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Abstract— Conformal (or body-fitted) electromagnetic particle-
in-cell (EM-PIC) numerical solution schemes are reviewed.
Included is a chronological history of relevant particle physics
algorithms often employed in these conformal simulations. Brief
mathematical descriptions of particle-tracking algorithms and
current weighting schemes are provided, along with a brief sum-
mary of major time-dependent electromagnetic solution methods.
Several research areas are also highlighted for recommended
future development of new conformal EM-PIC methods.

Index Terms— Computational electromagnetics, conformal
mesh, particle in cell (PIC), plasma simulation, reviews.

I. INTRODUCTION

THE ELECTROMAGNETIC particle-in-cell (EM-PIC)
numerical simulation technique is commonly used to

model systems of interacting electromagnetic fields and
charged particles. The advantages that EM-PIC exhibits over
other numerical simulation techniques include its ability to
accurately predict the behavior of many complex physical
systems, its validity over a wide range of operating regimes
(extending to relativistic phenomena), and the simplicity
of its underlying solution algorithm. Since its inception
over half a century ago [1], [2], many contributions have
resulted in improved physics fidelity and computational
performance [3]–[6]. EM-PIC has also been used to simu-
late and analyze numerous physical systems including high-
power microwave sources, accelerator beams, high-frequency
semiconductor devices, and deposition reactors. The scalability
of the EM-PIC method is limited only by the choice of
hardware. While the first EM-PIC simulations were limited to
a few hundred particles along a single dimension, the present
simulations may contain billions of particles simulated in three
dimensions while running on massively parallel computer
architectures.
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In EM-PIC, the electromagnetic fields are traditionally
assigned to fixed locations on a virtual mesh structure, while
the particles are tracked in continuous physical space [4]–[6].
Regular quadrilateral (or hexahedron) meshes are often chosen
as the EM-PIC unit cell in two (or three) dimensions, suggest-
ing a finite-difference time-domain (FDTD) electromagnetic
field solution algorithm. The FDTD method is simple in
theory, easily implemented, and extensively studied. However,
the well-known drawbacks of the FDTD method include its
failure to accurately capture field behavior in the presence
of irregular (curved or misaligned) boundaries and numerical
dispersion. The representation of these irregular boundaries is
often addressed using the well-known staircasing approxima-
tion. The limitations of the staircasing approximation when
using the FDTD method to simulate electromagnetic fields
are well documented in [7]–[13]. Further limitations are also
present in FDTD-based EM-PIC simulations, where staircas-
ing can lead to inaccurate particle behavior at these boundaries.
A common work around is to increase the mesh resolution in
the immediate vicinity of these irregular boundaries, thereby
reducing the effective distance separating the numerical repre-
sentation of the physical system boundaries [14]. However, this
approach can significantly increase the total number of system
unknowns and the overall time to solution. It can also severely
limit the maximum simulation time step [9], [15]–[22], without
completely solving the problem of accurate particle emission.
Finally, the staircase approximation can lead to singularities in
the field solution at convex corners as the cell size approaches
zero.

The accurate simulation of irregular boundaries is also
possible through the application of conformal FDTD-based
EM-PIC algorithms. Such schemes avoid unnecessary mesh
refinement and lead to more accurate particle behavior
in the vicinity of such boundaries. Numerous conformal
EM-PIC schemes have been published, with several of these
mathematical and geometric methods adapted, or borrowed,
from other computational science communities. With many
available algorithms to choose from, it can be a daunting and
time-consuming task to choose the algorithm suited best for
a particular problem. Since this group of relevant references
has yet to be compiled into a single source, it is the primary
objective of this work to gather these sources and provide
comparisons of their main features. Of course, this is not the
first review of conformal electromagnetic solution schemes.
Instead, it builds upon many previous reviews [6], [23]–[31]
while updating and including newly developed methods. It is
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the hope of the authors that this grouping of references will
aid the reader in selecting appropriate EM-PIC algorithms and
perhaps even aid in the development of future conformal
EM-PIC solution methods. Specifically, this review will
address the following:

1) provide records of and citations to published conformal
EM-PIC schemes and related algorithms;

2) provide brief mathematical descriptions of and summa-
rize relevant conformal EM-PIC algorithms;

3) highlight areas for recommended future conformal
EM-PIC development.

Conformal EM-PIC remains only one simulation technique
with a multitude of other PIC solution frameworks. As such,
the present scope must be limited, so the following topics
will not be addressed in this review (except when relevant for
historical context):

1) early PIC history and related works
(see [6], [27], [32]–[35]);

2) nonconformal EM-PIC schemes (including adaptive
mesh refinement);

3) non-EM-PIC methods (unless necessary to provide
historical context);

4) nonparticle or hybrid-particle schemes (i.e., fluid-based
plasma simulation methods);

5) computer-science-based and hardware developments
(e.g., graphics processor unit and parallel implementa-
tions).

Before proceeding, the meaning of conformal must be
addressed. In what follows, conformity (also referred to as
body fitting) will refer to solution domains and corresponding
meshes that closely match material interfaces and physical
boundaries. Note that the traditional staircased mesh
(see Fig. 1) is considered nonconforming in this work when
considering a curved or misaligned boundary (or misaligned
with respect to the simulation coordinate axes). The term
closely here includes both approximate and exact confor-
mity. For example, a virtual domain and/or mesh with outer
boundaries or material interfaces exactly matching the physical
location and shape of their corresponding physical boundaries
and interfaces demonstrates exact conformity. On the other
hand, if simulation boundaries and interfaces only partially
or closely match the position and shape of their physical
counterparts, then the mesh is only approximately conformal.
Visual depictions of both conformal and nonconformal meshes
are provided in Fig. 1.

It should be noted that a hexahedron-based mesh aligned
along all three Cartesian coordinates is in fact typically exactly
conforming when representing a brick structure. However, the
discussion from hereon will address irregular boundaries and
interfaces as those representing curved or slanted features
when referring to systems and methods demonstrating
conformity.

This paper is organized as follows. Due to its parallel
development history and strong influence on conformal
EM-PIC methods, a brief review of conformal electromagnetic
simulations is first outlined in Section II. Many particle physics
and related algorithms often used in conformal EM-PIC
simulations are presented in Section III. Finally, Section IV

Fig. 1. Examples of (top left) nonconformal (e.g., staircased), (top right)
approximately conformal, and (bottom) exactly conformal meshes represent-
ing a curved physical boundary.

highlights areas of recommended research in conformal
EM-PIC methods, while a brief summary of this paper is
provided in Section V.

II. CONFORMAL ELECTROMAGNETIC

SOLUTION METHODS

The conformity of any simulation is intimately related to
its virtual solution domain, which in the case of EM-PIC
is determined by the mesh structure. Since electromagnetic
field samples are located on this mesh, the electromagnetic
solution itself is an integral part of a conformal EM-PIC
model. Furthermore, since EM-PIC schemes are almost always
time-dependent solutions (in order to capture nonlinear
temporal effects), the following algorithms are limited to
temporal electromagnetic schemes. The mesh-based electro-
magnetic field solution algorithms cited here were first devel-
oped by the computational electromagnetics community prior
to their inclusion in EM-PIC schemes. Thus, due to both
their important role in conformal EM-PIC schemes and their
previous chronological development, an overview of confor-
mal electromagnetic field solution methods is warranted, but
only a brief review is provided here. Further reading may
be obtained elsewhere in the many review papers on the
subject [23], [24], [26], [29]–[31], [36].

A. Finite-Difference Time Domain

Arguably the first, simplest, and most widely used
time-domain electromagnetic field solution algorithm is the
FDTD method, first developed and published in 1966 [37].
Although fast and based upon simple theory, the Yee FDTD
algorithm is not conformal for irregular boundaries and is
thus available (without staircasing) only for a small subset
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of mesh structures. In light of these drawbacks, many have
proposed augmented FDTD methods in attempts to achieve
conformity while maintaining its attractive qualities. Such
conformal FDTD methods are discussed in the following.

The first conformal electromagnetic FDTD schemes were
published in [38]–[42], albeit for straight-edged domains.
These early methods were later extended to curved
boundaries [43]–[45] and curvilinear meshes [46], [47]. Other
conformal FDTD implementations of note have included
the use of both overlapping conformal and nonconformal
grids [48], the inclusion of conformal dielectric weights in
the FDTD algorithm [49], [50], simple area weighting for
diagonal cells [51], [52], the introduction of a field correction
step [53], improved stability [54], and localized boundary
implementations [55].

One of the most popular conformal FDTD algorithms is
the Dey–Mittra scheme (after its developers) [56]–[62].
Generalizing [51] and [58], the Dey–Mittra algorithm employs
the integral form of Faraday’s law by calculating modified
face areas and realizing that the tangential electric field in
any conformal surface must go to zero. While simple in
theory, the Dey–Mittra scheme is applicable only when perfect
electric conductors (PECs) are present, and can also reduce the
maximum allowable time step in order to maintain stability.
Zagorodnov et al. [63], [64] and Xiao and Liu [65], [66]
later developed area-extending interpolation schemes that suc-
cessfully addressed this issue. Other related methods involve
grouping electric flux calculations and local time-stepping
schemes [67], and flux-limiting methods adapted from the
computational fluid dynamics (CFD) community [68].

On the other hand, irregular interfaces separating
two dielectrics have been effectively treated by employing
whole cell weighting [49], [50], [69], [70], applying material
differences at individual cell edges [71], and borrowing
similar algorithms from photonic bandgap methods [72]–[74].
Schemes citing second-order accuracy have also been devel-
oped for various material interface combinations [75], [76],
while recent implementations have cited even higher order
accuracy [67], [77]–[80]. Of course, these works represent
only a small subset of available methods for effectively
simulating systems containing dielectric interfaces.

Finally, many FDTD-based schemes have been designed
for curvilinear meshes (which preserve the exact confor-
mity of even curved boundaries), including early works by
Holland [81]. More recent works have included efficient
temporal schemes [82], higher order algorithms [83], and
Lagrangian-based approaches [84].

B. Finite-Volume Time Domain

The first to apply finite-volume time-domain (FVTD)
methods in simulating electromagnetic fields on conformal
meshes were Madsen and Ziolkowski [85], Shankar et al. [86],
and Mohammadian et al. [87]. Holland et al. [88]
improved upon these early methods by introducing second-
order accuracy for nonuniform and nonorthogonal grids.
Gedney and Lansing [89] and Madsen [90] later independently
developed a method guaranteeing the preservation of local

charge divergence, while Hermeline [91] introduced energy-
conserving algorithms. The stability of the FVTD algorithm
was later analyzed in [92]–[96].

C. Finite-Element Time Domain

Following several early methods originally developed for
simulating temporal electromagnetic scattering [97]–[105],
Lynch and Paulsen [106] were the first to publish an explicit
finite-element time-domain (FETD) formulation. Still others
independently developed and published similar explicit FETD
algorithms the same year [107], [108]. Recent applications
of the explicit FETD method have included inhomogeneous
media [109], hybrid boundary integral schemes [110], the use
of various cell shapes [111]–[116] and mesh structures [117],
finite difference-based schemes [118], unconditionally stable
explicit time-stepping [119], [120], mass lumping [121], sparse
matrix approximations [122], and higher order accuracy [123].

Implicit FETD schemes were first published
in [124] and [125], with unconditionally stable schemes
later introduced in [126] and [127]. Recent implicit
FETD developments have included the use of mixed basis
functions [128]–[130], Whitney element schemes for vector
bases [131]–[134], variational integrators [135], [136],
and the application of other implicit time-stepping
schemes [115], [137], [138].

D. Discontinuous Galerkin Time Domain

The discontinuous Galerkin (DG) time domain (DGTD)
method remains attractive for its ability to achieve higher-
order accuracy independent of the original mesh resolution
[139], [140]. Recent DGTD applications have included cavity
mode analysis [141], and local mesh refinement [142] and time
stepping [143].

E. Hybrid Methods

Some of the first hybrid electromagnetic solutions
combined both FDTD and FVTD algorithms on con-
formal hybrid meshes [144]–[146]. Yee et al. [48] and
Yee and Chen [147] later proposed a hybrid FVTD/FDTD
scheme employing overlapping meshes assuming edge- and
node-based field assignments. Later extensions included 3-D
nonhexahedral-based meshes [147], separate curvilinear and
rectangular meshes [148], and impedance boundary condi-
tions [149]. Yang et al. [150] adapted this overlapping mesh
scheme for curvilinear PEC boundaries with inhomogeneous
cell filling, while Donderici and Teixeira [151] extended it
to arbitrary mesh orientations. Although accurate [48], [147],
early FVTD/FDTD schemes proved unstable at later time
steps (often referred to as late-time instability) [17], [152].
Riley and Turner [17], [152], [153] were the first to develop
a hybrid FVTD/FDTD method that avoided the late-time
instabilities associated with earlier methods [146], [154] by
introducing artificial numerical damping.

Wu and Itoh [155], [156] developed the first FETD/FDTD
hybrid methods in the mid-1990s independently of
Darve and Loehner [157]. Feliziani and Maradei [158]
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later employed Whitney elements in the independent
development of a more accurate hybrid FETD/FDTD scheme,
while Koh et al. [159] developed an interpolation scheme
for passing between nonconforming meshes. Others have
extended these works to dispersive materials [160], simplified
formulations [161]–[164], and DG-like flux passing
schemes [165]–[168].

As with the FVTD/FDTD hybrid schemes, computational
issues quickly arose in these hybrid FETD/FDTD schemes,
taking the form of nonphysical reflections and late-time
instabilities [161], [169]–[171]. Hwang and Wu [169]
were the first to address these problems in FETD/FDTD
methods by applying a numerical low-pass filter, while
Rylander and Bondeson [170] and Rylander [172] later
interpreted the wrapper layer by applying trapezoidal
integration, thus avoiding the late-time instability
previously observed. Riley [173], Riley et al. [174],
Montgomery et al. [175], Edelvik [176], Abenius et al. [177],
El Hachemi et al. [178], [179], and Rylander et al. [180] have
more recently adapted this hybrid FETD/FDTD algorithm
for numerous electromagnetic scattering applications, while
Monorchio et al. [181] interfaced it with still more boundary
methods.

Driscoll and Fornberg [182] and Fomberg [183] were
the first to lay the foundations of DGTD/FDTD, while
Garcia et al. [184], [185] were the first to explicitly publish a
hybrid DGTD/FDTD scheme.

Although too numerous to name them all here, other
hybrid schemes have included FVTD/FETD schemes [186],
Taylor–Galerkin methods borrowed from CFD [187],
FETD/DGTD hybrid schemes [188], and finite-integration
technique (FIT)/FVTD schemes [189].

III. ELECTROMAGNETIC PARTICLE-IN-CELL SCHEMES

The electromagnetic field update represents only one of
the four major components of the EM-PIC solution algorithm
(the others being force interpolation, particle push/tracking,
and current weighting) [4]–[6], [190]. The particle push in
any EM-PIC scheme is unaffected by the choice of mesh
structure due to its representation in a continuum domain.
Thus, only the interpolation between fields and particles (force
interpolation), particle tracking across mesh cells, and current
weighting are affected. It should be noted the absorption and
emission of particles from material and domain boundaries
are also affected by the choice of either an approximate or
exact conformal mesh, although its inclusion in the EM-PIC
algorithm depends on the system being simulated. A summary
of the various numerical methods employed by conformal
EM-PIC schemes during these algorithm steps will be
discussed in the following.

A. Conformal FDTD-PIC

Prior to conformal EM-PIC developments, Quintenz [191]
introduced the first electrostatic PIC (ES-PIC) scheme capable
of simulating slanted emission surfaces. Although limited
in conformity to diagonally bisected quadrilaterals in two
dimensions, his work represented the first conformal PIC code.

Fig. 2. Triangle area weighting scheme used for the electrostatic simulation
of slanted boundaries. Figure adapted from [192].

The same diagonally bisected conformal cell scheme was
later adapted in [192] for a fully time-dependent EM-PIC
scheme. Mezzanotte et al. [51] later independently developed
a similar algorithm to simulate purely electromagnetic fields.
Accurate charge assignment within the conformal bisected
Cartesian cells was ensured by modifying the standard bilinear
interpolation schemes of earlier EM-PIC works. For example,
a point charge located within a given triangular cell may be
distributed to its three surrounding cell nodes via inverse area
weighting according to

qi = q0 Ai
∑3

j=1 A j
(1)

where qi is the fraction of the original charge mapped to the
i th node and Ai is its associated fractional area. A visual
representation of this charge assignment algorithm is shown
in Fig. 2.

Pointon [192] also addressed accurate particle emission at
slanted boundaries and around corners by solving Gauss’ law
at local boundary cells. The same slanted boundary particle
emission method was later generalized to Cartesian meshes in
three dimensions [193].

Grote et al. [194] published the first application of true cut
cells when describing their ES-PIC code, WARP. Cut cells
were first implemented in an EM-PIC computational frame-
work, VORPAL, two years later [195], [196], and became one
of its important capabilities and features [197]–[201].
Nieter et al. [195], Smithe et al. [197], and Nieter et al. [198]
originally developed a conformal emission scheme based
upon extending the particle path from its nearest exterior
node. Although simple in theory, this method introduced
more noise than comparable algorithms [197] and did not
guarantee charge conservation [195], [198]. It also incorrectly
assigned emitted charge to the two closest interior nodes prior,
leading to spurious charges [195], [197]. Improved emission
algorithms (visually depicted in Fig. 3) were later developed
to avoid these shortcomings [199].

The particle seen in Fig. 3 is initially assigned to either the
nearest node or opposing edge (face) in two (three) dimen-
sions, and is then emitted normal to the conformal boundary.
This two-step process avoids the problem of premature space
charge introduction prior to physical emission [199]. Both
of the above node and edge (or face) emission algorithms
are essentially identical in accuracy and charge positioning,
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Fig. 3. Charge-conserving cut-cell particle emission via corner (solid line)
and edge (dashed line) schemes. Emission via the noncharge-conserving
orthogonal edge scheme (gray line) is also shown.

only differing in their coding complexity [199]. In each case,
emission uniformity was addressed via a stochastic surface
area weighting scheme [197].

One potential issue introduced by these two emission
algorithms includes the particle move itself. For example,
if the physical lengths of these two moves are significantly
different, then nonphysical fields can result at the emission
surface [199]. This currently remains an unsolved problem in
Dey–Mittra EM-PIC schemes and is recommended for future
research.

Particle behavior (both absorption and emission) in the
vicinity of domain boundaries and material surfaces is para-
mount to the operation of many real-world plasma systems.
This also holds true for their corresponding EM-PIC sim-
ulations. As the most accurate and flexible choice, several
EM-PIC simulations have been developed for curvilinear (or
nonorthogonal) meshes in efforts to capture this important
behavior.

Although Halter [202] was the first to develop an
ES-PIC code on nonorthogonal meshes, Jones [203] was the
first to develop an EM-PIC code on nonorthogonal meshes.
Seldner and Westermann [204] later published the first particle
push algorithm tailored specifically for curvilinear meshes by
interpolating between nonorthogonal (physical) and orthogonal
(logical) meshes. Westermann [205]–[208] pursued this work,
developing algorithms for transformed coordinate frames,
while Friedman et al. [209] also employed similar methods.
Grote et al. [194], [210] later developed a suite of tools for use
in their WARP code, which included cut cells and the ability
to process warped meshes.

Recent work in FDTD-based PIC schemes on
nonorthogonal meshes has included 3-D ES-PIC formulations
developed in [211]–[214] with 3-D versions currently under
development. Citing the benefits of a structured mesh
with exact geometric representation, curvilinear EM-PIC
simulations remain promising and are also recommended for
future research and development.

B. FVTD-PIC

The improved geometric flexibility and accuracy often
associated with FV-based PIC methods developed for unstruc-
tured meshes lead to added complexity when simulating
particle behavior. Most notably, the incremental cell indexing
associated with structured meshes is no longer available in

Fig. 4. Visual representation of triangle area summation. Noncontained (left)
and contained particles (right) with correspondingly shaded areas.

unstructured meshes. As a result, more complex algorithms
with additional computational costs are required to accurately
capture the corresponding particle physics and track particles
through the mesh. Several of these algorithms are described
below.

The first FV-based PIC scheme developed specifically for
an unstructured mesh was published in [215]. Based upon
the earlier methods of Winslow [216] and limited to a
2.5- dimensional ES-PIC formulation, this work by Matsumoto
and Kawata represented the first PIC scheme capable of simu-
lating system behavior within a tetrahedron-based unstructured
mesh. After updating particle velocities and positions, the
containing mesh cell for every particle must be identified.
Matsumoto and Kawata performed this search within a two-
dimensional unstructured mesh by summing particle-edge tri-
angle areas and testing with the original cell area, as visually
depicted in Fig. 4.

For example, the total area of the image on the right in Fig. 4
is equal to that of the test cell, while the total area associated
with the left particle position is larger than the test cell. Thus,
the particle in the image on the right in Fig. 4 belongs to the
current mesh cell, while the particle in the left image does not.

If the cells are not efficiently searched, the testing phase
can prove prohibitively expensive for a large unstructured
mesh. Matsumoto and Kawata [215] limited this search to
those cells falling within a maximum particle traversal radius
as determined by the simulation time step. Although signifi-
cantly more efficient than the exhaustive brute force method
described previously, this maximum radius search method
neglects all cells traversed on the way from the original to
the final cell, if they exist. In this case, these traversed cells
are required for assigning current weights prior to updating the
electromagnetic fields at the start of the next solution cycle.

These particle–mesh interpolations were calculated by first
choosing a maximum radius of the searchable area, or typically
the maximum length of any cell edge. Assuming node-based
fields, the total force acting upon any given particle was
then calculated by summing over all enclosed effective forces
via [215]

�FP =
N∑

i=1

�Fi

li

/ N∑

i=1

1

li
(2)

where N is the total number of enclosed nodes (or fields
in this case), �Fi is the force on the particle at P due to
the fields associated with node i , �Fp is the total force on
the particle, and li are the distances separating the i th mesh
node and the particle position P . A visual representation
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Fig. 5. Visual representation of the Matsumoto and Kawata particle–mesh
interaction space.

of this calculation is provided in Fig. 5, with the enclosed
(red dots) nodes highlighted. Charges and current densi-
ties were assigned to mesh nodes in a similar manner.
Matsumoto and Kawata [215] reported the conservation of
numerous physical quantities, citing the use of reciprocal
interpolation schemes.

Hermeline [217] and Adolf et al. [218] published the
first electromagnetic FVTD-PIC code around the same time.
FVTD electromagnetic field solution methods were paired
with a PIC update scheme on unstructured grids in two
dimensions for the cylindrical coordinate frame. Unlike [215],
the FVTD-PIC scheme used in [217] and [218] employed a
Delaunay–Voronoï dual-mesh structure [219], [220]. Here,
particle tracking was performed using fully vectorized search
scheme [221], while charge assignment employed weighted
distributions [218]. Hermeline [222] later extended their
method to three dimensions and solved the Maxwell-Vlasov
system.

Karmesin et al. [223] later developed particle-tracking and
current assignment schemes on nonorthogonal meshes for
use in FVTD-PIC codes by updating the particle velocity
in the physical frame, with the particle position updated in
the logical frame. This was similar to the method developed
in [204]–[206], which was adapted in [224]. Charge and
current density assignments were then available through
the application of the well-known Villasenor and Buneman
scheme [225] on the logical mesh [223]. While accurate
and extremely flexible, these transformations between logical
and physical spaces contribute added complexity to the over-
all EM-PIC algorithm. Earlier weighting methods developed
in [226] remained applicable, while more recent schemes have
demonstrated decreased computational effort [227].

Gatsonis and Spirkin [228], [231] and
Spirkin and Gatsonis [229], [230] later published an
improved particle search algorithm for unstructured meshes
using the known particle velocity to dictate the search
direction. Based upon [221], it required solving [228]

r0(t) + v(t)τ = αr12 + βr13 (3)

as a matrix equation for the unknown scalar values
⎡

⎣
α
β
τ

⎤

⎦ = [ r12 r13 −v ]−1[ r0 ] (4)

Fig. 6. Gatsonis and Spirkin particle search algorithm displaying a particle-
intersecting face, f123 (shaded region).

where the scalar unknowns τ , α, and β represent the time
of flight from r0 to the intersection point with face f123,
and the intersection points in the skewed coordinate frame,
respectively. If 0 < τ < 1 and 0 < α + β < 1, then
the particle-intersected face f123 and the adjacent cell must
be checked for further face intersections. Conversely, if τ is
negative or greater than one for all tested faces, the particle
is assumed to belong to the current cell. In all other cases,
a particle–face intersection does not exist, and the next face
is checked. This particle search algorithm is visually depicted
in Fig. 6.

The Gatsonis and Spirkin particle search algorithm identifies
all traversed cells (in order) and locates their point of inter-
section, with the latter being useful in the case of boundary
intersection. However, this method does require solving a
matrix equation for each particle and every corresponding face
tested, which can be computationally expensive when tracking
billions of particles.

Further FVTD-PIC applications have included
charge-conserving schemes employing higher order time
stepping [232], drift–diffusion models for simulating glow
discharges [233], atmospheric plasma simulations [234],
development for parallel architectures [223], [235], charge
correction [18], [236], [237] and conservation schemes [238],
time splitting of the particle push update [239], and stochastic
collision modeling [228]–[230], [240], [241].

C. FETD-PIC

The first FE-based particle codes were purely electrostatic
in nature, simulated only electron gun systems, and solved
the Vlasov–Poisson equations [242]–[247]. Physical–logical
space interpolations for nonorthogonal meshes [242], [243]
and with bilinear interpolation within elements [244]–[246]
were developed. Other early works in FE-based PIC included
Galerkin testing methods [248]–[250] and particle pushing
algorithms [251].

Although earlier works have been cited [252], [253], the
first full and detailed descriptions of FETD-PIC schemes
were independently published in [218] and [254]–[256].
Degond et al. [256] introduced mass lumping in order to
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Fig. 7. Scalar basis function assignment in the transformed coordinate
frame [257].

decrease the computation time of the field solve, while mesh-
to-particle electromagnetic field interpolations were computed
using area weighting techniques. The first tracking
algorithms for unstructured meshes were published by
Löhner and Ambrosiano [257] who borrowed heavily from
the CFD community. Here, each triangular cell within the
3-D unstructured mesh was mapped to a regular right triangle
with edge length unity. The three nodal basis functions within
these transformed coordinates then become

N1(ξ, η) = ξ, N2(ξ, η) = η, N3(ξ, η) = 1 − ξ − η (5)

where ξ and η represent the transformed coordinate frame
unit vectors corresponding to x̂ and ŷ in the physical frame.
A visual representation of this is provided in Fig. 7.

This transformation between coordinate frames drastically
simplified the particle search algorithm. For instance, once the
corresponding ξ and η positions were computed for a given
particle position in the physical frame, the particle belonged
to the current cell if [257]

min{N1, N2, N3} ≥ 0, max{N1, N2, N3} ≤ 1 (6)

which avoids the matrix inversions from (4) entirely, although
the calculation of all Ni values at the current particle posi-
tion is still required. The resulting vectorized particle search
algorithm is as follows [257].

1) Perform the scalar basis function test from (6), starting
with the previous known cell.

2) If the particle belongs to the current cell, move on to
the next particle. If not, continue.

3) Gather the cell index opposite the present node with the
lowest basis function value.

4) Recompute basis functions in (6).
5) Repeat Steps 2–4 until all particles are located, moving

those particles to the end of the active list.
A visual representation of a particle traversing an unstructured
grid is provided in Fig. 8.

Degond et al. [256] later implemented a node-based
vectorized search, allowing for the simultaneous updating of
both cell location and charge assignments. Further enhance-
ments were later introduced in [221] and [258]–[261].

Although computationally more efficient than the unstruc-
tured mesh particle search of Gatsonis and Spirkin, the
Löhner and Ambrosiano particle search does not necessarily
identify only traversed mesh cells. Instead, their particle search

Fig. 8. Particle tracking across an unstructured mesh of triangles.

method may identify external cells through which the particle
never entered. This is due to the identification of the most
likely traversed adjacent cell based solely on the minimum
nodal basis function value. As a result, those cells identified
as traversed by a particle may extend outside the path of the
particle and may contain erroneous cells. This may not only
lead to assigning current and charge to incorrect mesh edges,
but may also result in errors in particle–surface interactions
(including absorption).

In an attempt to capture exact geometric conformity,
FETD-PIC schemes have been developed for nonorthogonal
meshes as well. Arter and Eastwood [262], Eastwood [263],
and Eastwood et al. [264]–[267] were the first to develop such
an FETD-PIC method. Similar to other methods developed
for nonorthogonal meshes, coordinate transformations between
physical and logical spaces were employed in [264], [267],
and [268], removing the need for complex particle search
algorithms or mesh–particle interpolations. Charge and current
conservation in unstructured and nonorthogonal meshes was
also developed and reported in [263] and [267].

FETD-PIC schemes have more recently been applied in the
simulation of traveling-wave tubes [269], ion thrusters [270],
beam dynamics [271]–[279], high current sources [280]–[282],
and gas cells [283], [284]. Electrostatic FETD-PIC
schemes [285]–[289], higher order basis functions [290],
adaptive meshing [291], [292], charge and current
conservation [136], [293]–[296], parallelization [297],
and others works [298], [299] have also been reported.

D. DGTD-PIC

Much like its corresponding and purely electromagnetic
formulations, DGTD-PIC has received increased interest
in recent years. Jacobs and Hesthaven [300], [302] and
Jacobs et al. [301] were the first to publish a DGTD-PIC
scheme, while also proposing and implementing a unique
particle search algorithm. For any particle leaving its parent
cell during the particle push, the node in closest proximity to
its traveled path is identified and stored. All adjacent mesh
cells connected to this identified node were then searched in
logical space for particle containment. Due to the large size of
the higher order elements employed, particles were typically
found within this first grouping of adjacent cells [300].

Of particular interest to Jacobs and Hesthaven was the
accurate assignment of charge back to the unstructured mesh.
In their original DGTD-PIC work, they proposed and analyzed
a series of charge assignment functions based upon continuous
and differentiable functions [300]. These functions were
chosen to avoid grid heating and instability, along with
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Gibbs-like phenomena [4], [300]. Comparing against an
analytic solution, weighting functions with more confined rep-
resentations were found to exhibit less noise, although at the
cost of increased run time [300]. Several charge conservation
methods were also developed and detailed in [300].

DGTD-PIC methods have recently been used to simulate
many real-world systems, including linear accelerator
cavities [19], electron guns [21], and gyrotrons [303].
The DGTD-PIC method has also been used to solve
Vlasov–Poisson [304]–[309] and Vlasov–Ampere
systems [310], [311] and to accurately capture physical
phenomena [312].

E. Hybrid Methods

Unlike their purely electromagnetic counterparts, few hybrid
PIC schemes have been developed. In fact, Seidel et al. [313]
developed one of the only hybrid PIC schemes, employing a
hybrid FVTD/FDTD electromagnetic solution. As usual, tetra-
hedral elements lining curved and slanted domain boundaries
were interfaced with hexahedron elements forming a wrapper
layer. FVTD was applied within all tetrahedra and the wrapper
layer, while FDTD was applied within all remaining elements.
Particle tracking was performed using the previously detailed
methods, while charge and current density were assigned via
volume weighting. Although too numerous to mention here,
Seidel et al. [313] discussed many other issues encountered in
this hybrid PIC method.

To date, the authors know of no other published hybrid
PIC schemes. Although references to other hybrid PIC meth-
ods do exist, their authors either avoid detailed development
citing complexity concerns [314] or the code remains untested
or incomplete [315]–[317]. Hybrid PIC schemes could prove
very successful and advantageous in future applications, and
are recommended as an area of future research.

F. Other EM-PIC Methods

Numerous other EM-PIC schemes have also been published.
For example, Weiland et al. [318] adapted the FIT method to
simulate accelerator beam physics, while Friedman et al. [209]
and Grote et al. [194], [210] later employed spatial
transformations to predict particle behavior in bent beams.
More recent developments have included the application of
phase-space methods in solving the Vlasov equation [319],
Green’s function-based approaches [320], and improved data
extraction FIT methods [321].

IV. FUTURE DIRECTIONS

There is much potential for continued research into
conformal EM-PIC schemes. As previously highlighted, rec-
ommended areas of future research and development into
conformal EM-PIC methods include finite difference-based
EM-PIC schemes for nonorthogonal meshes, hybrid EM-PIC
frameworks, and improved particle emission for cut-cells.
All of these methods promise significant improvements over
current conformal EM-PIC simulation capabilities. But if such
simulations were developed, what algorithms would they likely

draw upon? What advances might they provide in terms of
computational cost and improved accuracy or flexibility?

For a 3-D EM-PIC code on a curvilinear mesh,
the electromagnetic field solve would likely expand
upon [46], [47], [211]–[214], and [264]–[268]. This
could then be paired with particle push, tracking, and
scattering algorithms developed specifically for curvilinear
meshes [214], [264], [265], [267]. The resulting conformal
EM-PIC code would likely be much less computationally
expensive compared with the FE-based nonorthogonal mesh
field solve developed in [264], [265], and [267]. However,
the stability and accuracy of such a solution when including
particles and related current sources may still present issues
and may need to be addressed.

Hybrid EM-PIC schemes also promise much improved
geometric conformity while simultaneously minimizing any
cost increases. Such schemes would employ both unstructured
and structured mesh regions, similar to previous hybrid mesh
electromagnetic works [170], [171], [174], [180]. The elec-
tromagnetic field solve would likely draw upon the methods
developed in [170], [171], [174], and [180], while particle
tracking and current assignment could be updated, employing
any one of the above-mentioned algorithms. It appears that
such a hybrid EM-PIC scheme is presently achievable by
merely gathering and combining various currently independent
algorithms.

Finally, any improved particle emission method devel-
oped for cut cell-based conformal FDTD (CFDTD) EM-PIC
schemes would need to address the path length issue
described by Loverich [199]. Moreover, since several CFDTD-
based EM-PIC codes are presently used [200], [322],
improving upon this two-step emission algorithm in CFDTD-
based EM-PIC is highly recommended.

V. CONCLUSION

Conformal EM-PIC solution methods and algorithms have
been presented, discussed, and detailed. Brief mathematical
descriptions for many important and popular methods were
provided and also visually depicted. Conformal finite differ-
ence, volume, and element along with discontinuous Galerkin
electromagnetic solution methods were also briefly discussed.
Various algorithms developed for particle tracking and current
weighting for unstructured and nonorthogonal meshes were
detailed. The advantages and disadvantages associated with
many of these methods were also highlighted. Differences
between similar algorithms were highlighted where relevant.

Many conformal EM-PIC schemes currently exist, with very
good mathematical and theoretical descriptions readily avail-
able. In many cases, the reader needs only to select a handful
of numerical algorithms that conform to a given set of cri-
teria (including computational cost, desired accuracy, generic
applicability, etc.) to successfully simulate complex systems.

Finally, several areas of future research in conformal
EM-PIC methods were recommended. These included
EM-PIC frameworks on both nonorthogonal and hybrid
meshes and an accurate particle emission algorithm for cut
cells, which avoids erroneous field generation.



3786 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 11, NOVEMBER 2015

ACKNOWLEDGMENT

This research was performed while C. S. Meierbachtol held
a National Research Council Research Associateship Award
at the Air Force Research Laboratory.

REFERENCES

[1] O. Buneman, “Dissipation of currents in ionized media,” Phys. Rev.,
vol. 115, no. 3, p. 503, 1959.

[2] J. Dawson, “One-dimensional plasma model,” Phys. Fluids, vol. 5,
no. 4, p. 445, 1962.

[3] J. P. Boris, “Relativistic plasma simulation—Optimization of a hybrid
code,” in Proc. 4th Conf. Numer. Simulation Plasmas, 1970, pp. 3–67.

[4] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation. New York, NY, USA: McGraw-Hill, 1985.

[5] R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles. New York, NY, USA: Taylor & Francis, 1988.

[6] J. P. Verboncoeur, “Particle simulation of plasmas: Review and
advances,” Plasma Phys. Controlled Fusion, vol. 47, no. 5A,
pp. A231–A260, 2005.

[7] R. Holland, “The case against staircasing,” in Proc. 6th Annu. Rev.
Prog. Appl. Comput. Electromagn., 1990, pp. 89–95.

[8] A. C. Cangellaris and D. B. Wright, “Analysis of the numerical
error caused by the stair-stepped approximation of a conducting
boundary in FDTD simulations of electromagnetic phenomena,” IEEE
Trans. Antennas Propag., vol. 39, no. 10, pp. 1518–1525,
Oct. 1991.

[9] R. Holland, “Pitfalls of staircase meshing,” IEEE Trans. Electromagn.
Compat., vol. 35, no. 4, pp. 434–439, Nov. 1993.

[10] J. B. Schneider and K. L. Shlager, “FDTD simulations of TEM
horns and the implications for staircased representations,” IEEE Trans.
Antennas Propag., vol. 45, no. 12, pp. 1830–1838, Dec. 1997.

[11] S. Abarbanel, A. Ditkowski, and A. Yefet, “Bounded error schemes for
the wave equation on complex domains,” DTIC, Inst. Comput. Appl.
Sci. Eng., Hampton, VA, USA, Tech. Rep. ICASE-98-50, 1998.

[12] A. Akyurtlu, D. H. Werner, V. Veremey, D. J. Steich, and K. Aydin,
“Staircasing errors in FDTD at an air-dielectric interface,” IEEE
Microw. Guided Wave Lett., vol. 9, no. 11, pp. 444–446, Nov. 1999.

[13] J. P. Verboncoeur, “Aliasing of electromagnetic fields in stair
step boundaries,” Comput. Phys. Commun., vol. 164, nos. 1–3,
pp. 344–352, 2004.

[14] I. S. Kim and W. J. R. Hoefer, “A local mesh refinement algo-
rithm for the time domain–finite difference method using Maxwell’s
curl equations,” IEEE Trans. Microw. Theory Techn., vol. 38, no. 6,
pp. 812–815, Jun. 1990.

[15] S. E. Parker, A. Friedman, S. L. Ray, and C. K. Birdsall, “Bounded
multi-scale plasma simulation: Application to sheath problems,”
J. Comput. Phys., vol. 107, no. 2, pp. 388–402, 1993.

[16] E. Sonnendrücker, J. J. Ambrosiano, and S. T. Brandon, “A finite
element formulation of the Darwin PIC model for use on unstructured
grids,” J. Comput. Phys., vol. 121, no. 2, pp. 281–297, 1995.

[17] D. J. Riley and C. D. Turner, “Interfacing unstructured tetrahedron grids
to structured-grid FDTD,” IEEE Microw. Guided Wave Lett., vol. 5,
no. 9, pp. 284–286, Sep. 1995.

[18] C.-D. Munz, R. Schneider, E. Sonnendrücker, E. Stein, U. Voss,
and T. Westermann, “A finite-volume particle-in-cell method for the
numerical treatment of Maxwell–Lorentz equations on boundary-fitted
meshes,” Int. J. Numer. Methods Eng., vol. 44, no. 4, pp. 461–487,
1999.

[19] E. Gjonaj, T. Lau, S. Schnepp, F. Wolfheimer, and T. Weiland,
“Accurate modelling of charged particle beams in linear accelerators,”
New J. Phys., vol. 8, no. 11, p. 285, 2006.

[20] G. Chen, L. Chacón, and D. C. Barnes, “An energy- and charge-
conserving, implicit, electrostatic particle-in-cell algorithm,” J. Comput.
Phys., vol. 230, no. 18, pp. 7018–7036, 2011.

[21] T. Stindl et al., “Comparison of coupling techniques in a high-order
discontinuous Galerkin-based particle-in-cell solver,” J. Phys. D, Appl.
Phys., vol. 44, no. 19, p. 194004, 2011.

[22] L. Chacón, G. Chen, and D. C. Barnes, “A charge- and energy-
conserving implicit, electrostatic particle-in-cell algorithm on mapped
computational meshes,” J. Comput. Phys., vol. 233, no. 1, pp. 1–9,
2013.

[23] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, “Boundary-
fitted coordinate systems for numerical solution of partial differential
equations—A review,” J. Comput. Phys., vol. 47, no. 1, pp. 1–108,
1982.

[24] A. Taflove, “Review of the formulation and applications of the finite-
difference time-domain method for numerical modeling of electromag-
netic wave interactions with arbitrary structures,” Wave Motion, vol. 10,
no. 6, pp. 547–582, 1988.

[25] K. Umashankar and A. Taflove, Computational Electromagnetics.
Norwood, MA, USA: Artech House, 1993.

[26] J.-F. Lee, R. Lee, and A. C. Cangellaris, “Time-domain finite-element
methods,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 430–442,
Mar. 1997.

[27] T. M. Antonsen, Jr., A. A. Mondelli, B. Levush, J. P. Verboncoeur,
and C. K. Birdsall, “Advances in modeling and simulation of vacuum
electronic devices,” Proc. IEEE, vol. 87, no. 5, pp. 804–839, May 1999.

[28] A. Taflove and S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method. Norwood, MA, USA:
Artech House, 2005.

[29] F. L. Teixeira, “FDTD/FETD methods: A review on some recent
advances and selected applications,” J. Microw. Optoelectron., vol. 6,
no. 1, pp. 83–95, 2007.

[30] F. L. Teixeira, “Time-domain finite-difference and finite-element meth-
ods for Maxwell equations in complex media,” IEEE Trans. Antennas
Propag., vol. 56, no. 8, pp. 2150–2166, Aug. 2008.

[31] F. Hermeline, S. Layouni, and P. Omnes, “A finite volume method for
the approximation of Maxwell’s equations in two space dimensions on
arbitrary meshes,” J. Comput. Phys., vol. 227, no. 22, pp. 9365–9388,
2008.

[32] J. W. Eastwood, “Particle simulation methods in plasma physics,”
Comput. Phys. Commun., vol. 43, no. 1, pp. 89–106, 1986.

[33] C. K. Birdsall, “Particle-in-cell charged-particle simulations, plus
Monte Carlo collisions with neutral atoms, PIC-MCC,” IEEE Trans.
Plasma Sci., vol. 19, no. 2, pp. 65–85, Apr. 1991.

[34] W. B. Mori, “Recent advances and some results in plasma-based
accelerator modeling,” in Proc. AIP Conf., vol. 647. 2002, p. 11.

[35] E. M. Nelson, “Review of computational models for high power
microwave sources,” in Proc. AIP Conf., vol. 625. 2002, p. 177.

[36] C. Fumeaux, D. Baumann, P. Bonnet, and R. Vahldieck, “Develop-
ments of finite-volume techniques for electromagnetic modeling in
unstructured meshes,” in Proc. 17th Int. Zurich Symp. Electromagn.
Compat. (EMC-Zurich), 2006, pp. 5–8.

[37] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans. Anten-
nas Propag., vol. 14, no. 3, pp. 302–307, May 1966.

[38] A. Taflove and K. Umashankar, “A hybrid FD-TD approach to elec-
tromagnetic wave backscattering,” in Proc. APR/URSI Int. Symp.,
1981, p. 82.

[39] K. Umashankar and A. Taflove, “A novel method to analyze electro-
magnetic scattering of complex objects,” IEEE Trans. Electromagn.
Compat., vol. EMC-24, no. 4, pp. 397–405, Nov. 1982.

[40] A. Taflove and K. Umashankar, “A hybrid moment method/finite-
difference time-domain approach to electromagnetic coupling and
aperture penetration into complex geometries,” IEEE Trans. Antennas
Propag., vol. 30, no. 4, pp. 617–627, Jul. 1982.

[41] K. K. Mei, A. C. Cangellaris, and D. J. Angelakos, “Conformal
time domain finite difference method,” Radio Sci., vol. 19, no. 5,
pp. 1145–1147, 1984.

[42] W. K. Gwarek, “Analysis of an arbitrarily-shaped planar circuit a time-
domain approach,” IEEE Trans. Microw. Theory Techn., vol. 33, no. 10,
pp. 1067–1072, Oct. 1985.

[43] G. Kriegsmann, A. Taflove, and K. R. Umashankar, “A new formula-
tion of electromagnetic wave scattering using an on-surface radiation
boundary condition approach,” IEEE Trans. Antennas Propag., vol. 35,
no. 2, pp. 153–161, 1987.

[44] T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, “Finite-
difference time-domain modeling of curved surfaces [EM scattering],”
IEEE Trans. Antennas Propag., vol. 40, no. 4, pp. 357–366, Apr. 1992.

[45] T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD
modeling of scattering from single and multiple bodies,” IEEE Trans.
Antennas Propag., vol. 41, no. 12, pp. 1703–1708, Dec. 1993.

[46] M. A. Fusco, “FDTD algorithm in curvilinear coordinates
[EM scattering],” IEEE Trans. Antennas Propag., vol. 38, no. 1,
pp. 76–89, Jan. 1990.



MEIERBACHTOL et al.: CONFORMAL EM-PIC 3787

[47] M. A. Fusco, M. V. Smith, and L. W. Gordon, “A three-dimensional
FDTD algorithm in curvilinear coordinates [EM scattering],” IEEE
Trans. Antennas Propag., vol. 39, no. 10, pp. 1463–1471, Oct. 1991.

[48] K. S. Yee, J. S. Chen, and A. H. Chang, “Conformal finite-different
time-domain (FDTD) with overlapping grids,” IEEE Trans. Antennas
Propag., vol. 40, no. 9, pp. 1068–1075, Sep. 1992.

[49] M. Celuch-Marcysiak and W. K. Gwarek, “Higher-order modelling of
media interfaces for enhanced FDTD analysis of microwave circuits,”
in Proc. 24th Eur. Microw. Conf., vol. 2. 1994, pp. 1530–1535.

[50] N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric
resonators with curved surfaces,” IEEE Trans. Microw. Theory Techn.,
vol. 45, no. 9, pp. 1645–1649, Sep. 1997.

[51] P. Mezzanotte, L. Roselli, and R. Sorrentino, “A simple way to model
curved metal boundaries in FDTD algorithm avoiding staircase approx-
imation,” IEEE Microw. Guided Wave Lett., vol. 5, no. 8, pp. 267–269,
Aug. 1995.

[52] J. A. Svigelj, “Efficient solution of Maxwell’s equations using
the nonuniform orthogonal finite difference time domain method,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Illinois Urbana–
Champaign, Champaign, IL, USA, 1995.

[53] J. Fang and J. Ren, “A locally conformed finite-difference time-domain
algorithm of modeling arbitrary shape planar metal strips,” IEEE Trans.
Microw. Theory Techn., vol. 41, no. 5, pp. 830–838, May 1993.

[54] C. J. Railton, I. J. Craddock, and J. B. Schneider, “Improved locally
distorted CPFDTD algorithm with provable stability,” Electron. Lett.,
vol. 31, no. 18, pp. 1585–1586, 1995.

[55] Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with
curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microw.
Theory Techn., vol. 46, no. 1, pp. 82–88, Jan. 1998.

[56] S. Chebolu, R. Mittra, and S. Dey, “A novel technique for FDTD on a
nonorthogonal grid,” in Proc. URSI Radio Sci. Meeting, 1996, p. 95.

[57] S. Dey and R. Mittra, “A locally conformal finite-difference time-
domain (FDTD) algorithm for modeling three-dimensional perfectly
conducting objects,” IEEE Microw. Guided Wave Lett., vol. 7, no. 9,
pp. 273–275, Sep. 1997.

[58] S. Dey, R. Mittra, and S. Chebolu, “A technique for implementing the
FDTD algorithm on a nonorthogonal grid,” Microw. Opt. Technol. Lett.,
vol. 14, no. 4, pp. 213–215, 1997.

[59] S. Dey and R. Mittra, “A modified locally conformal finite-difference
time-domain algorithm for modeling three-dimensional perfectly con-
ducting objects,” Microw. Opt. Technol. Lett., vol. 17, no. 6,
pp. 349–352, 1998.

[60] S. Dey and R. Mittra, “A conformal finite-difference time-domain
technique for modeling cylindrical dielectric resonators,” IEEE Trans.
Microw. Theory Techn., vol. 47, no. 9, pp. 1737–1739, Sep. 1999.

[61] W. Yu and R. Mittra, “A conformal FDTD software package modeling
antennas and microstrip circuit components,” IEEE Antennas Propag.
Mag., vol. 42, no. 5, pp. 28–39, Oct. 2000.

[62] W. Yu and R. Mittra, “Accurate modelling of planar microwave circuit
using conformal FDTD algorithm,” Electron. Lett., vol. 36, no. 7,
pp. 618–619, 2000.

[63] I. A. Zagorodnov, R. Schuhmann, and T. Weiland, “A uniformly stable
conformal FDTD-method in Cartesian grids,” Int. J. Numer. Model.,
Electron. Netw., Devices Fields, vol. 16, no. 2, pp. 127–141, 2003.

[64] I. A. Zagorodnov, R. Schuhmann, and T. Weiland, “Conformal FDTD-
methods to avoid time step reduction with and without cell enlarge-
ment,” J. Comput. Phys., vol. 225, no. 2, pp. 1493–1507, 2007.

[65] T. Xiao and Q. H. Liu, “Enlarged cells for the conformal FDTD method
to avoid the time step reduction,” IEEE Microw. Wireless Compon.
Lett., vol. 14, no. 12, pp. 551–553, Dec. 2004.

[66] T. Xiao and Q. H. Liu, “A 3-D enlarged cell technique (ECT) for the
conformal FDTD method,” IEEE Trans. Antennas Propag., vol. 56,
no. 3, pp. 765–773, Mar. 2008.

[67] S. Benkler, N. Chavannes, and N. Kuster, “A new 3-D conformal
PEC FDTD scheme with user-defined geometric precision and derived
stability criterion,” IEEE Trans. Antennas Propag., vol. 54, no. 6,
pp. 1843–1849, Jun. 2006.

[68] M. T. Bettencourt, “Flux limiting embedded boundary technique
for electromagnetic FDTD,” J. Comput. Phys., vol. 227, no. 6,
pp. 3141–3158, 2008.

[69] J. G. Maloney and G. S. Smith, “The efficient modeling of thin material
sheets in the finite-difference time-domain (FDTD) method,” IEEE
Trans. Antennas Propag., vol. 40, no. 3, pp. 323–330,
Mar. 1992.

[70] M. Fujii, D. Lukashevich, I. Sakagami, and P. Russer, “Convergence of
FDTD and wavelet-collocation modeling of curved dielectric interface
with the effective dielectric constant technique,” IEEE Microw. Wireless
Compon. Lett., vol. 13, no. 11, pp. 469–471, Nov. 2003.

[71] W. Yu and R. Mittra, “A conformal finite difference time domain
technique for modeling curved dielectric surfaces,” IEEE Microw.
Wireless Compon. Lett., vol. 11, no. 1, pp. 25–27, Jan. 2001.

[72] J.-Y. Lee and N.-H. Myung, “Locally tensor conformal FDTD method
for modeling arbitrary dielectric surfaces,” Microw. Opt. Technol. Lett.,
vol. 23, no. 4, pp. 245–249, 1999.

[73] J. Nadobny, D. Sullivan, W. Wlodarczyk, P. Deuflhard, and P. Wust,
“A 3-D tensor FDTD-formulation for treatment of sloped interfaces
in electrically inhomogeneous media,” IEEE Trans. Antennas Propag.,
vol. 51, no. 8, pp. 1760–1770, Aug. 2003.

[74] J. Nadobny, D. Sullivan, and P. Wust, “A general three-dimensional
tensor FDTD-formulation for electrically inhomogeneous lossy media
using the Z-transform,” IEEE Trans. Antennas Propag., vol. 56, no. 4,
pp. 1027–1040, Apr. 2008.

[75] A. Ditkowski, K. H. Dridi, and J. S. Hesthaven, “Convergent
Cartesian grid methods for Maxwell’s equations in complex geome-
tries,” J. Comput. Phys., vol. 170, no. 1, pp. 39–80, 2001.

[76] K. H. Dridi, J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-
difference time-domain formulation for general materials in com-
plex geometries,” IEEE Trans. Antennas Propag., vol. 49, no. 5,
pp. 749–756, May 2001.

[77] T. I. Kosmanis and T. D. Tsiboukis, “A systematic and topologically
stable conformal finite-difference time-domain algorithm for modeling
curved dielectric interfaces in three dimensions,” IEEE Trans. Microw.
Theory Techn., vol. 51, no. 3, pp. 839–847, Mar. 2003.

[78] A. Mohammadi, H. Nadgaran, and M. Agio, “Contour-path effective
permittivities for the two-dimensional finite-difference time-domain
method,” Opt. Exp., vol. 13, no. 25, pp. 10367–10381, 2005.

[79] T. Hirono, Y. Yoshikuni, and T. Yamanaka, “Effective permittivities
with exact second-order accuracy at inclined dielectric interface for
the two-dimensional finite-difference time-domain method,” Appl. Opt.,
vol. 49, no. 7, pp. 1080–1096, 2010.

[80] C. A. Bauer, G. R. Werner, and J. R. Cary, “A second-order 3D
electromagnetics algorithm for curved interfaces between anisotropic
dielectrics on a Yee mesh,” J. Comput. Phys., vol. 230, no. 5,
pp. 2060–2075, 2011.

[81] R. Holland, “Finite-difference solution of Maxwell’s equations in gen-
eralized nonorthogonal coordinates,” IEEE Trans. Nucl. Sci., vol. 30,
no. 6, pp. 4589–4591, Dec. 1983.

[82] J.-F. Lee, R. Palandech, and R. Mittra, “Modeling three-dimensional
discontinuities in waveguides using nonorthogonal FDTD algorithm,”
IEEE Trans. Microw. Theory Techn., vol. 40, no. 2, pp. 346–352,
Feb. 1992.

[83] Z. Xie, C.-H. Chan, and B. Zhang, “An explicit fourth-order orthogonal
curvilinear staggered-grid FDTD method for Maxwell’s equations,”
J. Comput. Phys., vol. 175, no. 2, pp. 739–763, 2002.

[84] J. A. Russer, P. S. Sumant, and A. C. Cangellaris, “A Lagrangian
approach for the handling of curved boundaries in the finite-difference
time-domain method,” in Proc. IEEE/MTT-S Int. Microw. Symp.,
Jun. 2007, pp. 717–720.

[85] N. K. Madsen and R. W. Ziolkowski, “A three-dimensional modified
finite volume technique for Maxwell’s equations,” Electromagnetics,
vol. 10, nos. 1–2, pp. 147–161, 1990.

[86] V. Shankar, A. H. Mohammadian, and W. F. Hall, “A time-domain,
finite-volume treatment for the Maxwell equations,” Electromagnetics,
vol. 10, nos. 1–2, pp. 127–145, 1990.

[87] A. H. Mohammadian, V. Shankar, and W. F. Hall, “Computation of
electromagnetic scattering and radiation using a time-domain finite-
volume discretization procedure,” Comput. Phys. Commun., vol. 68,
nos. 1–3, pp. 175–196, 1991.

[88] R. Holland, V. P. Cable, and L. C. Wilson, “Finite-volume
time-domain (FVTD) techniques for EM scattering,” IEEE Trans.
Electromagn. Compat., vol. 33, no. 4, pp. 281–294, Nov. 1991.

[89] S. D. Gedney and F. Lansing, “A parallel discrete surface integral
equation method for the analysis of three-dimensional microwave
circuit devices with planar symmetry,” in Antennas Propag. Soc. Int.
Symp. (AP-S) Dig., vol. 3. 1994, pp. 1778–1781.

[90] N. K. Madsen, “Divergence preserving discrete surface integral meth-
ods for Maxwell’s curl equations using non-orthogonal unstructured
grids,” J. Comput. Phys., vol. 119, no. 1, pp. 34–45, 1995.



3788 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 11, NOVEMBER 2015

[91] F. Hermeline, “A finite volume method for solving Maxwell equations
in inhomogeneous media on arbitrary meshes,” Comptes Rendus Math.,
vol. 339, no. 12, pp. 893–898, 2004.

[92] S. D. Gedney and J. A. Roden, “Well posed non-orthogonal FDTD
methods,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1.
Jun. 1998, pp. 596–599.

[93] S. D. Gedney and J. A. Roden, “Numerical stability of nonorthogonal
FDTD methods,” IEEE Trans. Antennas Propag., vol. 48, no. 2,
pp. 231–239, Feb. 2000.

[94] R. Schuhmann and T. Weiland, “Stability of the FDTD algorithm on
nonorthogonal grids related to the spatial interpolation scheme,” IEEE
Trans. Magn., vol. 34, no. 5, pp. 2751–2754, Sep. 1998.

[95] R. Schuhmann and T. Weiland, “A stable interpolation technique for
FDTD on non-orthogonal grids,” Int. J. Numer. Model., Electron. Netw.,
Devices Fields, vol. 11, no. 6, pp. 299–306, 1998.

[96] R. Schuhmann and T. Weiland, “FDTD on nonorthogonal grids with
triangular fillings,” IEEE Trans. Magn., vol. 35, no. 3, pp. 1470–1473,
May 1999.

[97] A. C. Cangellaris, C. Lin, and K. K. Mei, “Point-matched time domain
finite-element methods,” in Proc. Nat. Radio Sci. Meeting, 1984.

[98] S. Ray, N. Madsen, and J. Nash, “Finite element analysis of electro-
magnetic aperture coupling problems,” in Proc. North Amer. Radio Sci.
Meeting, 1985.

[99] J. B. Grant and N. K. Madsen, “GEM3D—A time domain three-
dimensional, linear finite-element modeling,” in Proc. Nat. Radio Sci.
Meeting, Boulder, CO, USA, 1986.

[100] A. C. Cangellaris, C.-C. Lin, and K. K. Mei, “Point-matched time
domain finite element methods for electromagnetic radiation and scat-
tering,” IEEE Trans. Antennas Propag., vol. 35, no. 10, pp. 1160–1173,
Oct. 1987.

[101] A. C. Cangellaris and K. K. Mei, “The method of conforming boundary
elements for transient electromagnetics,” Prog. Electromagn. Res.,
vol. 2, pp. 249–285, 1990.

[102] J. Joseph, T. J. Sober, K. J. Gohn, and A. Konrad, “Time domain
analysis by the point-matched finite element method,” IEEE Trans.
Magn., vol. 27, no. 5, pp. 3852–3855, Sep. 1991.

[103] M. Feliziani and E. Maradei, “Point matched finite element-time
domain method using vector elements,” IEEE Trans. Magn., vol. 30,
no. 5, pp. 3184–3187, Sep. 1994.

[104] M. Feliziani and F. Maradei, “Hybrid finite element solutions of time
dependent Maxwell’s curl equations,” IEEE Trans. Magn., vol. 31,
no. 3, pp. 1330–1335, May 1995.

[105] M. Feliziani and F. Maradei, “An explicit-implicit solution scheme to
analyze fast transients by finite elements,” IEEE Trans. Magn., vol. 33,
no. 2, pp. 1452–1455, Mar. 1997.

[106] D. R. Lynch and K. D. Paulsen, “Time-domain integration of the
Maxwell equations on finite elements,” IEEE Trans. Antennas Propag.,
vol. 38, no. 12, pp. 1933–1942, Dec. 1990.

[107] J. Ambrosiano, S. Brandon, and R. Löhner, “Electromagnetic propa-
gation on an unstructured finite element grid,” in Proc. 6th Annu. Rev.
Prog. Comput. Electromagn., 1990, pp. 155–162.

[108] G. Mur, “A mixed finite element method for computing three-
dimensional time-domain electromagnetic fields in strongly inhomo-
geneous media,” IEEE Trans. Magn., vol. 26, no. 2, pp. 674–677,
Mar. 1990.

[109] G. Mur, “The finite-element modeling of three-dimensional
time-domain electromagnetic fields in strongly inhomogeneous
media,” IEEE Trans. Magn., vol. 28, no. 2, pp. 1130–1133,
Mar. 1992.

[110] S. Barkeshli, H. A. Sabbagh, D. J. Radecki, and M. Melton,
“A novel implicit time-domain boundary-integral/finite-element algo-
rithm for computing transient electromagnetic field coupling to a
metallic enclosure,” IEEE Trans. Antennas Propag., vol. 40, no. 10,
pp. 1155–1164, Oct. 1992.

[111] F. Assous, P. Degond, E. Heintze, P. A. Raviart, and J. Segre,
“On a finite-element method for solving the three-dimensional
Maxwell equations,” J. Comput. Phys., vol. 109, no. 2, pp. 222–237,
1993.

[112] J. T. Elson, H. Sangani, and C. H. Chan, “An explicit time-domain
method using three-dimensional Whitney elements,” Microw. Opt.
Technol. Lett., vol. 7, no. 13, pp. 607–610, Sep. 1994.

[113] Z. S. Sacks and J.-F. Lee, “A finite-element time-domain method using
prism elements for microwave cavities,” IEEE Trans. Electromagn.
Compat., vol. 37, no. 4, pp. 519–527, Nov. 1995.

[114] T. V. Yioultsis, N. V. Kantartzis, C. S. Antonopoulos, and
T. D. Tsiboukis, “A fully explicit Whitney element-time domain
scheme with higher order vector finite elements for three-dimensional
high frequency problems,” IEEE Trans. Magn., vol. 34, no. 5,
pp. 3288–3291, Sep. 1998.

[115] R.-S. Chen, L. Du, Z. Ye, and Y. Yang, “An efficient algorithm for
implementing the Crank–Nicolson scheme in the mixed finite-element
time-domain method,” IEEE Trans. Antennas Propag., vol. 57, no. 10,
pp. 3216–3222, Oct. 2009.

[116] T. Sekine and H. Asai, “Mixed finite element time domain method
based on iterative leapfrog scheme for fast simulations of elec-
tromagnetic problems,” in Proc. IEEE Int. Symp. Electromagn.
Compat. (EMC), Aug. 2011, pp. 596–601.

[117] K. Choi, S. J. Salon, K. A. Connor, L. F. Libelo, and S. Y. Hahn,
“Time domain finite element analysis of high power microwave aper-
ture antennas,” IEEE Trans. Magn., vol. 31, no. 3, pp. 1622–1625,
May 1995.

[118] C. H. Chan, J. T. Elson, and H. Sangani, “An explicit finite-difference
time-domain method using Whitney elements,” in Antennas Propag.
Soc. Int. Symp. Dig. (AP-S), vol. 3. Jun. 1994, pp. 1768–1771.

[119] Q. He and D. Jiao, “An explicit time-domain finite-element method
that is unconditionally stable,” in Proc. IEEE Int. Symp. Antennas
Propag. (APSURSI), Jul. 2011, pp. 2976–2979.

[120] Q. He, H. Gan, and D. Jiao, “Explicit time-domain finite-element
method stabilized for an arbitrarily large time step,” IEEE Trans.
Antennas Propag., vol. 60, no. 11, pp. 5240–5250, Nov. 2012.

[121] D. A. White, “Orthogonal vector basis functions for time domain finite
element solution of the vector wave equation [EM field analysis],” IEEE
Trans. Magn., vol. 35, no. 3, pp. 1458–1461, May 1999.

[122] B. He and F. L. Teixeira, “Sparse and explicit FETD via approximate
inverse Hodge (mass) matrix,” IEEE Microw. Wireless Compon. Lett.,
vol. 16, no. 6, pp. 348–350, Jun. 2006.

[123] S. Jund, S. Salmon, and E. Sonnendrücker, “High-order low dissipation
conforming finite-element discretization of the Maxwell equations,”
Commun. Comput. Phys., vol. 11, no. 3, pp. 863–892, Mar. 2012.

[124] R. L. Lee and N. K. Madsen, “A mixed finite element formulation for
Maxwell’s equations in the time domain,” J. Comput. Phys., vol. 88,
no. 2, pp. 284–304, Jun. 1990.

[125] J.-F. Lee, “WETD—A finite element time-domain approach for solving
Maxwell’s equations,” IEEE Microw. Guided Wave Lett., vol. 4, no. 1,
pp. 11–13, Jan. 1994.

[126] J.-F. Lee and Z. Sacks, “Whitney elements time domain (WETD) meth-
ods,” IEEE Trans. Magn., vol. 31, no. 3, pp. 1325–1329, May 1995.

[127] S. D. Gedney and U. Navsariwala, “An unconditionally stable finite
element time-domain solution of the vector wave equation,” IEEE
Microw. Guided Wave Lett., vol. 5, no. 10, pp. 332–334, Oct. 1995.

[128] K. Mahadevan and R. Mittra, “Radar cross section computation of
inhomogeneous scatterers using edge-based finite element methods in
frequency and time domains,” Radio Sci., vol. 28, no. 6, pp. 1181–1193,
1993.

[129] K. Mahadevan, R. Mittra, and P. M. Vaidya, “Use of Whitney’s edge
and face elements for efficient finite element time domain solution of
Maxwell’s equations,” J. Electromagn. Waves Appl., vol. 8, nos. 9–10,
pp. 1173–1191, 1994.

[130] G. Rodrigue and D. White, “A vector finite element time-domain
method for solving Maxwell’s equations on unstructured hexahe-
dral grids,” SIAM J. Sci. Comput., vol. 23, no. 3, pp. 683–706,
2001.

[131] H. Whitney, Geometric Integration Theory. New York, NY, USA:
Dover, 1957.

[132] M.-F. Wong, O. Picon, and V. Fouad Hanna, “A finite element method
based on Whitney forms to solve Maxwell equations in the time
domain,” IEEE Trans. Magn., vol. 31, no. 3, pp. 1618–1621,
May 1995.

[133] A. Bossavit and L. Kettunen, “Yee-like schemes on a tetrahedral mesh,
with diagonal lumping,” Int. J. Numer. Model., Electron. Netw., Devices
Fields, vol. 12, nos. 1–2, pp. 129–142, Jan./Apr. 1999.

[134] B. Donderici and F. L. Teixeira, “Mixed finite-element time-domain
method for transient Maxwell equations in doubly dispersive media,”
IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 113–120,
Jan. 2008.

[135] A. Stern, Y. Tong, M. Desbrun, and J. E. Marsden, “Variational
integrators for Maxwell’s equations with sources,” PIERS Online,
vol. 4, no. 7, pp. 711–715, 2008.



MEIERBACHTOL et al.: CONFORMAL EM-PIC 3789

[136] A. Stern, Y. Tong, M. Desbrun, and J. E. Marsden, “Geometric
computational electrodynamics with variational integrators and discrete
differential forms,” Geometry, Mech., Dyn., vol. 73, pp. 437–475, 2015.

[137] M. Movahhedi, A. Nentschev, H. Ceric, A. Abdipour, and S. Selberherr,
“A finite element time-domain algorithm based on the alternating-
direction implicit method,” in Proc. 36th Eur. Microw. Conf., Sep. 2006,
pp. 1–4.

[138] M. Movahhedi, A. Abdipour, A. Nentchev, M. Dehghan, and
S. Selberherr, “Alternating-direction implicit formulation of the finite-
element time-domain method,” IEEE Trans. Microw. Theory Techn.,
vol. 55, no. 6, pp. 1322–1331, Jun. 2007.

[139] J. S. Hesthaven and T. Warburton, “Nodal high-order methods on
unstructured grids: I. Time-domain solution of Maxwell’s equations,”
J. Comput. Phys., vol. 181, no. 1, pp. 186–221, Sep. 2002.

[140] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis, and Applications. New York, NY, USA:
Springer-Verlag, 2007.

[141] S. Piperno and L. F. Fezoui, “A centered discontinuous Galerkin
finite volume scheme for the 3D heterogeneous Maxwell equations
on unstructured meshes,” Inst. Nat. Recherche Inf. Autom., Sophia-
Antipolis, France, Tech. Rep. RR-4733, 2003.

[142] N. Canouet, L. Fezoui, and S. Piperno, “Discontinuous Galerkin
time-domain solution of Maxwell’s equations on locally-refined non-
conforming Cartesian grids,” COMPEL-Int. J. Comput. Math. Elect.
Electron. Eng., vol. 24, no. 4, pp. 1381–1401, 2005.

[143] A. Taube, M. Dumbser, C.-D. Munz, and R. Schneider, “A high-order
discontinuous Galerkin method with time-accurate local time stepping
for the Maxwell equations,” Int. J. Numer. Model., Electron. Netw.,
Devices Fields, vol. 22, no. 1, pp. 77–103, Jan./Feb. 2009.

[144] K. S. Yee, “Numerical solution to Maxwell’s equations with non-
orthogonal grids,” Lawrence Livermore Nat. Lab., Livermore, CA,
USA, Tech. Rep. UCRL-93268, 1987.

[145] T. G. Jurgens, A. Taflove, and K. R. Umashankar, “FDTD conformal
modeling of smooth curved surfaces,” in Proc. URSI Radio Sci.
Meeting, 1987, p. 227.

[146] N. K. Madsen and R. W. Ziolkowski, “Numerical solution of Maxwell’s
equations in the time domain using irregular nonorthogonal grids,”
Wave Motion, vol. 10, no. 6, pp. 583–596, Dec. 1988.

[147] K. S. Yee and J. S. Chen, “Conformal hybrid finite difference
time domain and finite volume time domain,” IEEE Trans. Antennas
Propag., vol. 42, no. 10, pp. 1450–1455, Oct. 1994.

[148] K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD)
and the finite-volume time-domain (FVTD) methods in solving
Maxwell’s equations,” IEEE Trans. Antennas Propag., vol. 45, no. 3,
pp. 354–363, Mar. 1997.

[149] K. S. Yee and J. S. Chen, “Impedance boundary condition simulation
in the FDTD/FVTD hybrid,” IEEE Trans. Antennas Propag., vol. 45,
no. 6, pp. 921–925, Jun. 1997.

[150] M. Yang, Y. Chen, and R. Mittra, “Hybrid finite-difference/finite-
volume time-domain analysis for microwave integrated circuits with
curved PEC surfaces using a nonuniform rectangular grid,” IEEE Trans.
Microw. Theory Techn., vol. 48, no. 6, pp. 969–975, Jun. 2000.

[151] B. Donderici and F. L. Teixeira, “Accurate interfacing of heterogeneous
structured FDTD grid components,” IEEE Trans. Antennas Propag.,
vol. 54, no. 6, pp. 1826–1835, Jun. 2006.

[152] D. J. Riley and C. D. Turner, “VOLMAX: A solid-model-based, tran-
sient volumetric Maxwell solver using hybrid grids,” IEEE Antennas
Propag. Mag., vol. 39, no. 1, pp. 20–33, Feb. 1997.

[153] D. J. Riley and C. D. Turner, “Unstructured finite-volume modeling
in computational electromagnetics,” in 11th Annu. Rev. Prog. Appl.
Comput. Electromagn. (ACES) Symp. Dig., 1995, pp. 435–444.

[154] F. Edelvik and G. Ledfelt, “A comparison of time-domain hybrid
solvers for complex scattering problems,” Int. J. Numer. Model.,
Electron. Netw., Devices Fields, vol. 15, nos. 5–6, pp. 475–487,
Sep./Dec. 2002.

[155] R.-B. Wu and T. Itoh, “Hybridizing FD-TD analysis with uncondition-
ally stable FEM for objects of curved boundary,” in IEEE MTT-S Int.
Microw. Symp. Dig., May 1995, pp. 833–836.

[156] R.-B. Wu and T. Itoh, “Hybrid finite-difference time-domain modeling
of curved surfaces using tetrahedral edge elements,” IEEE Trans.
Antennas Propag., vol. 45, no. 8, pp. 1302–1309, Aug. 1997.

[157] E. Darve and R. Loehner, “Advanced structured-unstructured solver
for electromagnetic scattering from multimaterial objects,” AIAA
Paper 97-0863, 1997.

[158] M. Feliziani and F. Maradei, “Mixed finite-difference/Whitney-
elements time domain (FD/WE-TD) method,” IEEE Trans. Magn.,
vol. 34, no. 5, pp. 3222–3227, Sep. 1998.

[159] D. Koh, H.-B. Lee, and T. Itoh, “A hybrid full-wave analysis of via-
hole grounds using finite-difference and finite-element time-domain
methods,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 12,
pp. 2217–2223, Dec. 1997.

[160] M. S. Yeung, “Application of the hybrid FDTD–FETD method to
dispersive materials,” Microw. Opt. Technol. Lett., vol. 23, no. 4,
pp. 238–242, Nov. 1999.

[161] A. Monorchio and R. Mittra, “Time-domain (FE/FDTD) technique
for solving complex electromagnetic problems,” IEEE Microw. Guided
Wave Lett., vol. 8, no. 2, pp. 93–95, Feb. 1998.

[162] D. Degerfeldt and T. Rylander, “A brick-tetrahedron finite-element
interface with stable hybrid explicit–implicit time-stepping for
Maxwell’s equations,” J. Comput. Phys., vol. 220, no. 1, pp. 383–393,
Dec. 2006.

[163] T. Rylander, “Finite element methods with stable hybrid explicit-
implicit time-integration schemes,” in Proc. Int. Conf. Electromagn.
Adv. Appl. (ICEAA), Sep. 2007, pp. 383–386.

[164] D. Degerfeldt and T. Rylander, “Scattering analysis by a sta-
ble hybridization of the finite element method and the finite-
difference time-domain scheme with a brick-tetrahedron interface,”
Electromagnetics, vol. 28, nos. 1–2, pp. 3–17, 2008.

[165] J. Chen, “A hybrid spectral-element/finite-element time-domain method
for multiscale electromagnetic simulations,” Ph.D. dissertation, Dept.
Elect. Comput. Eng., Duke Univ., Durham, NC, USA, 2010.

[166] J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient
implicit–explicit time stepping scheme with domain decomposition
for multiscale modeling of layered structures,” IEEE Trans. Compon.,
Packag. Technol., vol. 1, no. 9, pp. 1438–1446, Sep. 2011.

[167] B. Zhu, J. Chen, W. Zhong, and Q. H. Liu, “A hybrid finite-
element/finite-difference method with an implicit–explicit time-
stepping scheme for Maxwell’s equations,” Int. J. Numer. Model.,
Electron. Netw., Devices Fields, vol. 25, nos. 5–6, pp. 607–620,
Sep./Dec. 2012.

[168] J. Chen and Q. H. Liu, “Discontinuous Galerkin time-domain methods
for multiscale electromagnetic simulations: A review,” Proc. IEEE,
vol. 101, no. 2, pp. 242–254, Feb. 2013.

[169] C.-T. Hwang and R.-B. Wu, “Treating late-time instability of partially
tetrahedral-gridded finite difference time domain method,” in Proc.
IEEE Antennas Propag. Soc. Int. Symp., vol. 1. Jun. 1998,
pp. 562–565.

[170] T. Rylander and A. Bondeson, “Stable FEM-FDTD hybrid method for
Maxwell’s equations,” Comput. Phys. Commun., vol. 125, nos. 1–3,
pp. 75–82, Mar. 2000.

[171] T. Rylander and A. Bondeson, “Stability of explicit–implicit hybrid
time-stepping schemes for Maxwell’s equations,” J. Comput. Phys.,
vol. 179, no. 2, pp. 426–438, Jul. 2002.

[172] T. Rylander, “Stable FDTD-FEM hybrid method for Maxwell’s equa-
tions,” Ph.D. dissertation, Dept. Electromagn., Chalmers Univ. Tech-
nol., Gothenburg, Sweden, 2002.

[173] D. J. Riley, “Transient finite-elements for computational electromagnet-
ics: Hybridization with finite differences, modeling thin wires and thin
slots, and parallel processing,” in Proc. 17th Annu. Rev. Prog. Appl.
Comput. Electromagn. (ACES), 2001, pp. 128–138.

[174] D. J. Riley, M. F. Pasik, J. D. Kotulski, C. D. Turner, and N. W. Riley,
“Analysis of airframe-mounted antennas using parallel and hybridized
finite-element time-domain methods,” in Proc. IEEE Antennas Propag.
Soc. Int. Symp., vol. 3. 2002, pp. 168–171.

[175] N. Montgomery, R. Hutchins, and D. Riley, “Thin wire hybrid
FETD/FDTD broadband antenna predictions,” in USNC/URSI Nat.
Radio Sci. Meeting Dig., 2001, p. 194.

[176] F. Edelvik, “Hybrid solvers for the Maxwell equations in time-domain,”
Ph.D. dissertation, Dept. Inf. Technol., Uppsala Univ., Uppsala,
Sweden, 2002.

[177] E. Abenius, U. Andersson, F. Edelvik, L. Eriksson, and G. Ledfelt,
“Hybrid time domain solvers for the Maxwell equations in 2D,”
Int. J. Numer. Methods Eng., vol. 53, no. 9, pp. 2185–2199,
Mar. 2002.

[178] M. El Hachemi, O. Hassan, K. Morgan, D. P. Rowse, and
N. P. Weatherill, “Hybrid methods for electromagnetic scattering simu-
lations on overlapping grids,” Commun. Numer. Methods Eng., vol. 19,
no. 9, pp. 749–760, Sep. 2003.



3790 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 11, NOVEMBER 2015

[179] M. El Hachemi, O. Hassan, K. Morgan, D. P. Rowse, and
N. P. Weatherill, “A low–order unstructured–mesh approach for compu-
tational electromagnetics in the time domain,” Philos. Trans. Roy. Soc.
London A, Math., Phys. Eng. Sci., vol. 362, no. 1816, pp. 445–469,
2004.

[180] T. Rylander, F. Edelvik, A. Bondeson, and D. J. Riley, “Advances
in hybrid FDTD-FE techniques,” in Computational Electrodynamics:
The Finite-Difference Time-Domain Method. Norwood, MA, USA:
Artech House, 2005, pp. 907–953.

[181] A. Monorchio, A. R. Bretones, R. Mittra, G. Manara, and R. G. Martín,
“A hybrid time-domain technique that combines the finite element,
finite difference and method of moment techniques to solve complex
electromagnetic problems,” IEEE Trans. Antennas Propag., vol. 52,
no. 10, pp. 2666–2674, Oct. 2004.

[182] T. A. Driscoll and B. Fornberg, “Block pseudospectral methods for
Maxwell’s equations II: Two-dimensional, discontinuous-coefficient
case,” SIAM J. Sci. Comput., vol. 21, no. 3, pp. 1146–1167, 1999.

[183] B. Fomberg, “Some numerical techniques for Maxwell’s equa-
tions in different types of geometries,” in Topics in Computational
Wave Propagation. New York, NY, USA: Springer-Verlag, 2003,
pp. 265–299.

[184] S. G. Garcia, M. F. Pantoja, A. R. Bretones, R. G. Martin, and
S. D. Gedney, “A hybrid DGTD-FDTD method for RCS calcula-
tions,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2007,
pp. 3500–3503.

[185] S. G. Garcia, M. Fernandez Pantoja, C. de Jong van Coevorden,
A. R. Bretones, and R. G. Martin, “A new hybrid DGTD/FDTD
method in 2-D,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12,
pp. 764–766, Dec. 2008.

[186] J.-P. Cioni, L. Fezoui, and H. Steve, “A parallel time-domain Maxwell
solver using upwind schemes and triangular meshes,” IMPACT Comput.
Sci. Eng., vol. 5, no. 3, pp. 215–247, Sep. 1993.

[187] K. Morgan, O. Hassan, and J. Peraire, “A time domain unstructured grid
approach to the simulation of electromagnetic scattering in piecewise
homogeneous media,” Comput. Methods Appl. Mech. Eng., vol. 134,
nos. 1–2, pp. 17–36, Jul. 1996.

[188] R. W. Davies, K. Morgan, and O. Hassan, “A high order hybrid
finite element method applied to the solution of electromagnetic wave
scattering problems in the time domain,” Comput. Mech., vol. 44, no. 3,
pp. 321–331, Aug. 2009.

[189] S. Schnepp, E. Gjonaj, and T. Weiland, “A hybrid finite integration–
finite volume scheme,” J. Comput. Phys., vol. 229, no. 11,
pp. 4075–4096, Jun. 2010.

[190] Y. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk, Numerical
‘Particle-in-Cell’ Methods: Theory and Applications. Berlin, Germany:
Walter de Gruyter, 2002.

[191] J. P. Quintenz, “Nonuniform mesh diode simulation code,” J. Appl.
Phys., vol. 49, no. 8, pp. 4377–4382, 1978.

[192] T. D. Pointon, “Slanted conducting boundaries and field emission of
particles in an electromagnetic particle simulation code,” J. Comput.
Phys., vol. 96, no. 1, pp. 143–162, Sep. 1991.

[193] B. Goplen, L. Ludeking, D. Smith, and G. Warren, “User-configurable
MAGIC for electromagnetic PIC calculations,” Comput. Phys.
Commun., vol. 87, nos. 1–2, pp. 54–86, May 1995.

[194] D. P. Grote, A. Friedman, J.-L. Vay, and I. Haber, “The warp code:
Modeling high intensity ion beams,” in Proc. AIP Conf., vol. 749. 2005,
pp. 55–58.

[195] C. Nieter, S. Ovtchinnikov, D. N. Smithe, P. H. Stoltz, and
P. J. Mullowney, “Self-consistent simulations of multipacting in super-
conducting radio frequencies,” in Proc. IEEE Particle Accel. Conf.,
Jun. 2007, pp. 769–771.

[196] D. N. Smithe, “Time domain modeling of plasmas at RF time-scales,”
J. Phys., Conf. Ser., vol. 78, no. 1, p. 012069, 2007.

[197] D. Smithe, P. Stoltz, J. Loverich, C. Nieter, and S. Veitzer, “Devel-
opment and application of particle emission algorithms from cut-
cell boundaries in the VORPAL EM-FDTD-PIC simulation tool,”
in Proc. IEEE Int. Vac. Electron. Conf. (IVEC), Apr. 2008,
pp. 217–218.

[198] C. Nieter, J. R. Cary, G. R. Werner, D. N. Smithe, and P. H. Stoltz,
“Application of Dey–Mittra conformal boundary algorithm to 3D
electromagnetic modeling,” J. Comput. Phys., vol. 228, no. 21,
pp. 7902–7916, Nov. 2009.

[199] J. Loverich, C. Nieter, D. Smithe, S. Mahalingam, and P. Stoltz,
“Charge conserving emission from conformal boundaries in electro-
magnetic PIC simulations,” Comput. Phys. Commun., 2009. [Online].
Available: http://www.john-loverich.com/emission.pdf

[200] T. M. Austin, J. R. Cary, D. N. Smithe, and C. Nieter, “Alternating
direction implicit methods for FDTD using the Dey–Mittra embedded
boundary method,” Open Plasma Phys. J., vol. 3, pp. 29–35,
Apr. 2010.

[201] M. C. Lin, C. Nieter, P. H. Stoltz, and D. N. Smithe, “Accurately
and efficiently studying the RF structures using a conformal finite-
difference time-domain particle-in-cell method,” Open Plasma Phys. J.,
vol. 3, pp. 48–52, Apr. 2010.

[202] E. Halter, “Die berechnung elektrostatischer felder in pulsleistungsan-
lagen,” Kernforschungszentrum Karlsruhe GmbH, Tech. Rep. KfK-
Bericht 4072, 1986.

[203] M. Jones, “Electromagnetic PIC codes with body-fitted coordinates,” in
Proc. 12th Conf. Numer. Simulation Plasmas, Amer. Phys. Soc., Topical
Group Comput. Phys., San Francisco, CA, USA, 1987.

[204] D. Seldner and T. Westermann, “Algorithms for interpolation and
localization in irregular 2D meshes,” J. Comput. Phys., vol. 79, no. 1,
pp. 1–11, Nov. 1988.

[205] T. Westermann, “A particle-in-cell method as a tool for diode simula-
tions,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect.
Assoc. Equip., vol. 263, nos. 2–3, pp. 271–279, Jan. 1988.

[206] T. Westermann, “Electromagnetic particle-in-cell simulations of the
self-magnetically insulated Bθ -diode,” Nucl. Instrum. Methods Phys.
Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 281, no. 2,
pp. 253–264, Sep. 1989.

[207] T. Westermann, “Particle-in-cell simulations with moving boundaries—
Adaptive mesh generation,” J. Comput. Phys., vol. 114, no. 2,
pp. 161–175, Oct. 1994.

[208] T. Westermann, “Numerical modelling of the stationary
Maxwell–Lorentz system in technical devices,” Int. J. Numer. Model.,
Electron. Netw., Devices Fields, vol. 7, no. 1, pp. 43–67, Jan./Feb. 1994.

[209] A. Friedman, D. P. Grote, and I. Haber, “Three-dimensional particle
simulation of heavy-ion fusion beams,” Phys. Fluids B, Plasma Phys.,
vol. 4, no. 7, pp. 2203–2210, 1992.

[210] D. P. Grote, A. Friedman, and I. Haber, “Methods used in WARP3d, a
three-dimensional PIC/Accelerator code,” in Proc. AIP Conf., vol. 391.
1997, p. 51.

[211] C. Fichtl, J. Finn, and K. Cartwright, “An arbitrary curvilinear coordi-
nate PIC method,” in Bulletin of the American Physical Society, vol. 55.
College Park, MD, USA: APS, Nov. 2010, p. 1.

[212] C. A. Fichtl, “An arbitrary curvilinear coordinate particle in
cell method,” Ph.D. dissertation, Dept. Chem. Nucl. Eng.,
Univ. New Mexico, Albuquerque, NM, USA, 2010.

[213] C. A. Fichtl, J. M. Finn, and K. L. Cartwright, “An arbitrary curvilinear-
coordinate method for particle-in-cell modeling,” Comput. Sci.
Discovery, vol. 5, no. 1, p. 014011, 2012.

[214] G. L. Delzanno, E. Camporeale, J. D. Moulton, J. E. Borovsky,
E. A. MacDonald, and M. F. Thomsen, “CPIC: A curvilinear particle-
in-cell code for plasma–material interaction studies,” IEEE Trans.
Plasma Sci., vol. 41, no. 12, pp. 3577–3587, Dec. 2013.

[215] M. Matsumoto and S. Kawata, “TRIPIC: Triangular-mesh particle-
in-cell code,” J. Comput. Phys., vol. 87, no. 2, pp. 488–493,
Apr. 1990.

[216] A. M. Winslow, “Numerical solution of the quasilinear Poisson equa-
tion in a nonuniform triangle mesh,” J. Comput. Phys., vol. 1, no. 2,
pp. 149–172, Nov. 1966.

[217] F. Hermeline, “Deux schémas d’approximation des équations de
Vlasov–Maxwell bidimensionnelles sur des maillages de Voronoi
et Delaunay,” (in French), CEA Centre d’Tudes Limeil-Valenton,
Service Math. Codes Numriques, Villeneuve-Saint-Georges, France,
Tech. Rep. CEA N-2591, 1989.

[218] A. Adolf, P. Degond, F. Hermeline, J. Marilleau, P. A. Raviart, and
J. Segré, “New PIC codes on unstructured meshes applied to the
simulation of a photocathode injector,” Nucl. Instrum. Methods Phys.
Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 304, no. 1,
pp. 297–299, Jul. 1991.

[219] G. Voronoï, “Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Deuxième mémoire. Recherches
sur les parallélloèdres primitifs,” J. Reine Angew. Math., vol. 134,
pp. 198–287, 1908.



MEIERBACHTOL et al.: CONFORMAL EM-PIC 3791

[220] B. Delaunay, “Sur la sphère vide,” Bull. Acad. Sci. USSR, pp. 793–800,
1934.

[221] F. Assous, P. Degond, and J. Segre, “A particle-tracking method for
3D electromagnetic PIC codes on unstructured meshes,” Comput. Phys.
Commun., vol. 72, nos. 2–3, pp. 105–114, Nov. 1992.

[222] F. Hermeline, “Two coupled particle-finite volume methods using
Delaunay–Voronoi meshes for the approximation of Vlasov–Poisson
and Vlasov–Maxwell equations,” J. Comput. Phys., vol. 106, no. 1,
pp. 1–18, May 1993.

[223] S. Karmesin, P. C. Liewer, and J. Wang, “A parallel three-dimensional
electromagnetic particle-in-cell code for non-orthogonal meshes,”
Center Res. Parallel Comput., Rice Univ., Houston, TX, USA,
Tech. Rep. CRPC-TR96731, Sep. 1996.

[224] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, “An object-oriented
electromagnetic PIC code,” Comput. Phys. Commun., vol. 87, nos. 1–2,
pp. 199–211, 1995.

[225] J. Villasenor and O. Buneman, “Rigorous charge conservation for
local electromagnetic field solvers,” Comput. Phys. Commun., vol. 69,
nos. 2–3, pp. 306–316, 1992.

[226] R. L. Morse and C. W. Nielson, “Numerical simulation of the Weibel
instability in one and two dimensions,” Phys. Fluids, vol. 14, no. 4,
pp. 830–840, 1971.

[227] T. Umeda, Y. Omura, T. Tominaga, and H. Matsumoto, “A new
charge conservation method in electromagnetic particle-in-cell sim-
ulations,” Comput. Phys. Commun., vol. 156, no. 1, pp. 73–85,
2003.

[228] N. A. Gatsonis and A. Spirkin, “Unstructured 3D PIC simulations
of field emission array cathodes for micropropulsion applications,”
in Proc. 38th AIAA/ASME/SAE/ASEE Joint Propuls. Conf. Exhibit,
Indianapolis, IN, USA, 2002.

[229] A. Spirkin and N. A. Gatsonis, “Unstructured 3D PIC simulation
of plasma flow in a segmented microchannel,” in Proc. 36th AIAA
Thermophys. Conf., Orlando, FL, USA, 2003.

[230] A. Spirkin and N. A. Gatsonis, “Unstructured 3D PIC simulations of
the flow in a retarding potential analyzer,” Comput. Phys. Commun.,
vol. 164, nos. 1–3, pp. 383–389, 2004.

[231] N. A. Gatsonis and A. Spirkin, “A three-dimensional electrostatic
particle-in-cell methodology on unstructured Delaunay–Voronoi grids,”
J. Comput. Phys., vol. 228, no. 10, pp. 3742–3761, 2009.

[232] D. Issautier, F. Poupaud, J.-P. Cioni, and L. Fezoui, “A 2-D
Vlasov–Maxwell solver on unstructured meshes,” in Proc. 3rd Int.
Conf. Math. Numer. Aspects Wave Propag. (Waves), 1995,
pp. 355–371.

[233] G. Lapenta, F. Iinoya, and J. U. Brackbill, “Particle-in-cell simulation
of glow discharges in complex geometries,” IEEE Trans. Plasma Sci.,
vol. 23, no. 4, pp. 769–779, Aug. 1995.

[234] D. W. Swift, “Use of a hybrid code for global-scale plasma simulation,”
J. Comput. Phys., vol. 126, no. 1, pp. 109–121, 1996.

[235] J. Wang, D. Kondrashov, P. C. Liewer, and S. R. Karmesin, “Three-
dimensional deformable-grid electromagnetic particle-in-cell for par-
allel computers,” J. Plasma Phys., vol. 61, no. 3, pp. 367–389,
1999.

[236] C.-D. Munz et al., “KAD12D—A particle-in-cell code based on
finite-volume methods,” in Proc. 12th Int. Conf. High-Power Particle
Beams (BEAMS), vol. 1. 1998, pp. 541–544.

[237] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß,
“Divergence correction techniques for Maxwell solvers based on a
hyperbolic model,” J. Comput. Phys., vol. 161, no. 2, pp. 484–511,
2000.

[238] F. Bouchut, “On the discrete conservation of the Gauss–Poisson equa-
tion of plasma physics,” Commun. Numer. Methods Eng., vol. 14, no. 1,
pp. 23–34, 1998.

[239] E. Fijalkow, “A numerical solution to the Vlasov equation,” Comput.
Phys. Commun., vol. 116, nos. 2–3, pp. 319–328, 1999.

[240] J. R. Hammel, “Development of an unstructured 3-D direct simulation
Monte Carlo/particle-in-cell code and the simulation of microthruster
flows,” Ph.D. dissertation, Worcester Polytech. Inst., Worcester, MA,
USA, 2002.

[241] M. Fertig et al., “Hybrid code development for the numerical
simulation of instationary magnetoplasmadynamic thrusters,” in High
Performance Computing in Science and Engineering. Berlin, Germany:
Springer-Verlag, 2009, pp. 585–597.

[242] R. B. True, “Space-charge-limited beam forming systems analyzed
by the method of self-consistent fields with solution of Poisson’s
equation on a deformable relaxation mesh,” Ph.D. dissertation, Univ.
Connecticut, Storrs, CT, USA, 1972.

[243] R. True, “The deformable relaxation mesh technique for solution of
electron optics problems,” in Proc. Int. Electron Devices Meeting,
vol. 21. 1975, pp. 257–260.

[244] M. Caplan and C. Thorington, “Improved computer modelling of
magnetron injection guns for gyrotrons,” Int. J. Electron., vol. 51, no. 4,
pp. 415–426, 1981.

[245] S. I. Zaki, L. R. T. Gardner, and T. J. M. Boyd, “A finite element
code for the simulation of one-dimensional Vlasov plasmas. I. Theory,”
J. Comput. Phys., vol. 79, no. 1, pp. 184–199, 1988.

[246] S. I. Zaki, T. J. M. Boyd, and L. R. T. Gardner, “A finite ele-
ment code for the simulation of one-dimensional Vlasov plasmas. II.
Applications,” J. Comput. Phys., vol. 79, no. 1, pp. 200–208,
1988.

[247] R. True, “A general purpose relativistic beam dynamics code,” in Proc.
AIP Conf., vol. 297. 1993, p. 493.

[248] B. Godfrey and L. Thode, “Galerkin difference schemes for plasma
simulation codes,” in Proc. 7th Conf. Numer. Simulation Plasmas,
New York, NY, USA, 1975, p. 87.

[249] B. B. Godfrey, “Application of Galerkin’s method to particle-in-cell
plasma simulation,” in Proc. 8th Conf. Numer. Simulation Plasmas,
1978, p. PE-3.

[250] B. B. Godfrey, “Galerkin algorithm for multidimensional plasma
simulation codes,” Los Alamos Sci. Lab., Los Alamos, NM, USA,
Tech. Rep. LA-7687-MS, 1979.

[251] J. Peterson, “Particle pushing techniques for use with finite element
based field calculations,” in Proc. LANL 6th CUBE (Comput. Use
Engineers) Symp., 1984, p. 12.

[252] M. Fritts and A. Drobot, “Plasma simulations on an unstructured grid,”
in Proc. IEEE Int. Conf. Plasma Sci., 1988, p. 119.

[253] A. T. Drobot, A. Friedman, M. J. Fritts, I. Lottati, and D. Nielsen, Jr.,
“Numerical simulation of plasmas on an unstructured grid,” in Proc.
IEEE Int. Conf. Plasma Sci., May 1989, p. 95.

[254] J. Ambrosiano, S. Brandon, and R. Löhner, “A finite element particle
code on an unstructured grid,” in Proc. IEEE Int. Conf. Plasma Sci.,
May 1990, p. 102.

[255] J. Ambrosiano, S. Brandon, and R. Löhner, “Finite element particle
simulation on unstructured grids,” in Proc. IEEE Int. Conf. Plasma
Sci., Jun. 1991, p. 209.

[256] P. Degond, F. Hermeline, P. A. Raviart, and J. Segre, “Numerical
modeling of axisymmetric electron beam devices using a coupled
particle-finite element method,” IEEE Trans. Magn., vol. 27, no. 5,
pp. 4177–4180, Sep. 1991.

[257] R. Löhner and J. Ambrosiano, “A vectorized particle tracer for unstruc-
tured grids,” J. Comput. Phys., vol. 91, no. 1, pp. 22–31, 1990.

[258] T. Westermann, “Localization schemes in 2D boundary-fitted grids,”
J. Comput. Phys., vol. 101, no. 2, pp. 307–313, 1992.

[259] R. Löhner, “Robust, vectorized search algorithms for interpola-
tion on unstructured grids,” J. Comput. Phys., vol. 118, no. 2,
pp. 380–387, 1995.

[260] E. M. Nelson, K. R. Eppley, and B. Levush, “Particle tracking on
unstructured grids,” in Proc. Particle Accel. Conf. (PAC), vol. 4. 2001,
pp. 3057–3059.

[261] A. Haselbacher, F. M. Najjar, and J. P. Ferry, “An efficient and robust
particle-localization algorithm for unstructured grids,” J. Comput.
Phys., vol. 225, no. 2, pp. 2198–2213, 2007.

[262] W. Arter and J. W. Eastwood, “Electromagnetic modelling in arbitrary
geometries by the virtual particle particle-mesh method,” in Proc. 14th
Int. Conf. Numer. Simulation Plasmas, 1991.

[263] J. W. Eastwood, “The virtual particle electromagnetic particle-mesh
method,” Comput. Phys. Commun., vol. 64, no. 2, pp. 252–266, 1991.

[264] J. W. Eastwood, R. W. Hockney, and W. Arter, “General geometry PIC
for MIMD computers,” DTIC, Tech. Rep., 1992.

[265] J. W. Eastwood, R. W. Hockney, and W. Arter, “General geometry
PIC for MIMD computers,” DTIC, AEA Technol., Culham Lab.,
Oxfordshire, U.K., Tech. Rep. AEA/TLNA/31858/RP/2, 1993.

[266] J. W. Eastwood, W. Arter, and R. W. Hockney, “The 3-D general
geometry PIC software for distributed memory MIMD computers; EM
software specification,” DTIC, AEA Technol., Culham Lab., Oxford-
shire, U.K., Tech. Rep. AEA/TYKB/31878/RP/1, 1994.

[267] J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney,
“Body-fitted electromagnetic PIC software for use on parallel comput-
ers,” Comput. Phys. Commun., vol. 87, nos. 1–2, pp. 155–178, 1995.

[268] J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney, “Body-
fitted PIC software for electromagnetic problems: The time domain
code PIC3D,” in Proc. 3rd Int. Conf. Comput. Electromagn., Apr. 1996,
pp. 26–31.



3792 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 11, NOVEMBER 2015

[269] S. Coco, F. Emma, A. Laudani, S. Pulvirenti, and M. Sergi, “COCA:
A novel 3-D FE simulator for the design of TWT’s multistage col-
lectors,” IEEE Trans. Electron Devices, vol. 48, no. 1, pp. 24–31,
Jan. 2001.

[270] R. I. Kafafy, “Immersed finite element particle-in-cell simulations of
ion propulsion,” Ph.D. dissertation, Virginia Polytech. Inst. State Univ.,
Blacksburg, VA, USA, 2005.

[271] A. Candel et al., “Parallel higher-order finite element method for
accurate field computations in wakefield and PIC simulations,” in Proc.
ICAP, 2006, pp. 1–6.

[272] Z. Li et al., “High-performance computing in accelerating structure
design and analysis,” Nucl. Instrum. Methods Phys. Res. A, Accel.,
Spectrom., Detect., Assoc. Equip., vol. 558, no. 1, pp. 168–174, 2006.

[273] A. Candel et al., “Parallel finite element particle-in-cell code for
simulations of space-charge dominated beam-cavity interactions,” in
Proc. IEEE Particle Accel. Conf. (PAC), Jun. 2007, pp. 908–910.

[274] T. Bui, “BOA, beam optics analyzer a particle-in-cell
code,” Calabazas Creek Res., Inc., San Mateo, CA, USA,
Tech. Rep. DOE/ER-83616, 2007.

[275] A. Candel et al., “Parallel 3D finite element particle-in-cell code
for high-fidelity RF gun simulations,” in Proc. LINAC, Victoria, BC,
Canada, 2008, pp. 317–319.

[276] A. Candel et al., “Parallel higher-order finite element method for
accurate field computations in wakefield and PIC simulations,” SLAC
Nat. Accel. Lab., Menlo Park, CA, USA, Tech. Rep. PUB 13667,
Jun. 2009, pp. 1–6.

[277] K. Ko et al., “Advances in parallel electromagnetic codes for accelera-
tor science and development,” in Proc. LINAC, Tsukuba, Japan, 2010,
pp. 1028–1032.

[278] L.-Q. Lee, A. Candel, C. Ng, and K. Ko, “On using moving win-
dows in finite element time domain simulation for long accelera-
tor structures,” J. Comput. Phys., vol. 229, no. 24, pp. 9235–9245,
2010.

[279] J. Squire, H. Qin, and W. M. Tang, “Geometric integration of the
Vlasov–Maxwell system with a variational particle-in-cell scheme,”
Phys. Plasmas, vol. 19, no. 8, p. 084501, 2012.

[280] M. F. Pasik et al., “Transient electromagnetic modeling of the ZR
accelerator water convolute and stack,” in Proc. IEEE Pulsed Power
Conf., Jun. 2005, pp. 1449–1452.

[281] R. W. Shoup et al., “Analysis of the ZR vacuum insulator stack,” in
Proc. IEEE Pulsed Power Conf., Jun. 2005, pp. 505–508.

[282] D. B. Seidel et al., “An optimization study of stripline loads for
isentropic compression experiments,” in Proc. IEEE Pulsed Power
Conf. (PPC), Jun./Jul. 2009, pp. 1165–1170.

[283] K. L. Cartwright et al., “Validation and uncertainty quantification of
ICEPIC/emphasis codes for a series of gas cell experiments at NRL,”
in Proc. Abstracts IEEE Int. Conf. Plasma Sci. (ICOPS), Jun. 2011,
p. 1.

[284] K. Cartwright et al., “ICEPIC EMPHASIS and ITS solution verifi-
cation validation and uncertainty quantification for a series of gas
cell experiments at NRL,” Sandia Nat. Lab., Albuquerque, NM, USA,
Tech. Rep. SAND2012-0665C, 2012.

[285] J. Petillo et al., “The MICHELLE three-dimensional electron gun and
collector modeling tool: Theory and design,” IEEE Trans. Plasma Sci.,
vol. 30, no. 3, pp. 1238–1264, Jun. 2002.

[286] A. C. J. Paes, N. M. Abe, V. A. Serrão, and A. Passaro, “Simulations of
plasmas with electrostatic PIC models using the finite element method,”
Brazilian J. Phys., vol. 33, no. 2, pp. 411–417, 2003.

[287] E. M. Nelson and J. J. Petillo, “Current accumulation for a self
magnetic field calculation in a finite-element gun code,” IEEE Trans.
Magn., vol. 41, no. 8, pp. 2355–2361, Aug. 2005.

[288] J. J. Petillo, E. M. Nelson, J. F. DeFord, N. J. Dionne, and B. Levush,
“Recent developments to the MICHELLE 2-D/3-D electron gun and
collector modeling code,” IEEE Trans. Electron Devices, vol. 52, no. 5,
pp. 742–748, May 2005.

[289] Q. Hu et al., “Recent developments on EOS 2-D/3-D electron gun and
collector modeling code,” IEEE Trans. Electron Devices, vol. 57, no. 7,
pp. 1696–1701, Jul. 2010.

[290] C. P. Riley, “Enhancements to the OPERA-3D suite,” in Proc. AIP
Conf., vol. 391. 1996, p. 101.

[291] L. Ives, T. Bui, W. Vogler, M. Shephard, and D. Datta, “Development
of 3D finite-element charged-particle code with adaptive meshing,” in
Proc. Particle Accel. Conf., 2003, pp. 3560–3562.

[292] T. Bui, L. Ives, J. Verbonceur, and C. Birdsall, “Code development
of a 3D finite element particle-in-cell code with adaptive meshing,” in
Proc. IEEE Int. Conf. Plasma Sci., Jun. 2005, p. 269.

[293] A. Greenwood and K. Cartwright, “Charge conserving current weights
for PIC,” in Proc. APS Division Comput. Phys. Annu. Meeting, 2002.

[294] A. D. Greenwood and K. L. Cartwright, “Charge conserving current
weights for PIC: Application to cylindrical coordinates,” in Proc. 31st
IEEE Int. Conf. Plasma Sci. (ICOPS), Jul. 2004, p. 134.

[295] M. C. Pinto, S. Jund, S. Salmon, and E. Sonnendrücker, “Charge-
conserving FEM-PIC schemes on general grids,” Comptes Rendus
Mècanique, vol. 342, no. 10, pp. 570–582, 2014.

[296] M. T. Bettencourt, “Weighting schemes for charges and fields to control
self-force in unstructured finite element particle-in-cell codes,” in Proc.
Abstracts IEEE Int. Conf. Plasma Sci. (ICOPS), Jun. 2013, p. 1.

[297] J.-S. Wu, K.-H. Hsu, F.-L. Li, C.-T. Hung, and S.-Y. Jou, “Development
of a parallelized 3D electrostatic PIC-FEM code and its applications,”
Comput. Phys. Commun., vol. 177, nos. 1–2, pp. 98–101, 2007.

[298] F. Assous, “3D microwave modelling in arbitrary geometry,” in Proc.
Appl. Simulation Modelling, 14th IASTED Int. Conf., 2005, p. 161.

[299] F. Assous, “A three-dimensional time domain electromagnetic particle-
in-cell code on unstructured grids,” Int. J. Model. Simul., vol. 29, no. 3,
pp. 279–284, 2009.

[300] G. B. Jacobs and J. S. Hesthaven, “High-order nodal discontinuous
Galerkin particle-in-cell method on unstructured grids,” J. Comput.
Phys., vol. 214, no. 1, pp. 96–121, 2006.

[301] G. B. Jacobs, J. S. Hesthaven, and G. Lapenta, “Simulations of the
weibel instability with a high-order discontinuous Galerkin particle-in-
cell solver,” in Proc. 44th AIAA Aerosp. Sci. Meeting Exhibit, 2006,
pp. 1–11.

[302] G. B. Jacobs and J. S. Hesthaven, “Implicit–explicit time integration
of a high-order particle-in-cell method with hyperbolic divergence
cleaning,” Comput. Phys. Commun., vol. 180, no. 10, pp. 1760–1767,
2009.

[303] A. Stock et al., “Three-dimensional numerical simulation of a 30-GHz
Gyrotron resonator with an explicit high-order discontinuous-Galerkin-
based parallel particle-in-cell method,” IEEE Trans. Plasma Sci.,
vol. 40, no. 7, pp. 1860–1870, Jul. 2012.

[304] R. E. Heath, “Analysis of the discontinuous Galerkin method applied
to collisionless plasma physics,” Ph.D. dissertation, Dept. Comput.
Sci., Eng., Math. Program, Univ. Texas Austin, Austin, TX, USA, 2007.

[305] J. A. Rossmanith and D. C. Seal, “A positivity-preserving high-
order semi-Lagrangian discontinuous Galerkin scheme for the
Vlasov–Poisson equations,” J. Comput. Phys., vol. 230, no. 16,
pp. 6203–6232, 2011.

[306] B. Ayuso, J. A. Carrillo, and C.-W. Shu, “Discontinuous Galerkin
methods for the one-dimensional Vlasov–Poisson system,” Kinetic Rel.
Models, vol. 4, no. 4, pp. 955–989, 2011.

[307] R. E. Heath, I. M. Gamba, P. J. Morrison, and C. Michler,
“A discontinuous Galerkin method for the Vlasov–Poisson system,”
J. Comput. Phys., vol. 231, no. 4, pp. 1140–1174, 2012.

[308] B. Ayuso, J. A. Carrillo, and C.-W. Shu, “Discontinuous Galerkin
methods for the multi-dimensional Vlasov–Poisson problem,” Math.
Models Methods Appl. Sci., vol. 22, no. 12, p. 1250042, 2012.

[309] Y. Cheng, I. M. Gamba, and P. J. Morrison, “Study of conservation
and recurrence of Runge–Kutta discontinuous Galerkin schemes for
Vlasov–Poisson systems,” J. Sci. Comput., vol. 56, no. 2, pp. 319–349,
2013.

[310] Y. Cheng, I. M. Gamba, F. Li, and P. J. Morrison. (2013). “Discontin-
uous Galerkin methods for the Vlasov–Maxwell equations.” [Online].
Available: http://arxiv.org/abs/1302.2136

[311] Y. Cheng, A. J. Christlieb, and X. Zhong. (2013). “Energy-conserving
discontinuous Galerkin methods for the Vlasov–Ampére system.”
[Online]. Available: http://arxiv.org/abs/1306.0931

[312] F. R. Foust, T. F. Bell, M. Spasojevic, and U. S. Inan, “Discontinuous
Galerkin particle-in-cell simulation of longitudinal plasma wave damp-
ing and comparison to the Landau approximation and the exact solution
of the dispersion relation,” Phys. Plasmas, vol. 18, no. 6, p. 062111,
2011.

[313] D. Seidel, M. Pasik, M. Kiefer, D. Riley, and C. Turner,
“Advanced 3D electromagnetic and particle-in-cell modeling on struc-
tured/unstructured hybrid grids,” Sandia Nat. Lab., Albuquerque, NM,
USA, Tech. Rep. SAND97-3190, 1998.

[314] B. Donderici, “Time-domain solvers for complex-media electrodynam-
ics and plasma physics,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Ohio State Univ., Columbus, OH, USA, 2008.

[315] C. D. Turner, M. F. Pasik, and D. B. Seidel, “EMPHASIS/Nevada
UTDEM user guide version 1.0,” Sandia Nat. Lab., Albuquerque, NM,
USA, Tech. Rep. SAND2005-0935, 2005.

[316] K. L. Cartwright, private communication, Nov. 2013.



MEIERBACHTOL et al.: CONFORMAL EM-PIC 3793

[317] C. D. Turner, M. F. Pasic, D. B. Seidel, T. D. Pointon, and
K. L. Cartwright, “EMPHASIS/Nevada unstructured FEM implemen-
tation version 2.1.1,” Sandia Nat. Lab., Albuquerque, NM, USA,
Tech. Rep. SAND2014-16735, 2014.

[318] T. Weiland, “On the numerical solution of Maxwell’s equations and
applications in the field of accelerator physics,” Particle Accel., vol. 15,
no. 4, pp. 245–292, 1984.

[319] F. Filbet, E. Sonnendrücker, and P. Bertrand, “Conservative numerical
schemes for the Vlasov equation,” J. Comput. Phys., vol. 172, no. 1,
pp. 166–187, 2001.

[320] M. Hess and C. Park, “A multislice approach for electromagnetic
Green’s function based beam simulations,” in Proc. IEEE Particle
Accel. Conf. (PAC), Jun. 2007, pp. 3531–3533.

[321] J. W. You, H. G. Wang, J. F. Zhang, W. Z. Cui, and T. J. Cui, “The
conformal TDFIT-PIC method using a new extraction of conformal
information (ECI) technique,” IEEE Trans. Plasma Sci., vol. 41, no. 11,
pp. 3099–3108, Nov. 2013.

[322] R. E. Clark et al., “Locally conformal finite-difference time-domain
techniques for particle-in-cell plasma simulation,” J. Comput. Phys.,
vol. 230, no. 3, pp. 695–705, 2011.

Collin S. Meierbachtol (S’09–M’13) received the
B.A. (cum laude) degree in physics from Gustavus
Adolphus College, St. Peter, MN, USA, in 2007, and
the M.S. and Ph.D. degrees in electrical engineering
from Michigan State University, East Lansing, MI,
USA, in 2009 and 2013, respectively.

He was a Government Assistance in Areas of
National Need Fellow from 2007 to 2010. He was
a National Research Council Research Associate
with the Directed Energy Directorate, Air Force
Research Laboratory, Kirtland Air Force Base,

Albuquerque, NM, USA, from 2013 to 2015, where he developed the first
mesh-flexible electromagnetic particle-in-cell code. He is currently with the
Applied Mathematics and Plasma Physics Group, Los Alamos National
Laboratory, Theoretical Division, Los Alamos, NM, USA. His current research
interests include computational plasma physics, computational electromagnet-
ics, multiphysics simulations, advanced meshing schemes, and high perfor-
mance parallel computing.

Dr. Meierbachtol is a member of the IEEE Antennas and Propagation
Society, the IEEE Nuclear and Plasma Sciences Society, the American
Physical Society Division of Plasma Physics, the Phi Beta Kappa Honor
Society, the Eta Kappa Nu Honor Society, the Phi Kappa Phi Honor Society,
and the Sigma Pi Sigma Honor Society. He received the National Research
Council Research Associateship in 2013.

Andrew D. Greenwood (S’90–M’98–SM’06)
received the B.S. and M.S. degrees from
Brigham Young University, Provo, UT, USA,
in 1993 and 1995, respectively, and the
Ph.D. degree from the University of Illinois
at Urbana–Champaign, Champaign, IL, USA,
in 1998, all in electrical engineering.

He studied the use of the finite element method
to compute electromagnetic scattering and radiation
from axisymmetric bodies with the University
of Illinois at Urbana–Champaign. In 1996,

he joined the Rome Laboratory as a Palace Knight Employee. In 1998,
he joined the Directed Energy Directorate, Air Force Research Laboratory,
Kirtland Air Force Base, Albuquerque, NM, USA. He conducts research
on numerical methods, parallel computing, and the simulation of high
power microwave devices, and on high power microwave antennas. He
is currently the Recognized Computational Electromagnetics Expert with
the High Power Microwave Division. He is one of the primary developers
of the state-of-the-art electromagnetic particle in cell code ICEPIC. He
holds the patent for the All Cavity Magnetron Axial Extractor, which he
designed using ICEPIC simulation. He has authored numerous articles in
peer-reviewed journals and professional conferences.

Dr. Greenwood is a member of the IEEE Antennas and Propagation
Society, the IEEE Nuclear and Plasma Science Society, the Tau Beta Pi
Engineering Honor Society, and the Eta Kappa Nu Engineering Honor
Society. He is active in the Electromagnetic Code Consortium and has served
two terms as the Chair.

John P. Verboncoeur (M’96–SM’08–F’13) received
the B.S. (Hons.) degree in engineering science from
the University of Florida, Gainesville, FL, USA,
in 1986, and the M.S. and Ph.D. degrees in nuclear
engineering from the University of California
at Berkeley (UCB), Berkeley, CA, USA,
in 1987 and 1992, respectively.

He was a Post-Doctoral Researcher with UCB
and the Lawrence Livermore National Laboratory,
Livermore, CA, USA, and a Research Engineer
with UCB. He joined the Nuclear Engineering

Faculty, UCB, in 2001, where he was the Chair of the Computational
Engineering Science Program from 2001 to 2010. In 2011, he was appointed
as a Professor of Electrical and Computer Engineering with Michigan State
University, East Lansing, MI, USA. He currently serves as the Associate Dean
of Research with the College of Engineering, Michigan State University.
He has authored or co-authored over 300 journal articles and conference
papers, with over 2400 citations, and has taught 13 international workshops
and minicourses on plasma simulation. His current research interests include
theoretical and computational plasma physics and applications.

Dr. Verboncoeur is a member of the American Physical Society Division
of Plasma Physics, and serves as an Associate Editor of Physics of Plasmas.
He served as the Technical Program Co-Chair of the 2013 IEEE Pulsed
Power and Plasma Science Conference, and is the President-Elect of the
IEEE Nuclear and Plasma Sciences Society.

Balasubramaniam Shanker (M’96–SM’03–F’10)
received the B.Tech. degree from IIT Madras,
Chennai, India, in 1989, and the M.S. and
Ph.D. degrees from Pennsylvania State University,
University Park, PA, USA, in 1992 and 1993,
respectively.

He was a Research Associate with the Department
of Biochemistry and Biophysics, Iowa State Univer-
sity, Ames, IA, USA, from 1993 to 1996, where
he was involved in the molecular theory of optical
activity. From 1996 to 1999, he was a Visiting

Assistant Professor with the Center for Computational Electromagnetics,
University of Illinois at Urbana–Champaign, Champaign, IL, USA. From
1999 to 2002, he was an Assistant Professor with the Department of
Electrical and Computer Engineering, Iowa State University. He currently
holds joint appointments as a Professor with the Department of Electrical
and Computer Engineering, the Department of Computational Mathematics,
Science, and Engineering, and the Department of Physics and Astronomy,
Michigan State University, East Lansing, MI, USA. He has authored or co-
authored over 350 journal and conference papers and presented a number
of invited talks. His current research interests include all aspects of com-
putational electromagnetics (frequency and time domain integral equation-
based methods, multiscale fast multipole methods, fast transient methods,
and higher order finite element and integral equation methods), propagation
in complex media, mesoscale electromagnetics, and particle and molecular
dynamics as applied to multiphysics and multiscale problems.

Dr. Shanker is a Full Member of the USNC-URSI Commission B.
He was a recipient of the Withrow Distinguished Junior Scholar in 2003, the
Withrow Distinguished Senior Scholar in 2010, the Withrow Teaching Award
in 2007, and the Beal Outstanding Faculty (formerly Distinguished Faculty)
Awards in 2014. He was an Associate Editor of the IEEE ANTENNAS AND

WIRELESS PROPAGATION LETTERS. He is an Associate Editor of the IEEE
TRANSACTIONS ON ANTENNAS AND PROPAGATION, and the Topical Editor
of the Journal of Optical Society of America: A.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


