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Abstract— The possibility of using single-stepped cavities to
replace the common tapered cavities was studied using particle-
in-cell simulations in an A6 magnetron with diffraction output
(MDO). The replacing of the tapered cavities by the single-
stepped cavities in a 12-cavity MDO increases the interaction
space where the charged particles interact with the induced
RF waves. The electronic efficiency of the 12-cavity MDO with
single-stepped cavities driven by the transparent cathode [2] of
GW output power level can be as high as 73% for α = 18.2°,
74% for α = 17.5°, and 72% for α = 12.5° at β = 32°,
where α is the angle between the outer wall and z-axis, and
β is the angle between the inner wall and z-axis. The depth
of single-stepped cavities is changed when α is changed, which
results in different frequency range of magnetron operating
modes. When a 400-kV voltage pulse of 10-ns duration is
applied to a transparent cathode or a solid cathode, the output
power can be as high as 1 GW. Without loss of generality,
for α = 12.5° at β = 32°, the peak efficiency around 70% of
12-cavity MDO with single-stepped cavities design occurs at the
voltage (V ∼ 400 ± 50 kV). The results presented in this paper
provide references for relativistic magnetron mode selection or
mode switching experiments when choosing the input parameters
(magnetic field and accelerating voltage) allowing the magnetron
to operate in the desired operation mode.

Index Terms— Diffraction output, magnetron, operation mode,
single-stepped cavities.

I. INTRODUCTION

THE relativistic magnetron oscillator can be a highly effi-
cient device for generating microwaves and a lot of works

were done on it so far [3]–[15]. In relativistic magnetrons
with axial extraction of microwave power through a horn
antenna, which also known as magnetrons with diffraction
output (MDO), any mode can be used as the operating
mode, unlike in magnetrons with radial extraction of radiation

Manuscript received October 31, 2013; revised December 25, 2013 and
January 20, 2014; accepted February 25, 2014. Date of publication March 25,
2014; date of current version October 21, 2014. The work of M. Liu and
C. Liu through Xi’an Jiaotong University in China was supported in part by
the research under Grant 20130201120014, in part by the National Natural
Science Foundation in China under Grant 61302010, in part by the Foundation
of Science and Technology on High Power Microwave Laboratory, and in part
by the Central University Foundation and 2013KW07. The work of M. I. Fuks
and E. Schamiloglu through the University of New Mexico was supported by
ONR under Grant N00014-13-1-0565.

M. Liu and C. Liu are with the Key Laboratory of Physical Electronics
and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an
710049, China (e-mail: mqliu@mail.xjtu.edu.cn; chlliu@mail.xjtu.edu.cn).

M. I. Fuks and E. Schamiloglu are with the Department of Electri-
cal and Computer Engineering, University of New Mexico, Albuquerque,
NM 87131-0001 USA (e-mail: fuks@ece.unm.edu; edls@unm.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPS.2014.2311458

through, for example, one of the cavities of the anode block,
when only nondegenerate modes can be used as the operating
ones [16]. Recently, researchers at the University of New
Mexico demonstrated in simulations that the electronic effi-
ciency of an A6 MDO can be as high as 70% [17],
when it is driven by a transparent cathode. In addition,
Lemke et al. [10] demonstrated that the electronic efficiency of
rising-sun magnetrons can be around 40% with 3.7-GW output
power. It was demonstrated in simulations by researchers at
the University of New Mexico that the mode switching from
pulse to pulse in an A6 MDO can be realized using a weak
(∼105 W), short (∼10−8 s), and single-frequency microwave
signal [18]. It was shown that the switched mode persists even
after switching OFF the RF signal [19].

It was also shown that it is possible to achieve frequency
switching between modes that have the same transverse field
structure, but different axial distributions [20]. It was demon-
strated that, when using a diffraction output with a compli-
cated configuration resulting in reflections from its different
cross sections, an opportunity exists for exciting different
operation modes with different axial distributions and the
same transverse field structure, and that the mode switching
between different longitudinal modes can also be realized in
this configuration [20]. Compared with the traditional tapered
cavity, the single-stepped cavity is easier to manufacture.

In this paper, we explore the possibility of using single-
stepped cavities instead of the traditional tapered cavities
in a 12-cavity MDO to achieve around 70% of electronic
efficiency with gigawatt output power level by optimizing
MDO geometrical parameters, such as α, the angle between
the outer wall and z-axis, and the cathode emitter length.
The particle-in-cell (PIC) simulations of the 12-cavity MDO
with single-stepped cavities show that the output power of the
TE41 mode can be as high as 1.74 GW driven by transparent
cathode, and the output power of the TE31 mode can be as
high as 1.54 GW when a 400-kV voltage is applied to both
transparent and solid cathodes (the transparent cathode and the
solid cathode with same radius dimension Rc = 1.0 cm).

II. PIC SIMULATIONS OF 12-CAVITY MDO WITH

SINGLE-STEPPED CAVITIES

The tapered cavities in the 12-cavity MDO [20] are replaced
by single-stepped cavities, as shown in Fig. 1. The single-
stepped cavities position A in the z-direction is 5.0 cm away
from the beginning of the anode block. In this configuration,
the interaction space where emitted electrons and induced RF
waves interact with each other increases, as shown in Fig. 1(a).
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Fig. 1. 12-cavity MDO with single-stepped cavities design. (a) Cross-
sectional diagram in the r–z plane. (b) Cross-sectional diagram in the r–θ
plane.

Fig. 2. Separation of modes for different applied axial magnetic fields with
α = 12.5° and β = 32°.

The transparent cathode consisting of 12 separate longitu-
dinal emitters periodically placed around radius Rc = 1.0 cm
is used in simulations with the PIC code MAGIC [21].
The 12-cavity MDO with single-stepped cavities replacing the
tapered cavities is matched to a horn antenna to extract
the output power. In our simulations, it can be inferred that
Ref is maximum (in the optimized configuration) for modes
with azimuthal indices n = 3 and n = 4, and that the loaded
Q-factor is close to the diffraction Q-factor [16]

Q ≈ Qdiff = 8π(L/λ)2

m(1 − Ref )
(1)

where m is the number of axial field variations, L is the length
of interaction space, and λ is the operating wavelength. The
magnetic field in PIC simulations is varied from B = 0.32 to
B = 0.52 T, with α = 12.5° and β = 32°, and the cathode
emitter length is 10.5 cm. The results of PIC simulation
(Fig. 2) show that in this configuration only two operating
modes exist, which are the TE31 mode (frequency ranges from
2.324 to 2.423 GHz) and the TE41 mode (frequency ranges
from 2.60 to 2.67 GHz). In addition, it can be observed in
Fig. 2 that the electronic efficiency can be as high as 70%,
while the output power can be as high as 1.1 GW.

When α = 17.5° and β = 32°, the mode separation
and frequency splitting (two different longitudinal modes
appear) is observed, as shown in [20, Fig. 3]. The TE31 mode
frequency ranges from 2.324 to 2.374 GHz, and the TE41 mode
frequency ranges from 2.63 to 2.654 GHz, as shown in Fig. 3.
In addition, it can be observed that the electronic efficiency
is as high as 70%, while the output power is as high as
1.2 GW (Fig. 3).

Fig. 3. Separation of modes for different applied axial magnetic fields with
α = 17.5° and β = 32°.

Fig. 4. Separation of modes for different applied axial magnetic fields with
α = 18.2° and β = 32°.

The results of PIC simulations with α = 18.2° and β = 32°
are shown in Fig. 4. The simulations show the mode separation
and the frequency splitting in this configuration, which can
also be observed but in a different manner when parameter α =
17.5°. He TE51 mode can also be observed in Fig. 4. The TE31
mode frequency ranges from 1.332 to 2.352 GHz, and the TE41
mode frequency ranges from 2.363 to 2.801 GHz. In addition,
it can be observed that the electronic efficiency is as high as
70%, while the output power is as high as 1.2 GW (Fig. 4).

The bifurcation of frequency (Figs. 3 and 4) gives the
possibility to consider the switching of frequencies at the same
transverse mode using common properties of a dynamical
system with two stable states separated by an unstable saddle
point, as shown in [18] and [19]. The mode priming and
the mode switching can also be separately realized in these
configurations, as shown in Figs. 2–4.

III. OPERATING MODES FOR A SHORT VOLTAGE PULSE IN

A 12-CAVITY MDO WITH SINGLE-STEPPED CAVITIES

The output power of operating modes in these configura-
tions can be optimized by increasing the emitter length.

For example, the output power as high as 1.78 GW
in the TE41 mode with frequency f = 2.650 GHz is
obtained (Fig. 5) for the configuration with α = 18.2° and
β = 32°, when the emitter length is increased to 11.2 from
10.5 cm [Fig. 1(a)].
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Fig. 5. (a) Output power of the TE41 mode at B = 0.40 T. (b) Spectrum of
the mode with f = 2.650 GHz (α = 18.2° and β = 32°).

Fig. 6. (a) Output power of the TE31 mode at B = 0.38 T. (b) Spectrum of
the mode with f = 2.405 GHz (α = 12.5° and β = 32°).

In addition, the output power as high as 1.51 GW at the
TE31 mode with frequency f = 2.405 GHz is obtained for
α = 12.5° and β = 32°, when the emitter length is increased
to 14.5 from 10.5 cm (Fig. 6).

The electron spokes and the electric field contours for the
TE41 and the TE31 modes are shown in Fig. 7.

Without loss of generality, let us consider the single-stepped
cavities position 5.4 cm away from the beginning of the
anode block at α = 12.5° (Fig. 2). Since the anode block
length increases, α = 12.5° compared with the other angles
considered, the emitter length also increases to 20 cm, so
that the emitted electrons will exist in the stronger induced
RF field in the stepped cavity. The simulation results for
400-kV voltage pulse with a 4-ns rise time for this config-
uration driven by transparent cathode are shown in Fig. 8.
The MAGIC simulations for 400-kV voltage pulse with a
4-ns rise time for this configuration with the solid cathode
of length 20 cm are also done; however, for comparison
with transparent cathode simply, the solid cathode dimension
chosen Rc = 1.0 cm, mode competition seriously occurs when
magnetic field B ≥ 0.37 T. So, here only show the clear TE31
mode driven by solid cathode when B = 0.34 T in Fig. 9.
In order to make the solid cathode operate properly, we need
to optimize the solid cathode dimension to reduce the mode
competition phenomenon in later work.

Top and middle are for transparent cathode, while bottom
is for solid cathode.

In our simulation with α = 12.5° and β = 32° (Fig. 2),
we also changed the voltage from 350 to 450 kV that is the
applied voltage V ∼ 400 ± 50 kV, and it was shown through
PIC simulation as in Fig. 10 that the electronic efficiency
and the output power cannot be obtained the peak value at
the same time. The electronic efficiency can be kept around

Fig. 7. Top: electron spokes synchrous with TE41 mode (left) and azimuthal
field structure of generated TE41 mode (right). Middle: electron spokes
synchrous with TE31 mode (left) and azimuthal field structure of generated
TE31 mode (right). Bottom: electron spokes synchrous with TE31 mode (left)
and azimuthal field structure of generated TE31 mode (right).

Fig. 8. Separation of modes for different applied axial magnetic fields when
the length of the transparent cathode is 20 cm. This is for α = 12.5° and
β = 32°.

70% with gigawatt level output power when applied voltage
from 375 to 450 kV, and when only considering the electronic
efficiency, it can be kept around 70% with applied voltage
V ∼ 400 ± 50 kV (Fig. 10).

The 12-cavity MDO with single-stepped cavities is a com-
plex oscillator where many different operating modes may
exist. The microwave generation originates from noise, which
is the sum of eigenmodes with random amplitudes and phases.
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Fig. 9. Left: output power of TE31 mode generation when B = 0.34 T.
Right: spectrum of generation with f = 2.209 GHz. This is for configuration
α = 12.5° and β = 32° with a solid cathode.

Fig. 10. Output power and electronic efficiency variance with applied voltage.

Fig. 11. Top: output power pulse (left), anode current pulse (middle),
and spectrum of 10-ns duration voltage pulse for a transparent cathode at
B = 0.40 T (right). Middle: output power pulse (left), anode current pulse
(middle), and spectrum of 10-ns duration voltage pulse for a transparent
cathode at B = 0.41 T (right). Bottom: output power pulse (left), anode
current pulse (middle), and spectrum of 10-ns duration voltage pulse for a
solid cathode at B = 0.34 T (right).

When 400-kV voltage pulse of 10-ns duration is applied, when
magnetic field B = 0.40 T is chosen a little far from neighbor
modes boundary B = 0.42 T, the PIC simulation shows the
output power can be as high as 1 GW with 5-ns pulsewidth
(Fig. 11, top) driven by a transparent cathode; and when
magnetic field B = 0.41 T is chosen, the PIC simulation shows
the output power can be as high as 1 GW with 4-ns pulsewidth

Fig. 12. Frequency spectrum for 12-cavity MDO with single-stepped cavities
when driven by a solid cathode in configuration (α = 12.5° and β = 32°)
with B = 0.38 T.

(Fig. 11, middle) driven by a transparent cathode while driven
by a solid cathode, choosing a magnetic field B = 0.34 T
away from the boundary magnetic field B = 0.42 T, the PIC
simulation shows the output power can be as high as 1 GW
with 3-ns pulsewidth (Fig. 11, bottom).

When the 12-cavity MDO with single-stepped cavities
driven by a solid cathode, choosing a magnetic field
B = 0.38 T near boundary B = 0.42 T compared with
B = 0.34 T, the spectrum in Fig. 12 shows mode competition
seriously. The PIC simulation shows that, for short voltage
pulse, the transparent cathode is more advantageous than
solid cathode when considering high output power and clean
operation spectrum.

This is for the configuration α = 12.5° and β = 32 using
transparent cathode and solid cathode with 10-ns duration
voltage pulse.

IV. CONCLUSION

We have demonstrated in PIC simulations the operation of
a 12-cavity MDO with single-stepped cavities replacing the
tapered cavities that the cavity volume is increased along with
the interaction space. We found that the electronic efficiency in
this magnetron can be as high as 70% at gigawatt output power
level. In addition, without loss of generality, for α = 12.5° and
β = 32°, the electronic efficiency can be kept around 70% with
voltage from 375 to 450 kV with gigawatt level output power.
This means the 12-cavity MDO with single-stepped cavities
with a little voltage tolerance, and its efficiency can be as
high as 70%. When using a 10-ns duration applied voltage
pulse for 12-cavity MDO with single-stepped cavities, the
output power is as high as 1 GW. For the same configuration
parameters of the MDO, as shown in Fig. 1, given the same
cathode radius and cathode length, the transparent cathode is
more robust to the disturbances and has a wider range of
operating modes as compared with the solid cathode. The
research described in this paper allows for the possibility of
using a 12-cavity MDO with a higher power pulse to study
mode switching phenomena. In addition, the work in this paper
provides reference for relativistic magnetron mode selection
or mode switching experiments when defining the boundary
between magnetron operating modes.



LIU et al.: OPERATION CHARACTERISTICS OF 12-CAVITY RELATIVISTIC MAGNETRON 3287

REFERENCES

[1] M. Liu, C. Liu, and E. Schamiloglu, “A6 relativistic magnetron using
a single-step cavity with diffraction output,” in Proc. IEEE 19th PPPS
Conf., San Francisco, CA, USA, Jun. 2013, pp. 1–5.

[2] M. Fuks and E. Schamiloglu, “Rapid start of oscillations in a mag-
netron with a ‘transparent’ cathode,” Phys. Rev. Lett., vol. 95, no. 20,
pp. 205–101, Nov. 2005.

[3] G. B. Collins, Microwave Magnetrons. New York, NY, USA:
McGraw-Hill, 1948.

[4] M. Daimon, K. Itoh, G. Imada, and W. Jiang, “Experimental demonstra-
tion of relativistic magnetron with modified output configuration,” Appl.
Phys. Lett., vol. 92, no. 19, p. 191504, 2008.

[5] M. Daimon and W. Jiang, “Modified configuration of relativistic mag-
netron with diffraction output for efficiency improvement,” Appl. Phys.
Lett., vol. 91, no. 19, pp. 191503-1–191503-3, 2007.

[6] A. Palevsky and G. Bekefi, “Microwave emission from pulsed relativistic
e-beam diodes. II. The multiresonator magnetron,” Phys. Fluids, vol. 22,
no. 5, pp. 986–996, 1979.

[7] G. Bekefi and T. J. Orzechowski, “Giant microwave bursts emitted from
a field-emission, relativistic-electron-beam magnetron,” Phys. Rev. Lett.,
vol. 37, no. 6, pp. 379–382, Aug. 1976.

[8] R. W. Lemke, T. C. Genoni, and T. A. Spencer, “Three-dimensional
particle-in-cell simulation study of a relativistic magnetron,” Phys.
Plasma, vol. 6, no. 2, pp. 603–613, 1999.

[9] R. W. Lemke, T. C. Genoni, and T. A. Spencer, “Effects that limit
efficiency in relativistic magnetrons,” IEEE Trans. Plasma Sci., vol. 28,
no. 3, pp. 887–897, Jun. 2000.

[10] R. W. Lemke, T. C. Genoni, and T. A. Spencer, “Investigation of rising-
sun magnetrons operated at relativistic voltages using three-dimensional
particle-in-cell simulation,” Phys. Plasma, vol. 7, no. 2, pp. 706–714,
2000.

[11] N. F. Kovalev et al., “High-power relativistic 3-crn magnetron,” Solve
Tech. Phys. Lett., vol. 6, no. 4, pp. 197–198, Apr. 1980.

[12] T. A. Treado et al., “Operating modes of relativiastic rising-sun and
A6 magnetron,” IEEE Trans. Plasma Sci., vol. 16, no. 2, pp. 237–248,
Apr. 1988.

[13] D. J. Kaup, “Theoretical modeling of an A6 relativistic magnetron,”
Phys. Plasma, vol. 11, no. 6, pp. 3151–3164, 2004.

[14] R. M. Gilgenbach, Y. Y. Lau, D. M. French, B. W. Hoff, M. Franzi, and
J. Luginsland, “Recirculating planar magnetrons for high-power high-
frequency radiation generation,” IEEE Trans. Plasma Sci., vol. 39, no. 4,
pp. 980–987, Apr. 2011.

[15] T. A. Treado, R. A. Bolton, T. A. Hansen, P. D. Brown, and J. D. Barry,
“High-power, high efficiency, injection-locked secondary-emission mag-
netron,” IEEE Trans. Plasma Sci., vol. 20, no. 3, pp. 351–359, Jun. 1992.

[16] M. I. Fuks and N. F. Kovalev, “Relativistic magnetron with diffraction
output,” in Proc. Int. Conf. High-Power Electromagn., 1998, pp. 1–18.

[17] M. Fuks and E. Schamiloglu, “70% efficient relativistic magnetron
with axial extraction of radiation through a horn antenna,” IEEE Trans.
Plasma Sci., vol. 38, no. 6, pp. 1302–1312, Jun. 2010.

[18] M. Liu, C. Michel, S. Prasad, M. Fuks, E. Schamiloglu, and C. Liu, “RF
mode switching in a relativistic magnetron with diffraction output,” Appl.
Phys. Lett., vol. 97, no. 25, pp. 251501-1–251501-3, 2010.

[19] M. Liu et al., “Annealing effects on CoFeB-MgO magnetic tunnel
junctions with perpendicular anisotropy,” J. Appl. Phys., vol. 110, no. 1,
p. 033304, 2011.

[20] M. Liu, M. Fuks, E. Schamiloglu, and C. Liu, “Frequency switching
in a 12-cavity relativistic magnetron with axial extraction of radiation,”
IEEE Trans. Plasma Sci., vol. 40, no. 6, pp. 1569–1574, Jun. 2012.

[21] B. Goplen, L. Ludeking, D. Smithe, and G. Warren, “User configurable
MAGIC code for electromagnetic PIC calculations,” Comput. Phys.
Commun., vol. 87, nos. 1–2, pp. 54–86, May 1995.

Meiqin Liu (M’–) was born in Shaanxi, China, in
1984. She received the B.S. and Ph.D. degrees in
electronics engineering from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2006 and 2012, respectively.

She is currently a Lecturer and conducts research
in high-power microwave devices with Xi’an Jiao-
tong University. From 2009 to 2011, she was a Vis-
iting Scholar with the Department of Electrical and
Computer Engineering, University of New Mexico,
Albuquerque, NM, USA.

Chunliang Liu was born in Shaanxi, China, in 1959.
He received the B.S. and M.S. degrees in electronics
engineering from Xi’an Jiaotong University, Xi’an,
China, and the Ph.D. degree in accelerator physics
and application from the China Institute of Atomic
Energy, Beijing, China, in 1982, 1987, and 1992,
respectively.

He is currently a Professor of electronics engi-
neering with Xi’an Jiaotong University, where he
serves as the Director with the Key Laboratory of
Physical Electronics and Devices of the Ministry of

Education. He actively conducts research in flat panel display devices, plasma
discharge devices, and high-power microwave devices. He has co-authored
two books Principles of Charged Particle Beam Transport (Xi’an Jiaotong
University Press, 1991) and Electron and Ion Beam Physics (Xi’an Jiaotong
University Press, 2001), more than 100 papers, and 16 issued or pending
patents.

Dr. Liu is a member of the Society for Information Display, and a Senior
Member of the Chinese Institute of Electronics and the Chinese Society of
Vacuum.

Mikhail I. Fuks (SM’–) was born in Nizhny Nov-
gorod (former Gorky), Russia. He received the Ph.D.
degree in physical electronics from the Institute of
Applied Physics (IAP), Russian Academy of Sci-
ence, Nizhny Novgorod.

He joined the Gorky Radio Physical Research
Institute, Nizhny Novgorod, in 1963, and since 1977,
he has been at IAP in high-power microwave elec-
tronics as a Scientist and then as a Senior Scientist
and the Head of the Research Group. Since 1999,
he has been in USA in radar technology sponsored

by the Ballistic Missile Defense Organization. In 2000, he joined the Elec-
trical and Computer Engineering Department, University of New Mexico,
as a Research Professor. His current research interests include forming and
transportation of electron beams, the development and application of various
types of high-power microwave sources, and electrodynamic systems.

Edl Schamiloglu (M’90–SM’95–F’02) was born in
the Bronx, NY, USA, in 1959. He received the B.S.
and M.S. degrees from the School of Engineering
and Applied Science, Columbia University, New
York, NY, USA, and the Ph.D. degree in applied
physics (minor in mathematics) from Cornell Uni-
versity, Ithaca, NY, USA, in 1979, 1981, and 1988,
respectively.

He was an Assistant Professor of electrical and
computer engineering with the University of New
Mexico, Albuquerque, NM, USA, in 1988, where

he is currently a Professor of electrical and computer engineering and where
he directs the Pulsed Power, Beams, and Microwaves Laboratory. He lectured
at the U.S. Particle Accelerator School, Harvard University, Cambridge, MA,
USA, in 1990, and at the Massachusetts Institute of Technology, Cambridge,
in 1997. He co-edited, together with R. J. Barker, Advances in High Power
Microwave Sources and Technologies (Piscataway, NJ: IEEE, 2001), and
he has co-authored, together with J. Benford and J. Swegle, High Power
Microwaves—2nd ed. (New York, NY: Taylor & Francis, 2007). He co-
edited the JULY 2004 SPECIAL ISSUE OF THE PROCEEDINGS OF THE
IEEE ON PULSED POWER: TECHNOLOGY AND APPLICATIONS. He has co-
authored more than 85 refereed journal papers and 145 reviewed conference
papers, and he is the holder of four patents. He is a Senior Editor of the
IEEE TRANSACTIONS ON PLASMA SCIENCE. His current research interests
include the physics and technology of charged particle beam generation and
propagation, high-power microwave sources, plasma physics and diagnostics,
electromagnetic wave propagation, pulsed power, and complex systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


