1 illustrates an icosahedron and the segmented probe used
in the simulations, which consists of 20 5-mm radius segments
on a 2-cm radius conducting guard and the 1.5-cm long,
6-mm radius cylindrical post holding them. In the simulations,
the spherical guard, the 20 segments, and the cylindrical post
are assumed to be equipotential, and the currents collected
by these independent components are calculated separately.

It is assumed that the probe is held by a boom sufficiently
far from any other satellite components in the ram direction,
so that the probe is not affected by any other component on the
satellite. The segments on the probe are assembled into four
groups of five segments at angles 37.38◦, 79.19◦, 100.81◦, and
142.62◦ relative to the axis of the post, which we assume is the
ram direction. The response of the probe to different plasma
conditions is simulated with PTetra, a 3-D PIC code, and the
simulation domain is discretized with an adaptive unstructured
tetrahedral mesh [18]. The electrons and ions are treated
kinetically, and the fields and particle trajectories are calcu-
lated self-consistently at every time step [15], [19], [20], [21].
The plasma parameters considered in the simulations are
obtained from the International Reference Ionosphere (IRI)
model for conditions encountered by satellites in low-Earth
orbit (LEO) at latitudes in the range of 65S–65N, different
longitudes, at altitudes ranging from 500 to 730 km, different
seasons, and times of the day. The plasma (ion) densities
considered vary from 9 × 1010 to 2 × 1012 m−3, elec-
tron temperatures range from 0.05 to 0.25 eV, ion temper-
atures from 0.05 to 0.25 eV, and effective ion masses from
5 to 16 amu. A summary of the parameters used in the
simulation is presented in Table I.

A. Construction of the Synthetic Dataset

The dataset used in this work is made from the simulation of
an isolated spherical segmented Langmuir probe (see Fig. 1)
held by a boom, in an otherwise uniform background plasma,
without accounting for a satellite and other instruments. The
probe voltages ranging from −5 to −1 V, relative to the
background plasma, are considered so that the probe collects
mostly ions. However, with the probe at −1 V, the probe might
collect small amounts of electron currents in addition to the
ion currents. In the simulations, we account for plasma with
multiple ion species as presented in Table I, plasma flowing
directly from the ram direction and at angle 18◦ from the ram
direction, and ram speeds ranging from 7000 to 8000 m/s.
Two sets of data are created. In the first case, a probe at fixed
voltages ranging from −5 to −1 V relative to the background
plasma is considered, independently of the floating potential
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TABLE I

SIMULATION PARAMETERS USED IN THE CONSTRUCTION
OF OUR SOLUTION LIBRARY

TABLE II

EXAMPLE PROBE VOLTAGES WITH RESPECT TO BACKGROUND PLASMA,
FOR A SPACECRAFT FLOATING POTENTIAL RANGING FROM

−6 TO −3 V, ASSUMING PROBES WITH FIXED
BIAS VOLTAGES OF +1 V AND +2 V

of the satellite. This simplification is made so as to focus
on the inferences of the ion density and plasma transverse
flow velocity, without complications associated with variable
satellite potentials. The second case considered is for probes
biased to 1 and 2 V relative to the satellite and satellite
potentials varying randomly in the range −6 to −3 V. The
voltages of the probes relative to the background plasma are
determined using the relation

V = V f + Vb (1)

where V f is the satellite potential relative to the plasma, Vb is
the probe bias voltage with respect to the spacecraft, and
V is the probe voltage relative to the background plasma.
Sample calculations of V are summarized in Table II. All the
simulations are carried out to steady state, at which time
the net currents collected by each segment, the guard, and
the cylindrical post are computed. Test particle back-tracking
simulations are then used to calculate the particle distrib-
ution functions at selected points on the sphere by apply-
ing Liouville’s theorem in a collisionless plasma [22]. The
electric fields used in the calculation of particle trajectories
are obtained from the PIC simulations in which they are
calculated self-consistently. The particle fluxes and current
densities are then determined numerically from moments of
the distribution functions discretized on an adaptive octree
velocity grid [23], [24], [25]. The points at which the particle
distribution functions are calculated are selected on the probe
spherical surface along four meridians 90◦ apart in the plane
perpendicular to the ram direction, and they are distributed
symmetrically relative to the flow direction. The selected

TABLE III

LIST OF ANGLES θ RELATIVE TO THE RAM DIRECTION
OF POINTS CONSIDERED IN EACH MERIDIAN

points are located at different colatitudes θ relative to the ram
direction in the range 0◦ ≤ θ ≤ 130◦, as listed in Table III.
After calculating the current densities, they are then fitted as
a function of θ with a sum of cos functions as

I (θ) =
N∑

k=0

ak cos(kθ), k = 0, 1, . . . , N (2)

for each set of plasma parameters considered. In (2), ak are the
fitting coefficients, and N is the number of fitting coefficients.
In practice, we find that N = 6 provides excellent accuracy,
with maximum relative errors (MREs) not exceeding 1.2%.
The fits are then used to calculate the currents collected by
each segment on the probe for arbitrary plasma flow directions
in the range [0◦,15◦] relative to the ram direction. The currents
collected by segments are obtained using the fit to calculate
the current density at the center of the triangles defining each
segment. Note that with our unstructured tetrahedral mesh, the
segments are delimited by triangles corresponding to faces of
tetrahedra adjacent to the segments. Owing to the symmetry
of the probe, the angle θ in the fit is simply the angle between
the direction of the incoming plasma flow and the radial
position of the triangle center in a given segment. The current
collected by each segment is obtained by adding the current
densities times the areas of the triangles in the segment.
The performance of the fits is accessed by comparing the
currents calculated directly from the PIC simulations, with the
corresponding currents calculated using the fits as described
above. The accuracy of the calculated currents is found to be
within 3% in all the cases considered.

B. Machine Learning Approach

There are different methods used in the machine learning
approaches to train the inference models, depending on the
nature of the problem. In this work, we use two approaches
based on: 1) radial basis functions (RBFs) and 2) deep learning
neural networks (NNs). These are briefly explained below.

1) Radial Basis Functions: RBF is a relatively simple
but efficient regression technique to construct the inference
models for complex relationships between the output and
input variables. It has been widely used for interpolating
scattered data in a multidimensional space [26], [27], [28].
The implementation of RBF interpolation requires a set of
points (nodes) called centers, a basis function (interpolating
function), and the dataset to be interpolated. The technique
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consists of inferring a dependent variable Y at position X̄
in an n-tuple space of independent variables, with a linear
superposition of a function of the distance between X̄ and
selected reference points or centers X̄ i , as in

Y �
Np∑

j=1

a j G
(|X̄ − X̄ j |

)
(3)

where G is a suitable basis or interpolation function, a j are the
fitting coefficients, and Np is the number of center points. The
performance of this regression technique depends critically on
the choice of the interpolating function G and centers X̄ i as
explained in [29]. In our problem, X̄ is a tuple consisting
of currents collected by the segments on the probes, and
Y represents the plasma parameter of interest to be inferred,
which can also be a tuple or a scalar. To first approximation,
the fitting parameters a j are determined by requiring exact
collocation at the centers; that is by solving equations

Yi =
Np∑

j=1

a j G
(|X̄ i − X̄ j |

)
, i = 1, 2, . . . , N. (4)

There are different methods used to select a set of centers.
One way is by carrying out an extensive search for the set
of Np centers which minimizes the cost function among all
the possible combinations of Np centers chosen from N
nodes in the entire dataset. The computation time of going
through all the possible combinations can be prohibitively long
if the model is trained using a large dataset, and the time
increases rapidly with an increase in the number of centers.
The strategy used in this work in selecting Np centers consists
of successively and randomly selecting M small subsets of
nodes from the full training set, each containing M nodes (M
being the batch size). For the first batch, we consider all the
possible combinations of Np centers among the M nodes, and
the set of centers that minimizes the cost function, calculated
on the full training set, is temporarily kept as optimal. These
Np nodes are then kept in the next batch, in which M − Np

randomly selected nodes are selected from the full N training
set. This random selection must of course be made so as not to
duplicate the previously found optimal NP nodes. These steps
continue until the M number of batches have been considered,
and the final set of centers that minimizes the cost function is
selected for the final model [30].

2) Neural Networks: NNs have become a useful tool in
modern scientific research, in space physics, as well as in
many areas of science, medicine, and other fields [31], [32],
[33], [34]. In this work, we use a multilayer perceptron
(MLP) network, which is one of the commonly used network
architectures in training NN models [35]. The network is
arranged in a layered feedforward topology as shown in Fig. 2.
The weighted sums of the input data from the input layer are
passed through a nonlinear activation function which produces
an output which is then passed to the next layer as the input
data. This continues until the final output is produced in the
output layer. For illustration, given nodes j in layer i with
values zi j , the nodes in the next layer i + 1 take in the
output of each node in the previous layer, and the value is

Fig. 2. Illustration of a feedforward NN.

assigned zi+1,k as in

zi+1,k =
ni∑

j=1

wi, j,k f
(
zi, j + bi, j

)
(5)

where ni is the number of nodes in layer i , wi, j,k are the
weights, and bi, j are the bias terms. The weights and bias terms
are optimized using a back-propagation learning scheme using
algorithms such as gradient descent, ADAgrad, RMSprop,
or ADAM [36], [37]. Each node in the input layer is assigned
a current from one of the segments, and all the models are
trained with TensorFlow [38]. The bias terms in (5) are all
set to zero when training the model because they are found
to make no significant difference in the outcome, and the
activation function used is the rectified linear unit (ReLU);
f (z) = ReLU(z) = max{0, z} which performs a nonlinear
combination of all the input data. Another key component
in NNs is the cost function, which measures the discrepancy
between the inference and known data.

III. CONSTRUCTION OF INFERENCE MODELS

The inference models are constructed using synthetic
datasets generated for the idealized segmented probe and the
Proba-2 probe. The models’ skill is then assessed in each case
by comparing inferences to known the values used as input in
the simulations. Comparisons between the inferences and data
from the validation sets are presented below.

A. Idealized Probe Geometry

As a first step, the currents collected by the ten segments
located on the side of the probe facing the ram direction
are calculated as described in Section II-A. For simplicity,
in this first assessment, the probe is assumed to be at a fixed
potential ranging from −5 to −1 V in steps of +1 V relative
to the surrounding plasma. We create a dataset consisting
of 24 000 nodes, each with ten tuples of currents for each
of the ten segments, followed by the physical parameters to
be inferred; that is, the transverse velocity with magnitudes
ranging from −1000 to 1000 m/s, and the densities are listed in
Table I. Having generated the synthetic data, we randomly split
the dataset into two disjoint subsets; one being used to train
the inference models, and the other for assessing the accuracy
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Fig. 3. Comparison between inferred densities using (a) NN and (b) RBF with six centers and actual densities in the idealized probe validation dataset. The
straight line corresponds to a perfect correlation between the two densities.

of our inferences. Our training set consists of 14 500 randomly
selected nodes from the solution library, while the validation
set consists of the remaining 9500 nodes. Using the two
regression techniques explained in Section II-B, the models
are trained to infer the ion density ni and plasma transverse
velocity. Each model is then assessed for accuracy by com-
paring its inferences with known values in the validation set.

1) Density Model: Both the NN and RBF models are used
to infer the plasma (ion) density. The NN consists of an input
layer of ten nodes for each of the ten currents, two hidden
layers of eight and five nodes, respectively, and a single output
node for the density. The cost function used is the mean
absolute relative error (MARE) given by

MARE = 1

n

n∑

j=1

∣∣∣∣
Ydt − Yinf

Yinf

∣∣∣∣ (6)

where n is the number of entries in the training dataset, Ydt is
the data value, and Yinf is the inferred value. The cost function
is minimized with the Adam algorithm, which is an adaptive
optimization algorithm implemented in Tensor Flow [39].
This algorithm was chosen among other minimization options
because of its optimal performance in our problems. The
correlation plot in Fig. 3(a) shows a comparison between the
NN inferences and data from the validation set. The model
skill is assessed with the MRE, the root mean square relative
error (RMSrE), and the Pearson correlation coefficient (R).
The model inferences are in excellent qualitative and quan-
titative agreement with the validation values, with an MRE
not exceeding 11% and RMSrE of 3.1%. In the RBF model,
50 batches, each consisting of 90 randomly selected nodes
from the training set, are used. Six center points are used in
the model, as this number is found to provide a good balance
between training and validation, while avoiding overfitting.
The cost function used in constructing the RBF model is
the MRE. Several interpolating functions were tested, but the
best one that minimized the MRE for the density model is

G = |I−I j |1.8. Fig. 3(b) shows a correlation plot of the
inferred density as a function of the actual densities from
the validation set. The skill of the RBF model is assessed
using the same metrics as for the NN model and it shows a
comparable inference accuracy between the two models with
the RBF models having lower MRE in contrast to RMSrE
which is higher in RBF than the NN model. The correlation
plots for both the methods also show that model predictions
closely follow the ideal correlation line, with a strong affinity
as measured with the Pearson correlation coefficients which
are close to unity in both the cases.

2) Transverse Velocity Inferences: Here, only the NN model
is applied to infer transverse velocities, because in this case,
RBF was found to produce lower quality results. The NN used
has five layers, comprising the input layer with ten nodes, three
hidden layers with eight, six, and four nodes, respectively,
and an output layer with two nodes for the components of
the transverse velocities. The cost function used is the mean
square error defined in (7). Fig. 4 shows a 2-D scatter plot of
the components of the transverse velocities, with the color
bar showing the absolute errors in the model inferences.
The plot is dominated by blue points, with very few red
and light red points which indicates that most of the errors
in the model inferences fall below 100 m/s. The maximum
absolute error (MaxAE) in the inferences is 193.54 m/s, but
almost 98% of the values inferred have an absolute error less
than 100 m/s as seen in the histogram in Fig. 5, showing
the errors’ distribution. The mean absolute error (MeanAE)
is 28.93 m/s and the root mean square error (RMSE) is
45.41 m/s, which corresponds to 2.3% relative to the range
of speeds, [−1000, 1000 m/s] considered in the simulation.
The values of these errors show a good quantitative agree-
ment between the model inferences and the known transverse
velocities used as input in the simulation

MSE = 1

n

n∑

j=1

(|Ydt − Yinf |)2. (7)
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Fig. 4. Inferred transverse velocities in the range of −1000 to 1000 m/s using
the NN model for the idealized probe. The color scale shows the absolute
errors in the velocity model inference.

Fig. 5. Histogram showing the distribution of the absolute error in the
velocity inference model for the idealized probe.

B. Proba-2 Probe Geometry

The synthetic data used in this part are generated for the
segmented Langmuir probe A (SLPA) geometry, as one of
the Proba-2 dual segmented Langmuir probe (DSLP). DSLP
is part of the scientific payload of the ESA micro satellite
Proba-2, which was launched on November 2, 2009 [40].
It consists of two identical segmented Langmuir probes, SLPA
and SLPB, with each having eight equipotential independent
collectors electrically insulated from each other. The collectors
comprise seven circular segments with a radius of 5 mm
and a guard electrode of radius 2 cm holding the segments.
The segments are positioned around the sphere at different
locations. In the Proba-2 data portal, the ram velocity of the
satellite is stated to be in the −Y -direction in the spacecraft
body reference frame (BOF), and thus the plasma flow velocity
in the spacecraft frame is assumed to be in the +Y -direction.
The segments on SLPA are positioned relative to the seg-
ments’ frame of reference (SEG), which is different from the
spacecraft BOF. The BOF can be transformed to the SEG

Fig. 6. Illustration of the position of the segments relative to the direction
of plasma flow. Vd represents the plasma flow velocity in the probe frame.

by first performing a counterclockwise rotation around the
BOF x-axis by 40◦, followed by another counterclockwise
rotation of 60◦ around the z-axis. This transformation is
necessary because the fit in (2) is done relative to a system
in which the z-axis coincides with the cylindrical post axis.
After transformation, the trigonometric fit is used to determine
the current density at the center of the triangles defining
each of the seven segments on the probe, which makes it
possible to integrate, and determine the current collected by
each segment as described in Section II-A. The currents are
calculated by assuming that the probe is biased at a fixed
voltage relative to the satellite. The advantage of considering
a fixed bias probe is that measurements can be made with
higher temporal and spatial (owing to the large satellite speed)
resolutions. The satellite potentials considered in creating the
synthetic dataset, used to train models, range from −6 to −3 V.
This choice is based on the reported probe’s characteristic on
the Proba-2 SLPA portal, and different transverse speeds in
the range [−1000, 1000 m/s] are also considered. A total
of 8500 nodes are generated in our solution library, each
entry consisting of the currents calculated for each segment,
followed by the densities, the transverse velocities, and the
satellite potentials. Here again, the dataset is randomly divided
into a set consisting of 5950 nodes used to train the models
and a distinct set containing the remaining 2550 nodes used
for validation. The models are trained using currents for all the
segments excluding only segment 6 (see Fig. 6). The choice
of the six segments among the seven on the sphere is dictated
by the orientation of the probe on Proba-2 (see Fig. 6) and the
limited interval in angle (0◦ ≤ θ ≤ 130◦) for the fitted current
densities, relative to the ram direction. With currents from the
probes, our independent variables then consist of 12 tuples, six
from a probe biased at 1 V and six for a probe biased at 2 V.

1) Density Model Assessment With Synthetic Data: The
density inference models are constructed using an NN and
RBF. The NN consists of five layers, which comprise the
input layer with 12 nodes each for the currents collected by
the selected six segments at the two biased voltages, three
hidden layers with ten, seven, and three nodes, respectively,
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Fig. 7. Inferred densities against validation dataset densities for the Proba-2 synthetic data, using (a) NN inferences and (b) RBF-inferred densities with six
centers. The line corresponds to a perfect correlation between the two densities.

and an output layer with a single node. The model is trained
using the mean absolute percentage error given in (6) as a
cost function. This is minimized to achieve an optimal model,
using the same activation function as in Section III-A1. In the
RBF model, six centers are used, the interpolating function
chosen is again G = |I−I j |1.8, and the model is constructed by
minimizing MRE. Fig. 7 shows the correlation plots obtained
when comparing model inferences when the trained models
are applied to the validation set. Both the techniques show
excellent agreement with known data, with the NN slightly
outperforming RBF with an MRE of 7.1% and RMSrE of
2.1% compared with MRE of 9.6% and RMSrE of 3.4% for
RBF. The points on the plot for both the methods closely
follow the perfect correlation line, but the vertical spread in
the RBF model is slightly larger than that obtained with NN.
The Pearson correlation coefficient R values indicate the two
models have an excellent affinity with known density values
from our validation set.

2) Satellite Potential Model Assessment With Synthetic
Data: Here, we only consider results obtained with an NN
to infer the satellite potential, because its inference skills
are significantly better than those found with RBF. The NN
model has the same structure as the one used in training
the density model presented in Section III-B1. In this case,
however, instead of using the mean absolute percentage error
given in (6) as the cost function, we used the mean square
error, with which we achieved the best inferences. The skill
of the trained model is assessed using different metrics when
applied to the validation dataset. The Pearson correlation coef-
ficient between the inferred satellite potential and the actual
satellite potential is 0.995, which indicates a strong affinity.
A correlation plot between these values is shown in Fig. 8,
with the calculated values of MaxAE, RMSE, and MeanAE.
From the plot, we note a slight extrapolation in the model
inferences, as a small fraction of the points fall outside the
range in the data used to train the model. Quantitatively, the

overall performance of the model is good, with a MeanAE of
0.063 V which corresponds to 2.1% discrepancy relative to
the range of satellite potential in the dataset.

3) Transverse Velocity Model Assessment With Synthetic
Data: Here also, only the NN approach is used to construct
a model for the transverse velocity, because it produces better
model inferences than RBF. In this case, the network has
five layers, with the input layer having 12 nodes and the
three hidden layers consisting of 15, nine, and six nodes,
respectively, while the output layer consists of two nodes, for
the two components of the transverse velocity. The model is
obtained by minimizing the mean square error defined in (7).
Fig. 9 is a scatter plot of the components of the transverse
velocities, with the color bar showing the absolute errors in the
model inferences. In the figure, most points are blue, indicating
that the majority of the absolute errors in the inferences
fall below the 100-m/s mark. This observation is confirmed
with the histogram in Fig. 10, showing the distribution of
inference errors when applying the model to the validation
set. The histogram shows that nearly 99% of the inferences
are made with absolute errors not exceeding 100 m/s. The
skill of the model is further quantified with the MeanAE and
the RMSE, with values 22.54 and 39.53 m/s corresponding,
respectively, to errors of 1.12% and 1.98% relative to the range
[−1000, 1000 m/s] of transverse velocities in the dataset.
These metric scores indicate an excellent model inference skill.

IV. APPLICATION TO PROBA-2 In Situ MEASUREMENTS

In this section, we apply the models constructed in
Section III-B to the Proba-2 SLPA measurements reported
on the Proba-2 portal [17] on February 1, 2015 when the
probe’s voltage was swept between −7.62 and +7.62 V.
These data archived in cdf format are downloaded from the
Proba-2 data portal and converted into CSV format using the
pycdf module imported from spacepy Python library. The I–V
characteristics and the derived data are then obtained from
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Fig. 8. Comparison between satellite potentials inferred using the NN model and actual potentials in the synthetic dataset constructed with the Proba-2
geometry. The line corresponds to a perfect correlation between the two potentials.

Fig. 9. Inferred transverse velocities in the range of −1000 to 1000 m/s
using the NN model and actual velocities in the synthetic dataset constructed
with the Proba-2 geometry. The color scale shows the absolute errors in the
velocity model inference.

the CSV formatted files. The currents used are obtained from
the measured I–V characteristics for each of the segments
and the guard when the probe is operated in sweep mode

between −7.62 and +7.62 V. In addition to the probe’s
I–V characteristics, the portal also reports electron densities
and floating potentials inferred from each segment separately,
as well as from the spherical guard. The reported data on
the portal have a quality flag of 1 or 0, indicating good
or low quality, respectively. Only data with a quality flag
of 1 are used in our analysis. Another point worth noting
is that electron densities and floating potentials reported for
these probe components are generally all different from one
another, and to the authors’ knowledge, the method used to
infer these reported values is not documented. Owing to the
lack of information concerning the method used to infer the
physical parameters reported on the Proba-2 data portal, and
unknown uncertainties in these parameters, it is not possible
to assess the accuracy of our inferences, based on quantitative
comparisons with the reported values and to conclude which,
between our inferences, or those reported on the portal, are
likely the most accurate. In this section, we use the same
models presented in Section III-B, trained using synthetic data
generated assuming probe biased at fixed voltages of 1 and 2 V.
The assumption of fixed bias probes is of course different
from the sweep mode actually used with these probes. The
measured currents needed in our model as the independent
variables are nonetheless obtained by fitting each segment
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Fig. 10. Histogram of the distribution of the absolute errors in the velocity inference model when applied to the synthetic dataset constructed with the
Proba-2 geometry.

Fig. 11. Correlation plots for pairs of currents collected by (a) segments 2 and 3 and (b) segments 4 and 7. The blue circles are taken from our synthetic
dataset, while the red squares are from Proba-2 measurements reported for February 1, 2015 on the portal [17].

characteristic of one of the Proba-2 segmented probes in the
range −1.5 to 2.5 V, and using these fits to interpolate the
current collected at 1- and 2-V bias voltages. As a first test,
and to assess whether the currents found in the simulations
are of relevance to the measured currents, we show in Fig. 11
samples of correlation plots between simulated and measured
currents collected by segments 2 and 3 [see Fig. 11(a)] and
segments 4 and 7 [see Fig. 11(b)].

The red squares are from Proba-2 SLPA measurements, and
the blue circles are from the simulations. This comparison
is also useful to eliminate cases corresponding to currents
not considered in the synthetic dataset, which if included
would require our models to extrapolate beyond the range
of parameter space in which they were trained. The figure
shows an overlap between the range of the in situ currents

and the synthetic data currents, with the synthetic data cur-
rents extending further to the right (higher currents) than the
experimental data. These higher values in the synthetic data
currents are likely due to the fact that we consider plasma
(ion) densities in the order of 1012 m−3 in the simulations,
which are more than the range of the reported densities in
the Proba-2 portal. In addition, a wider spread is noted in the
experimental data at low currents compared with the simulated
currents, which might be due to enhanced relative noise in
these lower currents.

The NN model is then applied to infer the plasma (ion)
density using the measured currents as the input. The NN
model is used here rather than RBF, because it proved to
be more accurate based on the validations made with the
synthetic data. The average values for each set of the electron
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Fig. 12. Comparison between densities inferred using the NN model (red circles), with those reported for the guard (black circles), the upper (blue squares),
and lower (green inverted triangles) density boundaries of the confidence interval. The confidence interval is calculated from the averages and standard
deviations of densities reported on the Proba-2 portal for the six segments considered. The gaps in the comparison correspond to currents outside the range
over which our models were trained.

densities reported for the six segments considered and their
respective standard deviations are calculated. Using these two
values, we determine a confidence interval delimited by the
upper and lower boundaries for each electron density by
adding and subtracting the standard deviations to the average.
A comparison between our inferred ion densities with the
guard reported electron densities and the calculated upper and
lower boundary electron densities is shown in Fig. 12. This
comparison is done based on the quasi-neutrality of plasma,
that is, with an assumption that the ion density and electron
density are equal. The comparison shows general qualitative
agreement between our inferred densities and those reported
in the Proba-2 portal, albeit with the reported density being
larger than NN-inferred density by more than 100%. The
inferred densities are more consistent with the reported guard
densities, than with those calculated for the segments, and both
are generally below these intervals. The gaps or jumps in the
horizontal axis scale in the plots are due to the removal of data
outside the range of the simulated current used to construct the
model or data with quality flag of zero. The correlation plots
between the inferred densities and in situ reported densities are
shown in Fig. 13, for each of the segments and the guard when
using the NN model, with their respective RMSrE and MRE
skill metrics. The model-inferred densities from the segments
show significant scatter, mostly below the ideal correlation

TABLE IV

SUMMARY OF THE METRICS OF SIMILARITY BETWEEN NN AND RBF
INFERENCES, AND REPORTED INFERENCES OF THE DENSITIES

FOR THE SIX SEGMENTS CONSIDERED

line, with inferred values lower than the ones reported by a
factor ranging from 2 to 4. With the guard, excluding the
lower and upper ends of the correlation curve, the inferred
densities show noticeably less scatter, with values approxi-
mately 50% lower than those reported. The outlier, higher
inferred densities corresponding to the lower (∼1010 m−3) and
higher (�1011 m−3), also visible in Fig. 12 could be attributed
for example, to sheath effects in regions of low-density
(longer Debye lengths), photoelectron emission, which would
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Fig. 13. Correlation plot of density inferences using the NN model and reported density on the Proba-2 portal for SLPA (a) segment 1, (b) segment 2,
(c) segment 3, (d) segment 4, (e) segment 5, (f) segment 7, and (g) guard. The solid line corresponds to perfect correlation.

effectively result in enhanced ion collection, or nonthermal
plasma in the polar regions. It is unfortunately not possible
to go beyond mentioning these possibilities, considering that
the latitudes and the zenith solar angles are not available from
the data portal. In general, the inferences from the NN model
are in good qualitative agreement with the reported electron
densities and are closer to the in situ measurements than those
obtained with the RBF model, as apparent with the similarity
metrics listed in Table IV. The offset in the table is defined as
the mean value of the relative errors in the inferred densities.

Finally, the satellite potential model and the transverse
velocity model were also applied to the in situ measurement,

but the inferences in these cases are far beyond the range
of satellite potentials and velocities considered in training the
models which indicates that these models in their present form
are not applicable, possibly because of the proximity of the
probes to the solar panels on Proba-2, not accounted for in the
simulations.

V. SUMMARY AND CONCLUSION

Results are presented for the interpretation of measurements
made by a spherical segmented Langmuir probe using two
multivariate regression techniques. As a first step, the approach
is assessed by considering an idealized probe consisting of
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20 equipotential segments that are insulated from one another,
from which ten segments are used in the analysis. The seg-
ments are positioned at different points on the spherical guard
in such a way that they are symmetrically oriented relative
to the direction of the incoming plasma flow. 3-D kinetic PIC
and test particle simulations are made to calculate the currents
collected by each segment at five fixed potentials relative to the
background plasma for different plasma parameters relevant to
the space environment near satellites in LEO at mid-latitudes.
These currents and the corresponding plasma conditions are
used to construct a first synthetic dataset to train inference
models and assess their skills. In the simulations, only the
spherical guard of the probe, its equipotential segments, and
post are considered, which should be valid provided that the
probe be on the ram side, sufficiently far from other satellite
components. The geomagnetic field is also neglected, since
the probe is biased so as to collect ion current, and the
fact that for the conditions considered, ion gyro-radii in the
ionosphere are of the order 1 m for H+ and 5 m for O+,
which are much larger than the probe radius. In addition,
by not accounting for the geomagnetic field, we also neglect
the motional electric field −�v × �B in the satellite frame, which
would result in additional potential differences ranging from
∼0 V at the equator, to ∼0.24 V at the poles, between the
two probes, given the ∼90 cm separating them. The neglect
of this potential offset is actually justified in our analysis,
because, as mentioned in Section IV, the two probes on
Proba-2 are not operated in the fixed bias mode, and the
collected currents considered in our analysis are obtained by
interpolation of a single probe characteristic at +1 and +2 V.
The synthetic data are then used to construct the inference
models for the plasma (ion) density and plasma transverse flow
velocity. The density model is constructed using RBF and NN.
RBF performs slightly better than NN based on the metrics
used to quantify the models skill, both having MRE of 9.4%
and 10.6%, respectively. A transverse velocity model is also
trained using NN and it shows a good inference skill when
assessed quantitatively using the synthetic validation dataset.
The RMSE in the model inference is estimated to be 45.4 m/s,
which is about 2.3% relative to the [−1000, 1000] m/s velocity
range, in arbitrary directions, considered in the dataset.

A second synthetic dataset is constructed using the Proba-2
probe geometry. The currents collected by the segments are
calculated with a similar approach to that for the idealized
probe, with the main difference being that variable effective
satellite potentials relative to which the probes are biased,
are assumed in the interval −6 to −3 V. The choice of the
range of satellite potentials is based on the reported probe
characteristics on the Proba-2 SLPA data portal. As with the
idealized probe synthetic data, the RBF and NN models are
trained to infer the plasma (ion) density. The two models
yield densities with an MRE of 9.6% and 7.1% for RBF
and NN, respectively. In this case again, the two models are
found to be comparable in accuracy with NN inferences being
slightly more accurate. The RBF-inferred densities obtained
from the Proba-2 validation synthetic data when the satellite
potential varies have comparable accuracy to the ones obtained
with the idealized probe synthetic dataset when inferences are

made with potentials relative the background plasma. With
NN, the inferred densities are comparable but slightly more
accurate when variable satellite potentials and fixed probe bias
voltages are assumed, than in the idealized case with varying
probe voltages relative to the background plasma. The overall
performances of the models are good nonetheless in both the
cases. The NN model is also trained to infer the satellite
potential using the synthetic data. The model performance on
the validation set is excellent, with a MeanAE of 0.06 V,
which corresponds to an uncertainty around 2% relative to
the range of satellite potential considered in constructing the
model. The final model is constructed using the NN model to
infer the transverse velocity, and the model has an excellent
inference skill when applied to the validation dataset, with
an RMSE of 39.5 m/s. The density models trained using
the Proba-2 geometry synthetic data are then applied to the
Proba-2 SLPA in situ measurement using the currents reported
in the portal as the input values, and the models’ inferences
are compared with the reported values on Proba-2 portal.
Systematic discrepancies are found in the inferred densities,
with the reported data in the portal having higher values than
the model inferences.

To conclude, kinetic simulations combined with multivariate
regressions and machine learning techniques appear as a new
promising avenue to better infer plasma parameters from
currents collected with segmented Langmuir probes for which
no analytic expressions are available. The simulations used
here can reproduce known analytic results under conditions
where they are valid. They can also account for conditions
and physical processes and geometries which are too complex
to be tractable analytically. The assessment of the two methods
considered, using synthetic data, shows good inference skills
for all the parameters considered, and the application of the
density model to the actual in situ measurements is found to
be in good qualitative agreement with the reported inferences
on Proba-2. Quantitatively however, systematic differences are
found, with regression-inferred densities being lower than the
values reported on the data portal, generally by more than a
factor 2. Considering the large discrepancies between densities
reported for the Proba-2 seven segments and the spherical
guard, and the lack of documentation concerning the method
used to infer these densities, it is unfortunately impossible to
assign confidence intervals to any of these densities and ascer-
tain which of them is the most accurate. We can nonetheless
report qualitative consistency between these densities and the
ones inferred with our regression approach, which we see as
promising, and hope that this preliminary success will motivate
more experimental and simulation works aimed at designing
better inference techniques for space plasma parameter from
segmented Langmuir probes.
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