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Fixed Bias Probe Measurement of a Satellite
Floating Potential

Akinola Olowookere and Richard Marchand

Abstract— A simple sensor is described to measure satellite
potentials. The proposed instrument consists of two small spher-
ical Langmuir probes biased to different fixed voltages, from
which currents are measured. A predictive model is constructed
for spacecraft floating potentials by combining the orbital motion
limited (OML) approximation for spherical probes, and a multi-
variate regression algorithm. Construction of the model is based
on a training data set obtained from 3-D simulation results,
covering a range of plasma parameters of relevance to satellites
in low earth orbit (LEO) at midlatitudes. The model skill is then
assessed by comparing predictions with potentials in a distinct
validation data set. Owing to large satellite orbital speeds, fixed
bias probes would provide measurements with higher temporal
and spatial resolution than possible with sweep voltage probes.

Index Terms— Kinetic simulations, regression techniques,
satellite floating potential, space plasma, spherical Langmuir
probe (SLP).

I. INTRODUCTION

CHARGING and associated electric sheaths are key fac-
tors affecting the state of spacecraft and their interaction

with environment. Satellites can acquire electric charges as a
result of several processes, depending on space plasma condi-
tions. In low ionospheric plasma at midlatitudes, these include
surface current collection from plasma particles and photoelec-
tron emission. At high latitudes or high altitudes, secondary
electron emission and internal charging can also result from
impacts with energetic particles. Active experiments in space
involving charged particle beams, or propulsion with plasma
thrusters can also lead to significant charging. In this work,
a simple device is presented as a means to infer a satellite
potential in low earth orbit (LEO) at low, to midlatitudes
where, owing to collisions with neutrals, plasma is thermal,
with a relatively low temperature. Under these conditions,
satellite potentials tend to be low; typically in the few volts
range, in absolute values. Even with relatively low satellite
voltages, associated electric fields are of concern when inter-
preting measurements involving charged particles. Background
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particle energies and trajectories, and therefore the measure-
ment of particle velocity distributions or the inference of
Langmuir probe measurements, are affected by sheath electric
fields associated with satellite charging. Controlling, or at least
monitoring, a satellite potential with respect to the background
plasma is therefore critical in an optimal interpretation of
particle sensor measurements.

Studies have been made over the years to monitor and
understand spacecraft charging and potentials in situ, theoreti-
cally, and using computer models capable of self-consistently
accounting for the many physical processes responsible for
spacecraft charging, while accounting for realistic geometries.
Early on-orbit measurements of current sheaths and potential
associated with charging were made with the Explorer VIII
satellite [1], [2]. SCATHA (P782) was designed specifically to
study satellite charging in the magnetosphere where spacecraft
are exposed to energetic particles [3]–[8]. Surface charging and
potentials have also been monitored on the Engineering Test
Satellite V of Japan [9]. More recently, the International Space
Station has been equipped with the floating potential measure-
ment unit (FPMU) developed at Utah State University [10].
For spacecraft at altitudes up to 900 km on the day side of
the ionosphere, potentials have been measured from shifts in
atomic photoelectron energy peaks [11]–[13]. In addition to
in situ experiments, theoretical models have been applied to
explain the principles of surface and spacecraft charging [14],
[15]. Theory plays a key role in the interpretation of measure-
ments to determine a satellite floating potential. For example,
Sanders and Inouye estimate a satellite floating potential by
numerically solving the current balance equation for ion,
electron, secondary emission and backscattered currents, from
which they obtained multiple solutions for the floating poten-
tial V f due to the two Maxwellian energy distributions used
and secondary electron yield [16]. V f is also determined in
other cases where only the current due to ions and electrons
are considered in the current balance equation. This is done
by fitting different analytic expressions derived for both the
ion and electron currents collected by a probe using different
theories such as the orbital motion limited (OML) theory
and radial motion limited (RML) theory also called the Allen,
Boyd, and Reynolds (ABR) theory [17]–[19]. The OML the-
ory was developed by Mott Smith and Langmuir assuming a
Maxwellian unmagnetized plasma, and a probe radius much
smaller than the Debye length [20], [21]. An improved model
was later proposed by Bernstein, Rabinowitz, and Laframboise
by accounting for the sheath formation around the probe in
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addition to the orbital motion of charged particles [22] and
used by Godyak and Alexandrovich [23]. The RML theory
derived by ABRs was first applied to spherical probes by
considering the radial motion of charged particles toward
the probe, which requires solving Poisson’s equation for the
potential in the sheath region around the probe. This theory
was later extended to cylindrical probes by Chen [24]. The
analytic formulas derived from each of these theories relate
electron and ion currents to the probe potential, density,
temperature, and other parameters. These theories, in turn,
can be used to infer satellite floating potentials. Several com-
puter models have been developed under national sponsorship,
to simulate the interaction of spacecraft with environment.
These include NASCAP and NASCAP-2k developed under
contract by NASA and the U.S. Air force [25], [26], MUSCAT,
developed in Cho’s team for the Japan Aerospace Explo-
ration Agency [27], and the open source SPIS program [28],
developed for the European Space Agency. In many cases,
the focus is on a satellite floating potential; that is, the potential
that a satellite has when it collects no net current. However,
the interest in monitoring a satellite potential is not limited
to cases where the satellite is in electrostatic steady state.
Such cases occur, for example, with satellites carrying active
instruments such as thrusters or charged particle guns, or when
they are exposed to a region of space with high frequency
waves. Therefore, considering that most studies on the subject
of satellite potentials focus on satellite floating potentials,
we will continue to refer to a satellite potential as the “floating
potential,” and write it as V f , with the understanding that
the approach presented is more general, and applies to the
determination of a satellite potential, whether or not it is
collecting zero net current.

Our motivation in this work is to go beyond analytic
theories that have been used to determine many satellites’
potentials, by using simulations and multivariate regression
techniques. The reason for this is that analytic formulas rely
on assumptions and approximations which do not reflect the
true conditions encountered in actual measuring conditions.
In order to have an improved model, simulations are done for
cases that account for more realistic conditions under which
measurements are made and, hence, obtain more accurate
interpretations of measurements. The range of satellite floating
potentials considered extends from −2 to +2 V. While this
range is not intended for any specific spacecraft, it is deemed
relevant to satellites in low earth orbit (LEO), consistently with
measurements reported recently for the Swarm C satellite [29].
Under these conditions, plasma densities are sufficiently high,
and temperatures sufficiently low (<0.3 eV) for charging to
appear primarily at surfaces, due to ion and electron impacts,
and secondary electron and photoelectron emission are of
minor importance.

In Section II, we describe the computational approach used
to create a solution library, consisting of probe currents and
associated floating potentials for a broad range of space plasma
parameters. A subset of this solution library can, in turn,
be used as a training data set to construct a regression model.
The remainder subset can then be used as validation data
set, to test the predictive skill of the model. A methodology

Fig. 1. Illustration of two spherical probes at fixed bias voltages with respect
to the spacecraft.

for inferring a satellite floating potential is presented in
Sections III and IV, which can accurately reproduce floating
potentials in our solution library. Possible approaches for
validating the proposed technique experimentally are presented
in Section V, and a summary of our findings and some
concluding remarks are finally presented in Section VI.

II. METHODOLOGY

Kinetic simulations of the interaction between a small
spherical Langmuir probe (SLP) and plasma are made for
several ionospheric conditions using PTetra, a 3-D kinetic
particle in cell code, in which electric fields are calculated self-
consistently. In PTetra, the simulation domain is discretized
with an unstructured tetrahedral mesh, which makes it possible
to represent different spacecraft and instrument geometries, on
which different boundary conditions can be applied. PTetra has
been validated by reproducing known analytic results, and it
was benchmarked by comparing results obtained with other,
independently developed models [30]–[34].

In this study, we consider the feasibility of determining a
satellite floating potential V f from currents measured with two
identical SLPs of radius 4 mm with fixed bias voltages Vb1

and Vb2, as illustrated in Fig. 1. Considering the fact that V f

represents the satellite potential with respect to the background
plasma, it follows that the probe voltages with respect to the
background plasma are given by:

V = V f + Vb (1)

where Vb is the bias voltage of either probe with respect to the
spacecraft. The simulations were made with different densities,
temperatures, and ion compositions obtained from the Interna-
tional Reference Ionosphere (IRI) model, corresponding to mid
latitude ionospheric plasma at different longitudes, latitudes
and times, for satellites in LEO. The scattered plot in Fig. 2
illustrates the extent of the parameter space obtained with the
IRI, with 21 squares and one circle, showing 22 specific cases
for which simulations were made.
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Fig. 2. Scatter plot of plasma parameters obtained using the IRI model.
Parameters selected in the simulations are identified with black rectangles
and one circle.

TABLE I

EXAMPLE PROBE VOLTAGES WITH RESPECT TO BACKGROUND PLASMA,
FOR A SPACECRAFT FLOATING POTENTIAL RANGING FROM

−2 TO +2 V, ASSUMING PROBES WITH FIXED BIAS
VOLTAGES OF +3 AND +2 V

The intent here is to assess the feasibility of inferring
floating potentials from currents collected with two fixed bias
probes. In doing so, we limit our attention to floating potentials
ranging from −2 to +2 V. In this first assessment of the
method, the probes are biased to +2 and +3 V with respect to
the satellite. Owing to (1), this implies that simulations must
be made for probes at voltages ranging from 2 − 2 = 0 to
3 + 2 = 5 V with respect to the background plasma. In order
to develop our approach for arbitrary floating potentials in
the specified range, we need to compute currents for arbitrary
probe voltages in the range [0, 5] V with respect to the
background plasma. This is done, for each of the 22 cases
shown in Fig. 2, by carrying out simulations for probes and
posts at discrete voltages from 0 to 5 V with increments
of 1 V. For this range of voltages, and the plasma parameters
considered, the current is found to vary almost linearly with
voltage and it can be fitted with a maximum relative error of
1.7% using a simple parabola. Given (1), the fit can then be
used to determine the currents collected by a pair of probes for
arbitrary values of the floating potential between −2 and +2 V.
As an example, Table I lists probe potentials corresponding
to selected floating potentials. Example simulation results are
shown in Fig. 3 for cross sections of the average volume charge
density and the ion density at steady state. The parameters
used in the simulations in this case correspond to the circle
in Fig. 2; that is, ne = 1.08×1011 m−3, Te = 0.079 eV, an ion
effective mass meff = 7.39 amu, and a probe voltage V = 5 V
with respect to the background plasma. In the simulations only
the 4 mm radius probe and an equipotential 1.5 mm radius

Fig. 3. Cross section of the charge density profile “rhoAv" in the upper half
and ion density “dni" in the lower half. Charge density and ion density are
in SI units. The parameters used in the simulation correspond to the circle
in Fig. 2.

guard cylindrical post are taken into account, and no other
component of the satellite is accounted for. This is made under
the assumption that the probes are supported by a sufficiently
long boom on the ram side of the satellite, with the boom and
guard aligned along the ram direction. For simplicity, Earth
magnetic field is not included, which is justified by the fact
that the sphere radius a = 4 mm is small compared to a
typical electron thermal gyroradius ρe th = (2 kTe/me)

1/2/�e,
where �e = eB/me is the electron gyroradius, e is the
elementary charge, k is Boltzmann’s constant, Te and me are,
respectively, the electron temperature and mass, and B is the
geomagnetic field at the satellite location. Indeed among all
the cases considered in Fig. 2, and assuming B ∼ 30 μT
at midlatitudes, the smallest value of ρe th is approximately a
factor nine times larger than the probe radius. In the simu-
lations, we considered cases with multiple species, with both
electrons and ions being described by Maxwellian distribution
functions at rest in the reference frame corotating with earth.
Thus, in the satellite (and probe) reference frame, plasma is
drifting from the ram direction at approximately the orbital
speed, assumed to be vorb = 7500 m/s. The distribution of
current collected per surface area on the probe and supporting
post is shown in Fig. 4, corresponding to the same case as
in Fig. 3. With a positive voltage, the probe repels incoming
ions, thus creating a wake downstream, and both structures
collect negative current, as seen in the figure.

Three-dimensional kinetic simulation results are used to
build a solution library L, in which each data entry, or node in
this multivariate space, contains currents collected by the two
probes for randomly distributed floating potentials in the range
[−2, 2] V, followed by the floating potential, the electron
density, the temperature, and the effective mass, for each
of the 22 cases shown in Fig. 2. Ten randomly distributed
floating potentials are considered for each of the 22 cases.
This solution library, in turn, is used to construct disjoint
training and validation sets from which models are trained
and validated, respectively.
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Fig. 4. Current per surface area (A/m2) collected by the probe and the
equipotential supporting guard cylinder. The plasma parameters and voltage
used in the simulation are the same as in Fig. 3.

III. CONSTRUCTION OF PREDICTIVE MODELS

The approach adopted here for constructing a predictive
model makes use of a combination of theory and multivariate
regression; that is, the interpolations of dependent variables
in a multidimensional space of independent variables. Our
goal is to predict satellite floating voltages V f given a 2-D
vector (i1, i2) of currents collected by two fixed bias voltage
probes attached to a satellite. We first construct an approximate
analytic expression for the floating potential using the OML
approximation for the current collected by a small probe in
plasma. A regression algorithm is then applied and assessed to
perform the same task, followed by a combination of the two
methods, in which multivariate regression is used to reduce
the error in the analytically predicted satellite potential. These
approaches and example applications are presented in what
follows.

A. Analytic Model

The interpretation of currents collected by SLPs is com-
monly based on the Mott-Smith and Langmuir’s OML the-
ory [20], [21]. This theory has since been further refined
and extended by Chen [35] and Merlino [36], and continues
to be used to diagnose many laboratory and space plasma
experiments [37]. This success is due to the relatively simple
analytic expressions that it produces in different asymptotic
limits, which can be used to quickly infer plasma parameters
from probe characteristics; that is, from collected currents as
a function of applied voltage. OML is based on a number of
assumptions in order for the probe collection problem to be
tractable analytically; the main ones being that: 1) background
plasma particles have a Maxwellian velocity distribution func-
tion; 2) for spherical probes, the radius is much smaller
than the collected-species’ Debye length; and 3) plasma is
unmagnetized. A common assumption made for electrons
is also that particles have zero-mean velocity. Under these
conditions, OML predicts the following expression for the
current collected by a spherical probe biased positively with
respect to the background plasma:

I = −ner2

�
8πkTe

me

�
1 + e(V f + Vb)

kTe

�
(2)

where n is the electron density, and Vb + V f is the probe
voltage with respect to the background plasma.

Fig. 5. Comparison between the satellite floating potential approximated with
(7) and actual data. The line corresponds to a perfect correlation between the
two floating potentials. The MAE and RMSE are used as model skill metrics.

Using (2), the currents I1 and I2 collected by each probe
with bias voltages Vb1 and Vb2 are written as

I1 = A

�
V f + kTe

e

�
+ AVb1 (3)

and

I2 = A

�
V f + kTe

e

�
+ AVb2 (4)

where

A = −ner2

�
8πkTe

me

�
e

kTe

�
. (5)

Solving for V f , then leads to

V f = Vb1 I2 − Vb2 I1

I1 − I2
− kTe

e
(6)

which expresses the satellite potential in terms of known bias
voltages and measured collected currents, and the unknown
temperature. Assuming for simplicity that (kTe/e) = TeV ,
the temperature in units of eV, is small compared with the
satellite potential, we obtain the following approximation:

V f � Vb1 I2 − Vb2 I1

I1 − I2
(7)

for the satellite potential. Our first model consists of only
(7) to infer the satellite potential, using measured currents
and known bias voltages. The model skill is assessed by
comparing inferred values of V f with known ones used in
the full solution library. The result is shown in Fig. 5,
where predicted potentials are plotted as a function of actual
potentials in the library. Two model skill metrics are also used
to assess model predictions performance quantitatively. These
are the maximum absolute error (MAE) and the root mean
square error (RMSE), and both are reported in the figure.
The analytic approximation in (7) is seen to overestimate
the satellite potential in all cases considered. This system-
atic discrepancy is due in part the neglect of kTe/e in (6)
since, from that equation, it is clear that the approximate
expression for V f in (7) should give satellite potential plus
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the electron temperature in units of electron-volts. This is
not the only cause for the discrepancy, however, because if it
were, the discrepancy between predicted and actual potentials
would be approximately constant in the full range of potentials
considered. Part of the difference might come from the neglect
of the ion contribution to the collected current, but the larger
overestimate at larger floating potentials suggests otherwise.
Indeed, with a bulk kinetic energy of approximately 4.7 eV,
oxygen ions can reach the probes for all floating potentials
considered. When collected, ions contribute positive currents,
thus reducing the magnitude of the negative current from
electrons. This reduction, however, is most important for the
lower floating potentials (∼−2 V), and least important for
the larger positive voltages, since the potential barrier is then
the highest. Ion current collection should, therefore, lead to a
larger discrepancy in Fig. 5 at lower values of V f , which is not
seen in the figure. Another cause could be the presence of the
post holding the spherical probe and the formation of a wake as
shown in Fig. 3, which is not accounted for in the OML theory.
Indeed, Fig. 4 shows that current is not collected uniformly
around the probe as for an isolated sphere in an assumed
nondrifting surrounding plasma in OML. This, combined with
the supersonic ion drift and the resulting wake, are likely
causes for the differences between prediction and actual values
of V f in Fig. 5. We nonetheless note the proximity of the
analytically predicted floating potential to actual values, both
quantitatively and in trend. Predicted V f are tightly distributed
along a line that nearly parallels the solid line in Fig. 5 for an
ideal correlation. The small scatter in the predictions is due
to the different plasma conditions, corresponding to different
densities, temperatures, and ion effective masses, accounted
for in our solution library.

B. Regression With Radial Basis Function (RBF)
Several approaches have been developed to do multivariate

regression; that is, to interpolate dependent variables in a
multidimensional space of independent variables. For example,
kriging was pioneered by Krige [38] for geological survey
applications, and further developed on formal mathematical
grounds [39]–[41]. Deep learning neural networks also offer a
powerful means for constructing predictive regression models
for large sets of data with complex interconnections between
input and output [42], [43]. In the following, RBF regression is
applied to infer a satellite floating potential from a pair of fixed
bias probes. The approach is not limited to fixed bias probes,
however, as demonstrated in [44] where the same technique
was applied to infer plasma densities and temperatures from
characteristics of a sweep voltage probe. RBF is similar
to kriging, in that it performs interpolations of dependent
variables at locations in a multidimensional space, from their
“distance” from selected reference points or “pivots.” The
advantage of RBF compared with neural networks or kriging,
is its simplicity and the fact that, in many cases, it requires
relatively few pivots in order to provide accurate models. This
is in contrast with neural networks, which require large data
sets for training a model, as well as large sets for validation.
This difference in the number of data entries or nodes required
for training and validating is critical when constructing a

predictive model based on computed (or synthetic) data,
because of the large computational resources often needed
in order to carry out simulations. A brief explanation of the
method follows.

Our goal here is to predict a satellite potential V f from
two currents (i1, i2) measured with two probes with known
fixed bias voltages with respect to a spacecraft. Independent
variables are, therefore, two dimensional vectors (i1, i2), and
dependent variables are scalars (1-D vectors) V f . For more
generality, however, let us assume that our independent and
dependent variables are vectors X and Y , respectively. These
vectors can be of arbitrary dimensions, and their dimensions
need not be the same. Given a set of N pivots consisting
of vectors Xi and Yi , i = 1, N , the method consists of
approximating dependent variables for an arbitrary X within
a given domain, as

Y �
N�

j=1

a j G(|X − X j |) (8)

where G is a suitable regression or interpolation function. The
arguments of G are scalars given by the “radial distances”
between X and the pivots Xi . There is no constraint in the
metric used to define this radial distance, but a common choice
is the L2 norm, or Euclidean distance. The accuracy of the
model in a given data set depends on the number and location
of the pivots, as well as on the interpolation function G. Pivots
can be selected among nodes in the solution library, or they
can be defined independently. For a library constructed from
kinetic simulations requiring large computational resources,
however, a practical choice is to select them from nodes
in the library. Different strategies have been proposed for
determining the selection of pivots from a set of nodes. Here,
we use a straightforward approach consisting of trying every
possible combination of N pivots among the N nodes in a
given training data set, for a total number of combinations

Nc =
�N

N

�
= N !

N !(N − N)! . (9)

For large values of N , this number increases very rapidly with
N , and it may be necessary to restrict training to a small subset
of randomly selected nodes in L. In this study, a training
set is made from 90 randomly selected nodes among the 220
nodes in the solution library. This then offers the possibility
of validating the model with the remaining 130 nodes. The
combination of pivots selected for the construction of the
model is the one that produces the highest predictive skill
over the full training set, as measured with a cost function.
Different types of cost functions can be used as a measure
of the discrepancy between prediction and data, provided that
they be positive definite, and that they increase as predictions
deviate from data values. Examples include the mean square
deviation, the maximum relative error, and the MAE. The cost
function used in this work is the MAE in predictions over the
training data set

C = max(|Ȳi − Yi |), i = 1, 2, . . . M (10)

where Ȳi and Yi are respectively predicted and actual depen-
dent variables from M known data values. The next question
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concerns the determination of the regression coefficients a j .
In what follows, these are determined by requiring exact
collocation at pivots; that is:

Yi =
N�

j=1

a j G(|Xi − X j |), i = 1, 2, . . . , N (11)

which can be written in matrix form as⎛
⎜⎜⎜⎝

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · AN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2
...

aN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Y1

Y2
...

YN

⎞
⎟⎟⎟⎠ (12)

where Ai j are matrix elements defined as

Ai j = G(|Xi − X j |) (13)

and a j are regression or fitting coefficients. If dependent
variables are scalars, then the regression coefficients ai are also
scalars; otherwise, they are vectors with the same dimension
as the Y vectors. More generally, collocation can be relaxed
at the pivots in order to improve a model skill (reduce the
cost function) by introducing “smoothing” or the “nugget”
effect as in geostatics [45]. This can be achieved by adding
nonzero elements to the diagonal elements of matrix A in
(12), or to each component of the pivot Yi dependent vectors,
and minimizing the cost function with respect to these values.
In our study, smoothing was not applied, as it was found
to lead to minimal improvement in the model predictive
skill. Smoothing should be considered, however, when model
training is made on data with statistical noise.

We now turn to the specific problem at hand, in which inde-
pendent vectors consist of 2-D current vectors I = (i1, i2),
and dependent variables, consist of scalar satellite potentials
V f . The number of pivots N used in training a model is
important, as the accuracy of the model prediction generally
increases with increasing values of N . Too large a value of
N , however, can lead to overfitting as, while the model skill
may improve with larger values of N , when applied to the
training data set, it can deteriorate on the validation set. In
our RBF model, we used six pivots, from the combination that
minimizes the MAE when predicting the floating potential in
our training set. Several interpolating functions were used for
training, and the one found to give the best results is

G(x) = 0.5xλ ln x (14)

where x is the Euclidean distance, or L2-norm of
the difference between two current vectors, defined as
((I − I j ) · (I − I j ))

1/2, and λ = 1.6. The trained model was
then applied to the validation set in order to assess its skill.
A comparison between predicted potentials with known poten-
tials from the validation set is shown in Fig. 6. The distribution
of points in this plot is clearly different from the one in Fig. 5.
While the maximum error is comparable (1 versus 0.8 V) the
distribution around the solid line, corresponding to a perfect
correlation, shows more scatter than in Fig. 5 where points are
more tightly aligned above the solid line.

Fig. 6. Comparison between floating potentials predicted with RBF using
six pivots and actual values in the validation set. The line corresponds to a
perfect correlation between the two floating potentials.

IV. COMBINATION OF OML APPROXIMATION AND RBF

The regularity in the difference between OML-predicted
and actual potential shown in Fig. 5 suggests that it should
be possible to use regression to correct for this difference
and construct an improved combined model. This is done
by combining the two models presented previously by first
predicting the floating potential using (7), and using RBF to
correct the error in the first prediction. The improved model
resulting from this combination is written as

V model
f = V1 I2 − V2 I1

I1 − I2
+

N�
j=1

a j G(|I − I j |). (15)

Following the same procedure as in Section III, the model is
first constructed using a training data set consisting of 90 ran-
domly selected nodes in the solution library, and it is validated
using the remaining 130 nodes. In doing so, training is done
assuming different numbers of pivots, and here also, increasing
N generally leads to better predictions in the training set, but
for validation, its skill deteriorates when N exceeds a certain
value. In this example, training with four pivots, the MAE
is 0.15 V on the training set, but 0.2 V on the validation
set. With six pivots, however, the MAE in training is 0.13
and 0.18 V in validation which correspond to relative errors
of 3.3% and 4.5% relative to the range of floating potentials
considered. Larger numbers of pivots result in larger errors in
validation, so in this case, we use N = 6 as the optimal number
of pivots. The excellent correlation between predicted and
actual voltages is shown in Fig. 7(a) for which a correlation
R = 0.998 and a root-mean-square difference of 0.07 V are
calculated. The combination of (7) derived from OML theory
and RBF, therefore, leads to a significantly improved predictive
model.

As a final exercise we assess the robustness of the model
to noise in the collected currents. This is done by applying
the same trained model to sets obtained by adding increasing
levels of normal distributed noise to all currents in the valida-
tion set. To be specific, noise is added to each current in the
validation set using

In = I + σr I (16)
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TABLE II

DIFFERENT MEASURES OF THE COMBINED MODEL PREDICTIVE SKILL
WHEN APPLIED TO THE VALIDATION DATA SETS, WITH

DIFFERENT LEVELS OF NOISE

where I is the data (simulated) current without noise, σ is a
specified relative noise standard deviation, and r is a zero-
mean random number with normal (Gaussian) distribution.
The results in Table II show a steady degradation in the
predictive model skill as noise increases, as expected. With
σ = 0.2%, the effect is negligible, but for larger values,
the MAEs increase steadily, and the loss of prediction skill
is clearly visible in Fig. 7(b). With σ = 2%, the MAE in the
predictions is about 0.85, and the rms error is 0.28 V. Inter-
estingly, while deviations from a perfect correlation increase
as noise increases, the points remain distributed along the
solid line, with apparently equal probability for over- and
underestimates.

V. EXPERIMENTAL VERIFICATION

While beyond the scope of this study, ways by which the
proposed techniques could be verified experimentally are of
interest, and are briefly discussed here. One obvious approach
would be to compare floating potentials of a rocket or a space-
craft, inferred with our technique, with those obtained from an
independent measurement. A possibility would be to use an
electron spectrometer to measure the energy of known peaks
resulting from upper atmospheric photoelectrons, as described
by Goembel and Doering [11] and Goembel [46]. Another
approach could consist of equiping a rocket or satellite with
two double-probe units as illustrated in Fig. 8. Each unit would
support a double-probe sensor with fixed bias voltages of
say, +2 and +3 V with respect to their respective unit. The
two units would be biased to different and variable voltages,
V1 and V2, with respect to the spacecraft bus which would
be at potential V f with respect to the background plasma.
The technique presented above would then be used to infer
the potentials Ṽ1 and Ṽ2 of units 1 and 2, with respect
to the background plasma. Our analysis predicts that Ṽ1 and
Ṽ2 should approximate V f + V1 and V f + V2, respectively.
Thus, the difference (Ṽ1 − Ṽ2) − (V1 − V2), which should
ideally be zero, would provide a straightforward validation of
our method. The possibility exists of course, for inferences of
V f made with our approach to be in error by a systematic
and constant voltage, independent of the floating potential.
While possible, this appears to be unlikely, and should it be
the case, the method could be recalibrated, for example, using
the method described above to correct for such a constant
error. Since this second validation method is independent of
the actual potential of a satellite, it could be carried out
in space, as well as in a lab experiment, in which space

Fig. 7. Comparison between satellite floating potentials obtained from a
combination of (7), and RBF with six pivots, and actual potentials in the
validation data set. The line corresponds to a perfect correlation between the
two floating potentials. In (a), no noise is added to currents in the validation
set, while in (b), noise with a relative standard deviation σ = 0.02 is added.

Fig. 8. Illustration of a two double-probe units at fixed bias voltages with
respect to their units, which are biased to different voltages, V1 and V2, with
respect to the spacecraft.

plasma conditions could be suitably reproduced [47], [48].
Also noteworthy, this validation technique is not limited to the
double-probe unit considered here. It could also be applied by
replacing the two units, with any two instruments capable of
measuring a satellite potential.
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VI. SUMMARY AND CONCLUSION

Three approaches are presented to determine the satellite
floating potential from currents collected with a pair of fixed-
bias Langmuir probes. This relatively simple sensor would
provide measurements with higher temporal and spatial res-
olution than possible with sweep voltage Langmuir probes.
This ability to monitor rapid responses in a spacecraft floating
potential would be useful in active experiments where short
(�1 ms) intense beams of charged particles are emitted peri-
odically [49]–[51], or in the presence of high frequency waves.
All approaches are assessed using a solution library in which
currents collected by the two probes are obtained from kinetic
simulations, assuming different plasma environment parame-
ters and satellite potentials with respect to the background
plasma. The first approach is based on a simple analytic
expression, derived in the OML approximation. While the
results obtained with this approximation systematically overes-
timate the potential, they produce very regular predictions that
tightly parallel actual values. In the second method a training
data set consisting of randomly selected entries in a solution
library is used to construct a model based on RBF regression,
which is then applied to a validation data set consisting of
the remaining subset of the solution library. The comparison
between predicted and actual potentials shows less regularity
and more scatter than with the analytic approach, but the model
skill, measured as the MAE, is comparable in magnitude with
that found with the OML analytic model. The third approach is
a combination of the first two, with RBF being used to correct
the difference between OML predicted potentials, and actual
potentials in the training set. This model is found to have the
highest predictive skill, with an MAE of 0.18 V and a relative
error of 4.5% when applied to a validation set without noise.
The tolerance of the combined model to statistical noise is
assessed by adding normal noise to currents with different
standard deviations σ in the validation set. As expected,
the model skill decreases with noise, whether measured in
terms of the maximum prediction error, the root mean-square-
deviation, or the correlation. The acceptable uncertainty in
the prediction of course depends on the application, and on
the parameters being considered. Assuming that an upper
acceptable limit to the skill degradation corresponds to dou-
bling the MAE in a noiseless validation set, we find that the
noise level that would be tolerable in the range of parameters
considered, would be reached with a value of σ between 0.5%
and 1.0%. Two possible approaches have also been described,
for validating our proposed approach experimentally.

Several assumptions are made in our analysis. In particu-
lar, background electrons are assumed to be unmagnetized,
distributed in velocity space as per a nondrifting Maxwellian
distribution function, secondary electron, and photoelectron
emission are neglected. These assumptions are justified in
midlatitude ionospheric plasma encountered by satellites along
night side LEOs where collisions with neutrals are sufficiently
frequent for electrons to be approximately Maxwellian. The
neglect of the earth’s magnetic field is justified by the fact
that a typical electron thermal gyroradius (�3.5 cm) is larger
than the probe radius considered (r = 4 mm). Finally, our
analysis is based on a solution library constructed with kinetic

simulations assuming a greatly simplified geometry consisting
of a single spherical probe attached to a guard post at the same
potential. In this geometry, the presence of the satellite bus
and other payloads is not accounted for. This implies that the
probes and guards would be held at the ends of sufficiently
long booms extending in the ram direction (the direction in
which the satellite is traveling). Even under such idealized
conditions one could expect effects caused by the proximity
to the satellite, owing to the presence of geomagnetic fields,
and the fact that electrons gyrate around and travel along
magnetic field tubes. Perturbations in collected currents could
occur when magnetic field lines passing through the probes
also intersect other satellite components, the electric sheath
around the satellite, or the wake region. Those considerations
are mentioned here with the caveat that they would depend
on the specifics of a given mission, and should be included
in the creation of a model in support of a mission, prior
to deployment in space. In this study, the range of satellite
potentials considered has been limited to [−2, 2] V, which is
deemed relevant to LEO orbits. The approach, however, is not
limited to this range, as it could readily be adapted to cover
a wider range of satellite potentials.
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