
IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 49, NO. 9, SEPTEMBER 2021 2661

A Relativistic and Electromagnetic Correction to
the Ramo–Shockley Theorem
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Abstract— The classical Ramo–Shockley (RS) theorem gives
the current induced on perfect conductors by the motion of
nearby charges, assuming nonrelativistic motion of those charges
in electrostatic fields. This article illustrates how relativistic and
electromagnetic effects modify RS in some simple examples.
Specifically, we present explicit, closed form analytic solutions
of Maxwell’s equations for the induced current distribution on
perfectly conducting plates due to the motion of a line charge
moving parallel and perpendicular to the plates. The results
have been verified by several methods, including particle-in-cell
simulations. They are compared with the classical electrostatic
theory used to derive RS. New insights into the limitation and
validity of RS are provided. Electromagnetic shocks are explicitly
calculated in closed form when the line charge strikes a parallel
plate transmission line.

Index Terms— Induced current, Ramo’s theorem, Ramo–
Shockley (RS) theorem, Shockley–Ramo theorem.

I. INTRODUCTION

As a charge moves in a vacuum among grounded conduc-
tors, currents are induced on the conductors due to the

rearrangement of the surface charge. An elegant expression for
the induced current is given by Ramo [1] and Shockley [2],
known as Ramo’s theorem or the Ramo–Shockley (RS) theo-
rem. The basic idea is that as a charge moves from one place to
another, the surface charge on surrounding conductors change,
resulting in an induced current on these conductors. This
induced current can be measured (for radiation detection [3]),
or can be used to drive a load (for radiation generation using
an electron beam [4]). Additional applications include accel-
erator theory [5], [6], discharge physics [7], semiconductor
devices [8], [9], and protein dynamics [10]. RS is thus a very
powerful theorem with broad utility.

RS assumes that the charge motion is nonrelativistic so that
at any instant of time, the electric field distribution is given by
the instantaneous electrostatic field due to the space charge,
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Fig. 1. Line charge initially located at (x, z) = (0, h) in (a) single-plate
geometry and (b) parallel-plate geometry.

thereby ignoring relativistic and electromagnetic effects. This
deficiency has rarely been addressed in the literature, as far
as we have been able to determine. In this article, we display
these effects with explicit, simple closed form solutions, for
the first time. Our model consists of a line charge moving
parallel and perpendicular to an infinitely conducting plate
[Fig. 1(a)], and perpendicular to two parallel, infinitely con-
ducting plates [Fig. 1(b)]. In both geometries, we derived the
induced current on the conductor that is relativistically and
electromagnetically correct. Different methods were used to
obtain these solutions numerically. In all cases studied in this
article, we were able to obtain closed form, analytic solutions.
They are compared with the corresponding solutions under
the electrostatic approximations. Our closed form solutions
explicitly illustrate the generation of an electromagnetic shock
wave when the line charge strikes a conducting plate and is
removed from the region, a phenomenon completely absent in
the electrostatic approximation of RS.

In Section II, we consider the single plate geometry
[Fig. 1(a)] in which the line charge either moves parallel or
perpendicular to the conducting plate. In Section III, the line
charge is assumed to move perpendicular to two conducting
plates [Fig. 1(b)], as in a simple diode. The induced current
on the lower conducting plate is computed by several meth-
ods, including a 2-D particle-in-cell simulation, all showing
excellent agreement. The derivations of the analytic solutions
are given in the Appendices. Concluding remarks are given in
Section IV.

II. SINGLE PLATE

Let λ be the line charge density of an infinitely long rod
of infinitesimal cross section. The rod is initially located at
(x, z) = (0, h) above a single perfectly conducting plate at
z = 0 [Fig. 1(a)]. In a quasi-static description, this line charge
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produces a surface charge of density σ on the plate

σ(x; t) = − λzc

π[(x − xc)
2 + z2

c]
(1)

where (xc, zc) are the (x, z) instantaneous coordinates of the
line charge. When there is a parallel, uniform motion of the
line charge, xc = xc(t) = vx t , zc = h, a surface current, K =
xKx , on the conducting plate is induced, which is governed
by the continuity equation

∂σ

∂ t
= −∇ · K = −∂Kx

∂x
. (2)

We may write the left-hand side (LHS) of (2) as

∂σ

∂ t
= ∂σ

∂xc

dxc(t)

dt
= vx

∂σ

∂xc
= −v x

∂σ

∂x
(3)

where we have used (1). Equating (2) and (3), we obtain the
quasi-static induced current

Kx = vxσ = − λhvx

π[(x − vx t)2 + h2] . (4)

To include relativistic effects, we assume that the line charge
has been moving at a constant velocity, xvx , from t = −∞,
and compute the surface current by Lorentz transformation
from the frame moving with the line charge, where we may
compute the electric field using the image charge method, back
to the lab frame. The result is (see Appendix A)

Kx = − γ λhvx

π[γ 2(x−v x t)2 + h2] (5)

where γ = 1/(1 − v2
x/c2)1/2. We have also obtained (5)

by solving Maxwell’s equations in the region above the
perfectly conducting plate, where the current density J =
xλvxδ(x − vx t)δ(z − h) is due to the x-motion of the line
charge. Here, δ is the Dirac delta function. Equation (5)
reduces to (4) in the nonrelativistic limit, c → ∞. Fig. 2
plots (5) at t = 0, where β = vx/c. Also shown (black dashed
curve) is the electrostatic (RS) limit, (4). Note that for charge
motion parallel to flat conducting plates, RS gives a zero total
induced current leaving the plates at x → ±∞, as also shown
in Fig. 2.

For perpendicular motion with a constant velocity, zvz ,
we take the electric current density to be

J ≡ z Jz = z

�
0, t < 0

λvzδ(x)δ(z − h − vz t), t ≥ 0.
(6)

For the single-plate geometry [Fig. 1(a)] in the quasi-static
limit, the induced current on the conducting plate is

Kx = − λvz x

π[x2 + (h + vz t)2] (7)

which satisfies the continuity equation (2) after setting xc = 0
and zc = h + vz t in (1). We shall show below that the
relativistically correct form is given by, [cf., (13) in the single
plate limit, d → ∞]

Kx = − λγ 2v zx

π[x2 + γ 2(h + vz t)2]×
ct + hvz/c�

(ct)2 − x2 − h2
�1/2 (8)

Fig. 2. Induced current in the single-plate geometry [Fig. 1(a)] due to a
line charge moving parallel to the conducting plate with t = 0, from (5). The
“Electrostatic-RS” result is from (4).

where γ = 1/(1 − v2
z /c2)1/2. Equation (8) requires that

ct >
�

x2 + h2 (9)

which gives the minimum time for the radiation produced by
the initial acceleration of the line charge located at (x, z) =
(0, h) at t = 0 [cf., (6)] to reach the position (x, 0) on the
conducting plate. It is clear that (8) reduces to (7) in the
nonrelativistic limit, c → ∞. Fig. 3 shows the evolution of
Kx(x; t) according to (8). Due to the nature of the Dirac delta
functions in J , the initial movement of the line charge at t = 0
implies that an electromagnetic wave of infinite amplitude is
generated at t = 0 at (0, h), which reaches the observation
position (x, 0) when ct is equal to the right-hand side (RHS)
of (9). The singularity in Kx at this instant is apparent in (8)
and in Fig. 3. The induced current Kx is zero if the inequality
sign in (9) is reversed.

III. TWO PARALLEL PLATES

We now consider the perpendicular motion of a line charge
inside a parallel-plate geometry [Fig. 1(b)], with the current
density given by (6). We shall first consider the induced current
for 0 < t < T, T = (d − h)/vz , (i.e., before the line charge
hits the upper plate at time T ). In the quasi-static (RS) regime,
we calculate the induced current from an infinite number of
image charges, each of which will contribute to a term similar
to (7). The infinite sum may be written in closed form, yielding
the total induced current on the lower plate, (see Appendix B)

Kx = −λvz

2d

sinh
�

xπ
d

�
cosh

�
xπ
d

� − cos
�

π
d (vz t + h)

� . (10)

Equation (10) gives Kx → ∓λvz/(2d) as x → ±∞, mean-
ing that a total induced surface current density, −λvz/d , leaves
the lower conducting plate at large |x |, a well-known result
of RS [1], [2] for this geometry. The detailed induced current
distribution is shown by the black dashed lines in Figs. 4 and 5.
It is straightforward to verify that (10) reduces to (7) in the
single-plate limit, d → ∞.

The exact solution for the surface current on the lower plate
[Fig. 1(b)], from Maxwell’s equations using (6) as a source,



LI et al.: RELATIVISTIC AND ELECTROMAGNETIC CORRECTION TO THE RS THEOREM 2663

Fig. 3. Induced current computed from (8), for a line charge moving perpendicular to a single conducting plate shown in Fig. 1(a), evaluated at (a) v z t/h =
0.357, and (b) v z t/h = 1.2. The electrostatic limit, corresponding to the RS results, (7), is shown by the black dashed line.

Fig. 4. Validation of the electromagnetic induced current distribution for a line charge moving perpendicular to two parallel plates [Fig. 1(b)] with β = 0.1,
h̄ = 0.2 and (a) t̄ = 0.235 and (b) t̄ = 0.64, using three very different numerical algorithms: Infinite series [see (11), in green], closed-form solution [see
(13), or (14a), in red], and OSIRIS code [in blue]. Also included are the quasi-static results [see (10), black dashed line] for comparison. Note that in this
figure, the line charge has not hit the upper plate, which occurs at t̄ = T̄ = 0.8.

may be written, (see Appendix C)

K̄x(x;t)
= − 1

2π i

�
	

ds̄es̄t̄

	
e−s̄β x̄ 1

2s̄



1 − e−s̄(1−h̄)

�

+
∞�

n=1

e−(s̄2β2+n2π2)
1/2

x̄ nπ

s̄2 + n2π2

×

− sin

�
nπ h̄

�+ s̄

nπ



cos

�
nπ h̄

� − (−1)ne−s̄(1−h̄)
���
(11)

where K̄x(x; t) = Kx/(λvz/d), s̄ = sd/vz , β = vz/c,
h̄ = h/d , t̄ = vz t/d , and x̄ = x/d , and where 	 is the
Bromwich contour for the inversion of the Laplace transform
in t . The integral contains contributions from the poles at
s̄ = inπ and from the branch cuts originating at s̄ =
inπ/β, n = 0,±1,±2, . . . , . Appendix C shows that the

contributions from the poles add up to

K̄ (poles)
x (x; t) = −1

2

sinh



π x̄
γ

�
cosh



π x̄
γ

�
−cos(π(t̄ + h̄))

(12)

where γ = 1/(1 − v2
z /c2)1/2. This partial solution reduces

to (10) in the nonrelativistic limit, γ = 1. Equation (12)
may also be obtained from a similar image charge method
with Lorentz transform that leads to (5) (now with an infi-
nite number of image line charges for two parallel plates
[Fig. 1(b)]). It is also contained in the exact expression for the
induced current on the lower plate [Fig. 1(b)], which is plotted
in Figs. 4 and 5.

Fig. 4 includes comparisons with simulation results using
a 2-D particle-in-cell code, Object-oriented Simulation
Rapid Implementation System (OSIRIS) [11], [12]. These
simulations used an electron beam with Gaussian density
profiles in the x- and z-directions with a standard deviation
of 0.25 c/ωp in each direction, where the plasma frequency
ωp corresponds to an electron density n0 = 2.7 × 1025 m−3.
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Fig. 5. Comparison of the closed-form electromagnetic and electrostatic induced current distribution for a line charge moving perpendicular to two parallel
plates [Fig. 1(b)] with h̄ = 0.2. (a)–(c) Top row, a mildly relativistic velocity, β = 0.4. (d)–(f) Bottom row, a relativistic velocity, β = 0.95. In each row,
the surface current distribution on the lower conducting plate is shown at t̄ = 0.24, 0.64, and 0.80−, from left to right [t̄ = 0.80− denotes the time shortly
before the line charge hits the upper plate].

Fig. 6. Comparison between the closed-form electromagnetic solution [see (14b)] and OSIRIS code of the induced current distribution after the
vertically-moving line charge hits the upper plate [Fig. 1(b)] with h̄ = 0.2, β = 0.4 and (a) t̄ = 0.8, (b) t̄ = 1.24, and (c) t̄ = 1.56. The line charge
hits the upper plate at t̄ = T̄ = 0.8, after which it is removed. Note that the red curves are identical in Part (a) and in Fig. 5(c), computed at t̄ = 0.80+ and
t̄ = 0.80−, respectively. The electrostatic induced current distribution (not shown) is identically equal to zero because t̄ > T̄ .

The beam was specified to travel at a constant velocity in
the +z-direction, toward the upper plate. The simulation
region of linear dimensions (480 × 30) c/ωp was set up with
the upper and lower walls set as “conducting” boundaries.
The simulation results are displayed in Fig. 4, which shows
remarkable agreement with the numerical evaluation of (11),
and with the analytic solution, (13), given below.

We show in Appendix D that (11) may be reduced to the
closed form

K̄x(x;t)

= −
��

n

⎧⎪⎨
⎪⎩

x̄
�
t̄/β + �

h̄ − 2n
�
β
�

π
�
(t̄/β)2− x̄2−�

h̄−2n
�2
�1/2��

t̄+h̄−2n
�2+ x̄2/γ 2

�
⎫⎪⎬
⎪⎭

≡ K (x̄, t̄, h̄) (13)

where the sum
��

n is over those integer values of n (positive,
zero, and negative) such that the argument of the square root
in the summand is positive. In the single-plate limit, d → ∞,
only the n = 0 term remains in (13), which becomes (8) given
above. The induced current is infinite when the square root in
the denominator of (13) vanishes. This occurs at the time it
takes light to reach a position x on the bottom plate, from the
initial location of an arbitrary image line charge. Alternatively,
at a given t , the field infinity occurs at a position x (see Fig. 4)
on the lower plate where light just arrives from the initial
location of an image line charge.

Fig. 5 shows the electromagnetic induced current distribu-
tion calculated using (13) for mildly relativistic and relativistic
velocities vz , up to the time the line charge is about to hit the
top plate at t = T , or t̄ = T̄ = 1 − h̄ = 0.8 in dimen-
sionless form. The electrostatic results, (10), are included
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Fig. 7. Comparison of the closed-form electromagnetic and electrostatic induced current distribution with h̄ = 0.2 and (a)–(c) β = 0.1, (d)–(f) β = 0.2,
(g)–(i) β = 0.4, and (j)–(l) β = 0.8. In each row, the surface current time-evolution on the lower conducting plate is shown at x̄ = 0.2, 0.5, and 1.0 from left
to right. Included in each plot is a vertical line denoting t̄ = T̄ = 0.8, the time at which the line charge strikes the upper plate, and is removed thereafter.
The closed-form electromagnetic solution is given by (14a,b). The electrostatic solution is given by (10) for t̄ < T̄ , and is identically equal to zero for t̄ > T̄ .

for comparison. Figs. 4 and 5 show that the electrostatic
solution fails to account for electromagnetic transients and
multiple reflections, but works rather well otherwise, even
for a highly relativistic beam, except near the wavefront(s)
where the transient solution dominates. If the line charge
is removed after it hits the upper plate at t̄ = T̄ , there is
no induced current in the electrostatic RS theory after T̄ .
However, reflection of the electromagnetic waves that exist
at t̄ = T̄ within the plates continues in the electromagnetic
theory. In the electromagnetic theory, the induced current on

the lower plate is given by (see Appendix E)

K̄x(x; t) =
�

K
�
x̄, t̄, h̄

�
, 0 < t̄ < T̄ (14a)

K
�
x̄, t̄, h̄

� − K
�
x̄, t̄ − T̄ , 1

�
, t̄ ≥ T̄ (14b)

where K
�
x̄, t̄, h̄

�
is defined in (13). Fig. 6 shows remarkable

agreement between (14b) and OSIRIS simulation results after
T̄ . In Fig. 6, an electromagnetic shock is generated at the
upper plate on impact by the upward-moving line charge; this
shock causes the spikes in the induced current on the lower
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plate at x̄ = ±0.45826 in Fig. 6(b), and at x̄ = ±1.6155
in Fig. 6(c).

Having shown the almost perfect agreement between
OSIRIS with (14a) for t̄ < T̄ in Fig. 4, and with (14b) for
t̄ ≥ T̄ in Fig. 6, we plot in Fig. 7 the temporal evolution of
the induced current at various points on the lower plate for
all time, and compare this exact electromagnetic solution with
the electrostatic solution.

If the line charge moves downward, its coordinates
z = z0(t) = h − vz t, (t > 0, vz > 0) will reach the lower
plate at time T = h/vz , or T̄ = h̄ [Fig. 1(b)]. If the line
charge is removed after T̄ , the induced current on the lower
plate is found to be also given by (14a,b), in which K

�
x̄, t̄, h̄

�
is replaced by K

�
x̄,−t̄, h̄

�
, and K

�
x̄, t̄ − T̄ , 1

�
is replaced

by K
�
x̄,−(t̄ − T̄ ), 0

�
. We have once more verified that this

analytic solution is in excellent agreement with OSIRIS, both
before and after T̄ = h̄, similar to Figs. 4 and 6. Again,
an electromagnetic shock is initiated on the lower plate at
time T̄ = h̄, when the downward-moving line charge hits the
lower plate and is removed afterward.

IV. CONCLUSION

The RS theorem is a foundational result in electronics,
used widely in modern computational models of vacuum
electronics, discharge physics, and semiconductor devices. The
original theorem was derived by assuming quasi-static fields,
ignoring both relativistic and radiative effects. The article
presents simple, solvable examples in which this assumption is
relaxed, and examines the magnitude of the corrections. While
it is clear that the electrostatic solution fails to account for elec-
tromagnetic transients and multiple reflections, Figs. 4 and 5
show that it works rather well otherwise, even for a highly
relativistic beam, except near the wavefront(s) where the tran-
sients dominate. This perhaps partially explains the mystery as
to why the nonrelativistic RS has been very successful in the
description of traveling wave tubes and klystrons [4], where
only the sinusoidal steady solutions are considered, that is,
ignoring transients but fully accounting for all reflections in
the electromagnetic eigenmode solutions, even if the electron
beam is highly relativistic. However, the complexity in the
reflected waves, as shown in Figs. 4 and 7 even for the most
basic parallel plate geometry, seems to have resisted progress
on an electromagnetically and relativistically correct version
of the general RS theorem for more than 80 years.

Our exact closed-form solutions have been confirmed by
several methods, so they can be confidently used in practical
applications. For example, in modern satellite communication,
multipactor discharge is a major concern [13]. The parallel
plates may represent a planar transmission line, and the line
charge may represent an electron generated by multipactor
discharge [7], [14]. The induced current on the wall that we
calculated here provides a direct measure of the degree of
contamination on the quality of a signal (analog or digital) that
is carried on the transmission line. Indeed, such considerations
partly motivated this study, beyond the classical RS. Here,
we find that the induced current in the form of an electro-
magnetic shock is generated when a “multipactoring” electron

strikes a surface, a feature absent in RS and in all existing
analyses of multipactor. The extent to which this purely
electromagnetic phenomenon affects signal quality remains to
be quantified [14].

Finally, we have tried to repeat our calculations of the
induced current for the case of a point charge. The problem
becomes 3-D, far more complicated than the 2-D problem of
a line charge studied in this article. Our preliminary study
shows that the induced current due to a point charge behaves
qualitatively the same as a line charge.

APPENDIX A. DERIVATION OF (5)

We use the image charge method. In the rest frame of the
line charge moving with velocity v = xvx relative to the lab
frame, there is an electric field E = zEz = zσ/�0 at the surface
of the conducting plate, where σ is given by (1). The Lorentz
transformation back to the lab frame is given by

E�
⊥ = γ (E⊥ + v × B) (A.1)

B�
⊥ = γ

�
B⊥ − 1

c2
v × E

�
(A.2)

x�
⊥ = x⊥, x�


 = γ (x
 − vt) (A.3a, b)

γ = 1/(1 − v2/c2)
1/2

(A.4)

where [unprimed, primed] quantities are measured in the
[moving, lab] frame. Equation (A.2) gives

H�
⊥ = −γ �0v × E (A.5)

since B = 0 in the moving frame. This yields

H �
y = γ vxλh

π[γ 2(x − vx t)2 + h2] (A.6)

from which it follows that the surface current K� = z × H� on
the conducting plate in the lab frame is given by (5) in the
text.

APPENDIX B. DERIVATION OF (10)

A static line charge located at (x, z) = (0, zc) between two
parallel plates separated by distance d [Fig. 1(b)] induces an
infinite number of image line charges located at (0, zc + 2nd)
and (0,−zc + 2nd), n = 0,±1,±2,±3, . . . ,. The line charge
and its images induce a surface charge on the lower plate given
by

σ = − λ

2π

∞�
n=−∞


(h + vz t) + 2nd

x2 + ((h + vz t) + 2nd)2

− −(h + vz t) + 2nd

x2 + (−(h + vz t) + 2nd)2

�
. (B.1)

Each term within this infinite sum may be compared with (1).
Consequently, analogous to (7), we obtain the induced current
on the lower plate as a sum over image charges

Kx = −λvz x

2π

∞�
n=−∞


1

x2 + ((h + vz t) + 2nd)2

− −1

x2 + (−(h + vz t) + 2nd)2

�
. (B.2)
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Note that (1) and (7) are the n = 0 terms of (B.1) and (B.2),
respectively. Using the identity

∞�
n=−∞

1

a2 + (n + b)2 = π

a

sinh(2πa)

cosh(2πa) − cos(2πb)
(B.3)

we obtain (10) in the text.

APPENDIX C. DERIVATION OF (11)

For a line charge moving in the z-direction [cf., (6)], the
only nonzero component of the magnetic field is Hy, and
the only nonzero components of the electric field are Ex and
Ez . The z-component of the Maxwell equation involving J
[see (6)] reads

∂ Hy

∂x
= Jz + �0

∂ Ez

∂ t
. (C.1)

Away from the line charge, the Helmholtz (wave) equation

∇2 H̃y(z, x; s) − s2

c2
H̃y(z, x; s) = 0 (C.2)

is written in terms of the Laplace transform of Hy, defined as

Hy(z, x; t) = 1

2π i

�
	

dsest H̃y(z, x; s) (C.3)

where 	 is the Bromwich contour. In writing (C.2), we ignore
the contributions from the initial values of E that always
accompany the Laplace transform technique (which applies
only to t > 0), as a detailed examination shows that this
initial E does not contribute to the induced current on the
perfect conductor (whereas the initial impulse acceleration of
the line charge, implied by (6), would produce the important
electromagnetic transients that are absent in the quasistatic
approach of Ramo and Shockley). We next express H̃y in a
Fourier series

H̃y(z, x; s) =
∞�

n=0

An(s) cos

nπz

d

�
e−Kn x , x > 0 (C.4a)

H̃y(z, x; s) =
∞�

n=0

Bn(s) cos

nπz

d

�
eKn x, x < 0 (C.4b)

Kn =
�
nπ

d

�2 + s2

c2

�1/2

(C.5)

where Re(Kn) > 0. Note that (C.4a) and (C.4b) satisfy the
boundary condition on both conducting plates, (∂ H̃y/∂z) =
s�0 Ex = 0 when z = 0 and z = d . The coefficients, An and
Bn, are determined from the two conditions at x = 0: Ẽz is
continuous and H̃y suffers a finite jump according to (C.1)
and (6). The induced current density on the lower conducting
plate then equals −H y(0, x; t), which may be written in
dimensionless variables as (11), for x > 0.

The Bromwich contour 	 in (11) may be deformed to
include the contributions from the simple poles, located at
s̄ = inπ , and the contributions from the path integrals on
both sides of the branch cuts, each of which originates from
a branch point, located at s̄ = inπ/β, n = 0,±1,±2, . . . , .

It is straightforward to show that the contributions from the
simple poles yield

K̄ (poles)
x (x;t) = −1

2
−

∞�
n=1

cos
�
nπ

�
t̄ + h̄

��
e−nπ x̄/γ (C.6)

which may be shown to be the same as (12). The branch cut
contributions may be written as,

K̄ (bc)
x (x;t)

= 2

π

∞�
n=1

� ∞

1

dξ

ξ2 − β2
sin

��
ξ2 − 1

�1/2
nπ x̄

�

×

ξ cos

�
ξ

β
nπ t̄

�
cos

�
nπ h̄

� − β sin

�
ξ

β
nπ t̄

�
sin(nπ h̄)

�
.

(C.7)

We note that (C.7) exhibits highly oscillatory behavior,
making any numerical evaluation with more than four signifi-
cant figures difficult to obtain. In Fig. 4, we also numerically
confirm that (C.7) is divergent when t̄ = β[x̄2 + (h̄ − 2n)2]1/2,
n = 0,±1,±2, . . . , as predicted by the exact, closed-form
solution, (13). The numerical solution to (11), including the
divergence of the solutions, agrees extremely well with the
closed-form expression, (13), and with the 2-D OSIRIS PIC
simulation, as illustrated in Fig. 4.

APPENDIX D. DERIVATION OF (13)

In this appendix, we derive the closed-form induced current
solution on the lower plate, (13). Here, we use the Fourier
representations, for −∞ < x < ∞

g̃(k) =
� ∞

−∞
dxeikx g(x) (D.1a)

g(x) = 1

2π

� ∞

−∞
dke−ikx g̃(k). (D.1b)

To satisfy the boundary condition (∂ H̃y/∂z) = s�0 Ex = 0
when z = 0 and z = d , we express Ẽx , Ẽz , and H̃y as Fourier
series

Ẽx =
∞�

m=0

Ẽxm sin(κmz) (D.2a)

Ẽz =
∞�

m=0

Ẽzmcos(κmz) (D.2b)

H̃y =
∞�

m=0

H̃ymcos(κm z) (D.3)

where κm = (mπ/d), m = 0, 1, 2, . . . , . Define ωm = c(κ2
m +

k2)1/2 and write the current density

J ≡ z Jz = z

�
0, t < 0

λż0(t)δ(x)δ(z − z0(t)), T > t ≥ 0
(D.4)

in terms of the z-location of the line charge, z0(t). T is the
time of flight from z = h to z = d . The time evolution of
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H̃ym is governed by

∂2 H̃ym

∂ t2
+ ω2

m H̃ym = ikc2�m K (t) cos(κmz0(t)) (D.5)

�m =
�

1, m = 0

2, m > 0
(D.6)

where K (t) ≡ λż0(t)/d . We apply the initial conditions
H̃ym(t = 0) = 0 [assuming that ż0(t = 0) = 0] and
(∂ H̃ym/∂ t)(t = 0) = 0 [assuming that the initial electric field
is electrostatic] and solve (D.5) for H̃ym(t). We then compute
the inverse Fourier transform and find, using [15, eq. (ET I
26(30))]

Hym =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ |x |
c

− c

2
�

m

� t− |x |
c

0
dt �K

�
t �� cos

�
κm z0

�
t ���

× ∂

∂x
J0


κm



c2�t − t ��2 − x2

�1/2
�
, t >

|x |
c

(D.7)

where J0 is the Bessel function of the first kind of order zero.
Summing over m, we find from (D.3) and (D.1b), applying
[15, eqs. (MO 59) and (MO 60)]

Hy(x, z; t) = − c

2

� t− |x |
c

0
dt � K

�
t ��

× ∂

∂x

�
S
�
a, b+� + S

�
a, b−��

, T > t >
|x |
c

(D.8)

where a ≡ (π/d)(c2(t−t �)2−x2)1/2, b = b± ≡ |z±z0|/(c2(t−
t �)2 − x2)1/2 and

S(a, b)

= 1

2
+

∞�
m=1

J0(ma)cos(mab)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a
�
1 − b2

�1/2 +
M1�
l=1

1�
a2 − (2πl + ab)2

�1/2

+
N�

l=1

1�
a2 − (2πl − ab)2�1/2 , b < 1

N�
l=M2+1

1�
a2 − (2πl − ab)2�1/2 , b ≥ 1.

(D.9)

In (D.9), M1,2 and N are defined by

2π M1 < a(1 − b) < 2π(M1 + 1) (D.10a)

2π M2 < a(b − 1) < 2π(M2 + 1) (D.10b)

2π N < a(1 + b) < 2π(N + 1). (D.10c)

Equation (D.8) may be written as

Hy(x, z; t)

= −c
λvz

d

��
dt � ∂

∂x

���
l

�
1�

a2 − (2πl − ab)2
�1/2

���t �=t− |x |
c

t �=0

= c
λvz

d

��
dt � ∂

∂x

���
l

�
1�

a2 − (2πl − ab)2
�1/2

���
t �=0

(D.11)

where the sum
��

l is over those integer values of l such that
the argument of the square root in the summand is positive.
In writing the last equality in (D.11), we note that the integral
is 0 at t � = t − |x |/c. We remark that (D.11) is valid only for
t < T . Setting z = 0 and assuming impulse acceleration at
t = 0, i.e., z0(t) = h + vz t, (t > 0), we obtain from (D.11)

Hy(x, 0; t) = 1

c

λvz

d

×
��

n

�
xd[c2t + (h + 2nd)vz]

π
�
(ct)2−x2−(h−2nd)2�1/2�

(vz t+h−2nd)2+x2/γ 2
�
�

(D.12)

which is (13), upon converting to dimensionless variables.

APPENDIX E. DERIVATION OF (14)

If the line charge is removed after it hits the upper plate at
time t = T = (d − h)/vz , the current density in this parallel
plate geometry [Fig. 1(b)] is rewritten to emphasize its absence
for t > T

J ≡ z Jz(t)[H (t) − H (t − T )] (E.1)

where Jz(t) = λvzδ(x)δ(z − h − vz t) is the same as in (6)
and H (t) is the Heaviside unit step function. For t < T , only
the first term in (E.1) would contribute to the induced current
which is given by (13), thus (14a).

Note that the solution (13) continues for t > T , without any
change in its behavior, as if Jz(t) continues to persist from
t = T to t = ∞. Thus, for t > T , we need to subtract from
the solution (13) the contribution that is due to the second
term in (E.1). The result is (14b), which we prove next.

To evaluate the contribution due only to the second term
in (E.1), for t > T , the technique in Appendix D leads to a
similar initial value problem, in which (D.5) becomes

∂2 H̃ym

∂ t2
+ω2

m H̃ym = −ikc2�m(λvz/d) cos(κm(h+vzt)), t > T

(E.2)

H̃ym(t = T ) = 0 (E.3)

∂ H̃ym

∂ t
(t = T ) = 0. (E.4)

The minus sign in the RHS of (E.2) accounts for the minus
sign in the second term of (E.1), and the initial conditions
(E.3) and (E.4) mean that we are just removing the current
source for t > T , leaving the electromagnetic fields caused by
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the first term of (E.1) unchanged at t = T . Letting t � = t − T ,
(E.2)–(E.4) become

∂2 H̃ym

∂ t �2 + ω2
m H̃ym

= −ikc2�m(λvz/d) cos
�
κm

�
d + vz t ���, t � > 0 (E.5)

H̃ym
�
t � = 0

�= 0 (E.6)

∂ H̃ym

∂ t �
�
t � = 0

� = 0. (E.7)

Equations (E.5)–(E.7) are exactly of the same form as (D.5)
and its associated zero initial conditions that follow. The same
procedure then led to the solution (D.12) in which t is replaced
by t � = t − T and h is replaced by d . We thus obtain (14b) in
nondimensional form. Fig. 6 shows that (14b) is in excellent
agreement with OSIRIS for t ≥ T .
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