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Sheared-Flow-Stabilized Z-Pinch Modeling
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Abstract— The Kadomtsev pinch, namely, the Z-pinch profile
marginally stable to interchange modes, is revisited in light of
observations from axisymmetric magnetohydrodynamics (MHD)
modeling of the fusion Z-pinch experiment (FuZE) sheared-
flow-stabilized Z-pinch experiment. We show that Kadomtsev’s
stability criterion, cleanly derived by the minimum energy
principle but of opaque physical significance, has an intu-
itive interpretation in the specific entropy analogous to the
Schwarzschild–Ledoux criterion for convective stability of adi-
abatic pressure distributions in the fields of astrophysics,
meteorology, and oceanography. By analogy, the Kadomtsev
profile may be described as magnetoadiabatic in the sense
that plasma pressure is polytropically related to area-averaged
current density from the ideal MHD stability condition on the
specific entropy. Furthermore, the nonideal stability condition
of the entropy modes is shown to relate the specific entropy
gradient to the ideal interchange stability function. Hence,
the combined activity of the ideal interchange and nonideal
entropy modes drives both the specific entropy and specific
magnetic flux gradients to zero in the marginally stable state. The
physical properties of Kadomtsev’s pinch are reviewed in detail
and following from this the localization of pinch confinement,
i.e., pinch size and inductance, is quantified by the ratio of
extensive magnetic and thermal energies. In addition, results and
analysis of axisymmetric MHD modeling of the FuZE Z-pinch
experiment are presented where pinch structure is found to
consist of a near-marginal flowing core surrounded by a super-
magnetoadiabatic low-beta sheared flow.

Index Terms— Accelerators, current distribution, entropy,
fusion reactors, magnetohydrodynamics (MHD), plasma pinch,
plasma stability.

I. INTRODUCTION

THE self-field plasma confinement equilibrium, popularly
known as the Z-pinch, magnetically confines plasma
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pressure without external magnetic coils. Studies during the
early days of plasma physics identified magnetohydrodynamic
(MHD) instabilities in pinches of axisymmetric and kink types,
and the axisymmetric modes later fell under the broader
category of interchange-type modes, including, for example,
the tokamak ballooning modes. In fact, Kadomtsev’s seminal
article “Hydrodynamic stability of a plasma” [1] demon-
strated the existence of a Z-pinch equilibrium marginally
stable to the interchange modes using the method of virtual
displacement and the energy principle. For this reason, this
equilibrium will be referred to here as “Kadomtsev’s pinch.”
Kadomtsev’s article noted that the interchange modes are
analogous to buoyancy-driven modes in stratified fluids (e.g.,
Rayleigh–Taylor type) and expressed the stability condition
in terms of the logarithmic pressure gradient as a rational
function of plasma β and adiabatic index γ . On the other
hand, the same analysis concluded that the kink modes of
azimuthal mode number m = 1 were unstable for these
interchange-stabilized distributions (or any other static distri-
bution, for that matter).

In the years since Kadomtsev’s original work, the com-
munity’s understanding of stratified buoyant fluids and
magnetohydrodynamic interchange modes has considerably
deepened. This deepening has centered around two somewhat
complex elements, Namely, the role of entropy gradients and
sheared flows. In revisiting Kadomtsev’s pinch, this work is
intended to fill out the analogy between stable stratification
and interchange stability, to clarify the role of specific entropy
in defining the marginally stable state, and to shed light
on the effect of sheared flow on interchange stability with
evidence from axisymmetric resistive MHD simulations of
zap energy’s FuZE device. The intention is to reinterpret
Kadomtsev’s stability criterion from the somewhat nebulous,
“that the pressure does not fall off too rapidly with radius,”
expressed by the logarithmic pressure gradient as a function
of local plasma β with an opaque physical significance, to
an intuitive formulation in terms of the specific entropy and
specific magnetic flux gradients.

This article is organized as follows. Section II reviews
buoyant convection in fluid dynamics, the influence of sheared
flows on interchange stability, and the Kadomtsev profile
in the literature. A theoretical exposition on Kadomtsev’s
pinch follows in Section III, which first reviews the closely
related phenomena of the adiabatic atmosphere and isentropic
flows. Kadomtsev’s pinch is studied in a physically motivated
approach where the stability condition is expressed as a
zero gradient of what some authors have termed magnetic
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entropy [2]. The condition admits a first integral of the force
balance which rearranges to Kadomtsev’s implicit pressure
profile, noted as analogous to meteorology’s adiabatic pressure
profile. Analytic properties are studied for the adiabatic indices
γ = 2, γ = 5/3, and γ → 1. The analysis is applied
to the unity average beta concept in Section III-G and used
to quantify pinch radius as a function of the ratio of total
magnetic-to-thermal energies. Finally, Section IV considers
idealized theory for the flow velocity of a Z-pinch downstream
from a coaxial accelerator and presents 2-D axisymmetric sim-
ulations of the FuZE experiment demonstrating self-organized
flow pinch states where Kadomtsev’s pinch profile plays a key
role.

II. INTERCHANGE MODES IN THE LITERATURE

The hydrodynamic stability of stratified fluids is an impor-
tant topic in all the fluid dynamic disciplines with convective
motions, including terrestrial and astrophysical meterology [3],
oceanography [4], stellar astrophysics [5], [6], and plasma
physics where convective instabilities arise as a category of
ideal MHD instability known as interchange modes [7]. In the
original summary of ideal MHD stability analysis through
the energy method, Kadomtsev [1] briefly observed that the
physics of the interchange mode were analogous to that of
general buoyant stratification. In Section III, this analogy is
recapitulated and the detailed mathematics worked out.

On the other hand, the situation can first be summarized
as follows. Like many fluid dynamical topics, convective
instability is known as a complex phenomenon with a vari-
ety of control factors such as chemical composition [8],
sheared flow [9], [10], radiation [11], magnetization [12],
external heating (Rayleigh–Bénard), discontinuous profiles
(Rayleigh–Taylor), and impulsive forcing by shock waves
(Richtmyer–Meshkov). The situation with flows is far from
simple, since while the interchange is stabilized by sheared
flow, the second derivative of transverse velocity is destabi-
lizing (Kelvin–Helmholtz), and the question of stability under
shear is rather complex due to the prevalance of nonmodal
solutions in the initial-value problem [13], the related topic of
stabilization of pseudomodes in the pseudospectrum [14], and
3-D perturbations [15]. Sheared flows, however, are generally
understood to be stabilizing and to allow the persistance
of superadiabatic profiles across the fluid dynamic disci-
plines [16]. Section IV presents some simulation results and
commentary on the role of sheared flows on the Kadomtsev
Z-pinch profile.

Regardless of the various complexities discussed above,
fortunately the stability of a continuously stratified medium
subject only to pressure and buoyancy is simple. The
marginally stable profile in atmospheric meterology and astro-
physics, known as the adiabatic atmosphere, is characterized
by a vanishing gradient of the specific entropy s such that
∇s ·∇ p = 0, a result known as Schwarzschild’s criterion [17].
This condition is widely used in astrophysics [18], metere-
ology [19], and plasma physics [20], [21]. The fundamental
reason for the specific entropy to characterize the marginal
state is that the displacement frequency due to buoyancy,

known as the Brunt–Väisälä frequency, is a function only
of the invariants of motion along the displacement [22].
As the conserved quantity in an adiabatic displacement is
the specific entropy, the local buoyancy frequency is a direct
measure of the specific entropy gradient. In Section III-B,
we will see how Kadomtsev’s pressure profile is precisely
the analogous “adiabatic” profile for the interchange-stable
pinch, which is characterized by the invariance of a quantity
which Pastukhov [2] and Kesner [7] refer to as magnetic
entropy. It seems to the authors of this article that this entropy
terminology does not correspond with that of Minardi [23],
which is properly developed from an information-theoretic
perspective on the distribution of electric current. Therefore
this article avoids the terminology of magnetic entropy for
the defining invariant of Kadomtsev’s pinch, which is instead
referred to as the quantity sz .

The Kadomtsev-stable profiles make a frequent appearance
in the Z-pinch literature. Kadomtsev profiles are observed as
attractors in 2-D MHD simulations [24] and are used as initial
conditions in simulations of sheared-flow stabilization [25],
[26]. Although the Kadomtsev-stable profile is strictly unstable
to the m = 1 kink mode, under certain conditions it is observed
experimentally. Chiefly, these are the hardcore Z-pinch and
levitated dipole experiments which fix the magnetic axis with
a conductor [27]. Furthermore, Kadomtsev’s pinch has been
invoked to explain data in compressional Z-pinch experi-
ments [28], [29] and supporting theory [30]. Finally, it is worth
noting that also in astrophysics, meterology, and oceanog-
raphy, adiabatic profiles are often invoked alongside other
organizing principles, and sometimes do not explain obser-
vations at all, due to the myriad of complications discussed
above. For this reason, the understanding of pressure, density,
and temperature profiles in these disciplines remains an active
research topic, as it certainly does in the field of magnetic
plasma confinement. On the topic of self-organization in
magnetic confinement with flows, the reader is pointed to
work on double Beltrami fields and multiple-region relaxed
magnetohydrodynamics [31], [32], [33], [34].

III. PROPERTIES OF KADOMTSEV’S PINCH

A. Analogy to Stable Stratification in the Adiabatic
Atmosphere

Kadomtsev showed that the marginally stable pinch profile
was implicitly a function of the local value of β = p/pB with
p the thermal pressure and pB the magnetic pressure

p0

p
=

(
1 +

γ − 1
γ

2
β

)γ /(γ−1)

. (1)

Note that β is often defined in some integral manner, as dis-
cussed further in Section III-G, yet this quantity is the local
plasma β. Now, to make the analogy to stable stratification
in the atmosphere clear, consider the static equilibrium of a
stratified gas of mass density ρ in a gravitational potential 8g

−∇ p − ρ∇8g = 0. (2)

Recall that the specific entropy s of a perfect gas is given
by s = cv ln(p/ργ ) with cv the specific heat at con-
stant volume and γ the adiabatic index. Now noting that
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(p/p0) = (ρ/ρ0)
γ es/cv with (p0, ρ0) reference constants

making the logarithmic argument dimensionless, the pressure
gradient is

∇ p = c2
s ∇ρ + p∇s/cv (3)

with c2
s = γ p/ρ the local speed of sound squared. Substituting

into (2) gives another form of equilibrium

c2
s ∇ρ = −ρ∇8g − (γ − 1)ρT ∇s. (4)

Using the Schwarzschild condition ∇s = 0 means that the
marginal state satisfies the equation

c2
s

dρ
dz

= −ρ
d8g

dz
. (5)

The solution to (5) is called the adiabatic atmosphere. Note
that in the isentropic solution the sound speed c2

s = c2
s (r)

is variable unless one takes the isothermal limit of γ → 1.
Expressed solely as a function of density for a particular
adiabat, the sound speed is given by

c2
s = c2

s0

(
ρ

ρ0

)γ−1

(6)

where c2
s0 = γ RT0. We note that specifying ρ0 and T0 is

sufficient to specify the constant es0/cv defining the adiabat of
the atmosphere, since any constant specific entropy s0 satisfies
the stability constraint. Defining ρ̃ = ρ/ρ0, we obtain the
separable differential equation

ρ̃γ−2 dρ̃
dz

= −c−2
s0

d8g

dz
(7)

which with the initial condition ρ(0) = ρ0 integrates into

ρ

ρ0
=

(
1 −

γ − 1
γ

m8g

kB T0

)1/(γ−1)

(8)

with the corresponding pressure solution p = p0(ρ/ρ0)
γ . It is

clear that Kadomtsev’s pinch profile given by (1) is closely
related to this pressure profile. Considering the isothermal limit
γ → 1 provides us with the physical meaning of this solution

ρ = ρ0 exp
(

−
m8g

kB T0

)
(9)

as a Boltzmann distribution. For realistic values of γ , the
isentropic solution is not isothermal, yet the marginal state is
still nearly Boltzmann-distributed, albeit in the distribution’s
less familiar limiting form of ex

= limn→∞(1 + x/n)n .
Therefore, in this work, we refer to the form of (8) as the
frozen Boltzmann distribution. In the physical and mathemat-
ical literature, distributions in the form of (8) are referred to
as κ- or q-Gaussian distributions and maximize a Tsallis-type
entropy functional for the number density distribution [35].

Finally, observe that (8), the adiabatic atmosphere, is a
first integral of the momentum equation, and thus expresses
constancy of specific enthalpy

cpT +8g = cpT0 (10)

in the same way as the pressure–Mach number relationship
for compressible isentropic (∇s = 0) flow

p0

p
=

(
1 +

γ − 1
γ

mv2/2
kB T0

)γ /(γ−1)

(11)

is a rearranged form of a constant specific enthalpy

cpT +
1
2
v2

= cpT0 (12)

which similarly limits as γ → 1 to a Boltzmann distribution in
the kinetic energy. In these particular cases, the adiabatic equi-
librium as a frozen Boltzmann distribution can be understood
to consist of both constant energy and entropy per particle,
completely determining the distribution provided that there are
only two forms of energy. Yet the ideal MHD picture is more
complex as there are three forms of energy.

B. Pinch Marginal Stability in Thermodynamic Variables

In this section, the marginal stability condition of the cylin-
drical plasma pinch to axisymmetric interchange modes is cast
as a condition on the specific entropy and the specific magnetic
flux gradients. This reformulation results in a particularly
simple form of the stability criterion and the marginally stable
state, in particular in light of the activity of the entropy modes
discussed in Section III-C. The classical method to determine
magnetohydrodynamic stability is accomplished analytically
from the minimum energy principle provided that the force
operator of a virtual displacement is self-adjoint [36]. Accord-
ing to this intuition, the reader is reminded of the equivalence
in thermodynamics between the principle of minimum energy
and the principle of maximum entropy [37]. Now, it is well-
known that given such a virtual displacement of the static
MHD plasma in equilibrium, the force operator is self-adjoint.
By this property, Kadomtsev showed that the energy of a
virtual displacement of mode m = 0 was bounded in time
provided that the plasma pressure gradient satisfied

−
d ln p
d ln r

≤
4γ

2 + γβ
(13)

and that this is both necessary and sufficient for stability of
the static Z-pinch [1]. The condition may be recast in thermo-
dynamic variables by considering the radial force balance

dp
dr

= −
Bθ
µ0r

d
dr
(r Bθ ) = −

1
r2

d
dr
(r2 pB). (14)

Next consider the thermodynamic identity dh = vdp + T ds,
with v specific volume, written in the form

dh
dr

=
1
ρ

dp
dr

+ T
ds
dr

(15)

where h = (γ /(γ − 1))(p/ρ) is the specific enthalpy and
s = cv ln(p/ργ ) is the specific entropy with specific heat at
constant volume cv = R/(γ−1). Note that in all what follows,
T signifies the total plasma temperature T = Ti +Te, since the
distinction between the two temperatures is beyond the scope
of ideal MHD. Equation (15) is an algebraic identity between
the change in enthalpy, the pdv work, and the reversible non-
pdv work expressed as T ∇s. In this sense as an identity,
an analogous identity holds for the magnetic body force

d
dr

(
2

pB

ρ

)
=

1
ρr2

d
dr
(r2 pB)+

pB

ρ

d
dr

ln
(

pB

ρ2r2

)
. (16)

We recognize the specific magnetic enthalpy as 2pB/ρ and the
specific Laplace body force as ( j⃗ × B⃗)r/ρ, leading us to label
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the quantities Tm ≡ pB/(ρR) as a “magnetic temperature” and
sm ≡ R ln(pB/(ρ

2r2)) as a “magnetic entropy.” In fact, sm is
the specific magnetic flux (or frozen-in flux) of Alfven’s law
applied to the axisymmetric pinch

d
dt

(
Bθ
ρr

)
= 0. (17)

It is distinct from both Pastukhov’s notion of magnetic entropy
in [2] and Minardi’s magnetic entropy concept based in
information theory [38]. However, it is clear that in mag-
netohydrodynamics, the specific flux B/ρ plays the role of
an entropic coordinate in the sense of (16). Furthermore,
summation of (15) and (16) gives the thermodynamic law for
the magnetofluid

d
dr

(
cpT + 2RTm

)
−

1
ρ

d
dr
(p + pB)

= T
ds
dr

+ Tm
d
dr

(
R ln

(
pB

ρ2

))
(18)

as if “γm = 2,” a useful mnemonic. It seems appropriate to
point out here that the specific flux B/ρ plays a double role as
an entropic thermodynamic coordinate in the sense of (18) and
as a vorticity in 3-D flow dynamics through the generalized
(or canonical) vorticity [39].

Now with the variables s and sm , we eliminate pressure
from (14) in favor of the variables (ρ, s, sm)

p = ργ es/cv (19)

pB = ρ2r2esm/R (20)

and after some algebra obtain a differential equation for ρ

c2 dρ
dr

= −4
pB

r
−

1
cv

p
ds
dr

− pB
dsm

dr
(21)

where c2
= c2

s + c2
a is the local magnetosonic speed.

Equation (21) is analogous to (4) with the difference that
the body force ∇8g is due to the geometric term 4pB/r of
field line curvature and there are two thermodynamic variables
(s, sm). Then dividing by magnetic pressure and replacing the
density gradient by the gradient of pressure, we obtain a form
of the static equilibrium as (with cp = γ cv)

K (r) ≡
d ln p
d ln r

+
4γ

2 + γβ
=

2
2 + γβ

d
d ln r

(
s
cp

−
sm

2R

)
. (22)

We recognize the left-hand side as Kadomtsev’s stability
function K (r). Thus, the right-hand side is equivalent in
equilibrium. Furthermore, the logarithms combine to define
sz as

sz

R
≡

s
cp

−
sm

2R
= ln

(
p

pγ /2B

rγ
)

(23)

so we write the marginal condition K = 0 as

dsz

dr
= 0. (24)

In this way, the Z-pinch is stably stratified to axisymmetric
modes through (24) in a similar way as the stably stratified
atmosphere, and the development of weak instability acts to

bring the plasma toward this marginal state, as in the quasilin-
ear theory of [40]. For example, for the axisymmetric-stable
Bennett pinch of γ = 2, the invariant sz defines the Z-pinch
adiabat through βr2

= esz0 , and in the incompressible,
isothermal limit γ = 1, one has β Ienc = esz0 where Ienc
is the axial current enclosed at radius r . In general, though,
this relationship can be expressed as the statement that p ∼

(Bθ/r)γ ∼ (Ienc/πr2)γ , with equality given some constants
which absorb into the adiabatic constant esz0 . The quantity
Ienc/πr2

≡ ⟨ jz⟩ is in fact the area-averaged current density, so
the marginal state reflecting a vanishing gradient of sz has

p
p0

=

(
⟨ jz⟩

j0

)γ
(25)

which is evocative of the usual adiabatic condition p = ργ ,
although the condition is nonlocal as the local value of
pressure depends on the distribution of current within the
plasma column up to that radius for p = p(r). In analogy
to meteorology, we refer to a pinch whose pressure exceeds
the polytropic relationship of (25) as super-magnetoadiabatic,
in which case it is convectively unstable to magnetic flux
interchange, and the opposite case as sub-magnetoadiabatic.
In this terminology, Kadomtsev’s pinch is the magnetoadia-
batic pinch. Just as in metereology, this terminology is simple
but potentially misleading as the adiabatic atmosphere is not
“adiabatic,” but rather isentropic, and the magnetoadiabatic
pinch is also not “adiabatic,” but rather the specific magnetic
flux sm is tied to the specific entropy s such that ∇sz = 0.

In other words, (23) is a single equation in the two variables
s and sm , and thus any entropy profile s = s(r) such that
∇sm = 2(γ − 1)/γ∇s represents a Kadomtsev pinch. This
freedom is what is usually understood to be the freedom in the
choice of temperature and density profiles for the equilibrium
pinch. Two situations of note are the adiabatic pinch, where
∇s = 0, and the isothermal pinch where p/ρ = const. In
the former situation, the adiabatic pinch has both ∇s = 0,
and thus, ∇sm = 0, so that density varies radially as ρ ∼

⟨ jz⟩. In the isothermal pinch, on the other hand, one finds that
ρ ∼ ⟨ jz⟩γ . Both the cases are magnetoadiabatic and therefore
marginally stable to interchange.

In the context of the fusion deuterium-tritium (DT) neutron
yield, for temperatures up to approximately 5 keV, Ẏ ∼

n2T 4
∼ p2T 2, such that for relatively low T more concen-

trated temperatures are advantageous for the same pressure or
supplied current, in which case the adiabatic pinch temperature
profile appears to be advantageous. On the other hand, around
50 keV the reaction rate becomes independent of temperature,
making more concentrated density necessary for high-yield
fusion conditions. Indeed, high densities are required for
Q > 1 conditions in a sheared-flow-stabilized Z-pinch [41], in
which case the isothermal profile is more desirable. However,
nonideal instabilities known as entropy modes grow to relax
∇s → 0, making such instabilities important to model Q > 1
Z-pinches.

C. Entropy Modes

Section III-B found that the axisymmetric interchange insta-
bility drives the pinch toward a marginal state where the
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specific flux gradient ∇sm is tied to the specific entropy gra-
dient ∇s through the interchange marginal stability condition.
That the specific entropy is unconstrained, and consequently
also the concentration of temperature suggests that some
critical physics may be missing from this picture of convective
relaxation. Kadomtsev in fact also determined this condition,
building on work by a collaborator Y.A. Tserkovnikov, to be
a type of drift instability caused by the oppositely directed
diamagnetic heat fluxes of electrons and ions in the inhomo-
geneous plasma pinch [42].

Furthermore, Kadomtsev’s article anticipated that such drift
modes, which leave thermal pressure unperturbed to first order
with varying temperature and density, were in fact entropy
fluctuations working to relax the temperature gradient, and
hence are termed entropy modes. Unfortunately, the depen-
dence on γ was suppressed in Kadomtsev’s article in favor of
the numerical factor of 5/3. The important article on numerical
entropy mode modeling by Angus et al. [43] restored the γ -
dependence and gives the entropy mode stability condition

d ln T
d ln r

≤ 1 +

(
2γ − 1

2γ
+
β

4

)
d ln p
d ln r

. (26)

Noting that the specific entropy increment is given in terms
of logarithmic temperature and pressure increments by

1
R

ds =
γ

γ − 1
d ln T − d ln p (27)

after some simple algebra one can show that (26) combined
with (13) simplifies to the condition

1
cp

ds
d ln r

≤
2 + γβ

4γ
K (r) H⇒

1
cv

∇s ≤
1
2
∇sz . (28)

When relaxed to the marginally stable state, the right-hand side
is identically zero from (22), giving ∇s = 0 for the specific
entropy gradient. In summary, the Z-pinch entropy modes can
be understood to relax the gradient of specific entropy, which
combined with the interchange mode activity yields simple
estimates for the fully relaxed profile as ∇s = ∇sm = 0.

D. Z-Pinch Buoyancy Frequency

As pointed out in [42] and [43], the radial displacement
frequency of a Z-pinch plasma parcel is found by linear
analysis assuming purely radial displacement to be

ω2
=

2c2
s

r2 K (r) (29)

with K (r) the Kadomtsev stability function. It would then
appear that the thermal sound speed is principally responsible
for the growth of perturbations. However, using (22) for ∇sz ,
the sonic speed c2

s = γ p/ρ, Alfven speed c2
a = 2pB/ρ, and

magnetosonic speed c2
= c2

s + c2
a gives a form more akin to

the usual Brunt–Väisälä frequency in cylindrical coordinates

ω2
=

2
r

c2
ac2

s

c2

d
dr

( sz

R

)
. (30)

Thus, the speed appears as a combination of both the charac-
teristic velocities. To bring out the character of this quantity
a bit, we can consider the case of an isothermal Bennett

pinch with γ = 2, where c2
a = 2(r/rp)

2(kT/m) and c2
=

γ (kT/m)(1 + (2/γβ))

ω2
B ≈

r/rp

1 + (r/rp)2
c2

s
d
dr

( sz

R

)
(31)

such that the frequency of interchange is potentially greatest
at the pinch radius r = rp. Note that (30) is not singular
as c2

a always grows at least quadratically for center-peaked
currents.

E. Marginal Pressure Distribution

Substituting the invariant sz into the pressure balance and
integrating produces an energy relationship

γ

γ − 1

(
p
p0

)(γ−1)/γ

+ 2
(

E I

P0

)1/2

=
γ

γ − 1
(32)

with E I = (µ0/8π)I 2
enc and P0 = p0πr2

p. Each term represents
fluid or magnetic-specific enthalpy under adiabatic or flux-
conserving conditions. That is, let the enthalpy of a plasma
parcel isentropically brought to its reference pressure p0 be
the potential enthalpy h0

f ≡ cpT (p0/p)(γ−1)/γ , and let the
potential magnetic enthalpy h0

m ≡ 2RTm(P0/E I )
1/2 be the

magnetic enthalpy when brought to the reference magnetic
pressure under constant specific flux. Then (32) is

h f

h0
f

+
hm

h0
m

=
cp

R
. (33)

Equation (33) has the significance that specific enthalpy is
radially uniform for the adiabatic (∇s = 0) pinch, and
otherwise varies according to the particular entropy gradient
of the profile.

Now using the marginal stability condition as a differential
equation between β and r , we observe that βE1/2

I = (1 +

2(γ − 1)/γβ)−1, so that (32) rearranges to

p0

p
=

(
1 +

γ − 1
γ

2
β

)γ /(γ−1)

. (34)

To reveal the physical character of the distribution, consider
the limit γ → 1 where the pressure varies as p = p0e−2/β , or

p = p0 exp
(

−
mv2

a

kB T

)
(35)

where va is the Alfven speed and T is the total temperature.
In other words, the pressure is a frozen Boltzmann distribution
in terms of relative magnetic-to-thermal energy analogous
to the isentropic relationship for compressible flow. Then
substituting (34) into the invariant sz , one obtains(

r
rp

)2

= β−1
(

1 +
γ − 1
γ

2
β

)(2−γ )/(γ−1)

. (36)

This relationship is an implicit relationship for β = β(r)
to calculate the pressure, magnetic field, and current density
profiles of the Kadomtsev-stable pinch.
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F. Special Cases of the Marginal Distribution

A few interesting cases present themselves for (34) and (36).
The radius–β relationship is explicitly invertible for three
cases of interest. Of course, the case γ = 2 obtains the
Bennett profile where (rp/r)2 = β. There is also the limit
γ → 1 where (rp/r)2 = βe−2/β which inverts using the
Lambert W function. In the particular case of γ = 5/3, (36)
is of the depressed cubic form

β3
−

(rp

r

)4
β −

4
5

(rp

r

)4
= 0 (37)

and thus possesses reasonably explicable roots for β = β(r).
A compact, explicit form particularly suitable for use in codes
comes from Viète’s form of the cubic root

β =

(rp

r

)2 2
√

3
cos

(
1
3

arccos

(
6
√

3
5

(
r
rp

)2
))

(38)

considered as a complex-valued function returning a real-
valued solution, which excludes the other complex-valued
and negative-valued cubic roots. From these considerations,
evidently local β at the pinch edge radius depends on γ . For
γ = 1 at the pinch radius rp, the solution to 2/β = e−1/β is
β(rp) = 2/W (2) ≈ 2.34 where W (r) is Lambert’s W func-
tion. If the pinch radius was rescaled by

√
2 (as suggested by

the relationship r2
p = λ2

D/4(c/ve) for the Bennett pinch [44]),
then the pinch-edge beta satisfies β(rp/

√
2)/2 = �−1

≈

1.763 where � is the Omega constant of the Lambert W
function. Transcendentals aside, evidently there is a tendency
toward greater β as γ → 1, and this is accomplished at the
expense of a larger specific heat for compression. Fig. 1 shows
the variation in pinch-edge radius β with adiabatic index γ .

In the infinite degree-of-freedom limit γ → 1, the pressure
has a simple explicit form in terms of the Lambert W function.
With 2/β = W (2(r/rp)

2), the Kadomtsev-stable pressure is

p(r) = p0 exp
(
−W (2(r/rp)

2)
)

(39)

and the profile for other values of γ ∈ (1, 2] can be understood
to limit between this form and the Bennett pinch whose
explicit pressure profile is p(r) = p0/(1 + (r/rp)

2)2. From
this, we note that the pinch-edge pressure is p = p0/4 for
the Bennett pinch and p = W (2)/2p0 ≈ 0.426p0 for the
γ → 1 limit. When pinch radius is rescaled by

√
2, then

at r = rp/
√

2, the pressure p = �p0 and the magnetic
pressure pB = �2 p0. We also note another application of the
invariant (32) as an implicit relationship for p = p(r) valid
for all γ as

γ

γ − 1

(
p
p0

)(γ−1)/γ

+ 2
(

r
rp

)2( p
p0

)1/γ

=
γ

γ − 1
. (40)

G. Pinch Radius for Marginally Stable Profiles

In this section, we demonstrate how the β = β(r) relation-
ship expressing the distribution of the magnetic energy per
thermal energy is closely connected to the general result for
the inductance of a current-carrying pinch, and in this way we
determine how the pinch’s radius is related to its total thermal
and magnetic energies. To begin, recall that Z-pinches confine

Fig. 1. Local plasma β = p/pB at the characteristic radius rp (i.e., the
pinch-edge beta) of the Kadomtsev-stable pinch increases as the adiabatic
index γ → 1. For the Bennett pinch, β = 1 at the pinch radius, and for
γ ∈ (1, 2] the pinch-edge β takes an intermediate value.

plasma with unity average β [45]. Precisely, the Bennett
relationship for self-magnetic confinement relates the self-
magnetic energy of axial current (µ0/8π)I 2

enc to the excess
thermal pressure contained within an area of cross-sectional
radius r

µ0

8π
I 2
enc(r) = πr2(⟨p⟩ − p(r)) (41)

where ⟨p⟩ ≡ (πr2)−1
∫ r

0 p(r ′)2πr ′dr ′ is the area-averaged
thermal pressure. Out to a radius where p → 0 (41) gives

⟨p⟩

pB(r)
= 1 (42)

with pB(r) the magnetic pressure at that radius. In this sense,
the average Z-pinch β is unity, and indeed nonzero axial
magnetic field results in a value less than unity. Essentially,
(41) has the significance that purely axial current ideally
confines an excess of thermal energy in an amount equal to
the current’s self-magnetic energy [46].

Of course, in addition to the self-magnetic energy of the
internal current, the total magnetic energy is fixed by the radius
of the return current as in a coaxial cable. In the context of the
internal conductor as a Z-pinch, with fixed outer radius and
variable inner radius, this is related to the spatial localization
of the confined thermal energy (i.e., the internal conductor
radius). By combining the physics for the inductance of a
coaxial conduit with the Bennett relationship, we find that the
Z-pinch radius is a function of a quantity for which both the
numerator and the denominator of (42) are averaged.

To demonstrate, we analyze the sharp pinch for simplicity
and then state results for some special cases of the Kadomtsev-
stable profiles. Consider a sharp pinch of radius rp contained
in a perfectly conducting wall of radius rw returning all the
current passed by the sharp pinch. In this situation, the profiles
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of thermal and magnetic pressures are given by

p =


p0, r < rp

0, rp < r < rw
0 r > rw

, pB =


0, r < rp

p0

(rp

r

)2
rp < r < rw

0 r > rw.
(43)

Now calculating the total thermal and magnetic energies
per unit length by integrating over all radii, we find a
thermal energy per unit length in the amount of PT =

p0πr2
p and likewise magnetic energy per unit length of PB =

p0πr2
p ln((rw/rp)

2). Now defining the ratio of linear pressure
to magnetic pressure as βm ≡ PT /PB (i.e., (42) with both the
numerator and denominator area-averaged), one has(

rp

rw

)2

= e−1/βm . (44)

Indeed, it is interesting to observe that the isothermal sharp
pinch size is Boltzmann distributed as exp(−((PB/N )/kB T ))
with N the linear density. The quantity βm measures the
spatial concentration of pinch energy according to the usual
physics of a coaxial conductor combined with the Bennett
relationship. Consequently, to localize the plasma in a small
radius, the parameter βm ≪ 1. For a fixed linear density
N = n0πr2

p with n0 the volumetric particle density, high
density requires a small pinch radius rp, and high density pinch
discharges are required for Q > 1 conditions [41]. Therefore,
the total magnetic energy of a Q > 1 Z-pinch discharge must
be large compared with the confined thermal energy. However,
we emphasize that this result occurs precisely because the
Z-pinch has unity average-β. That is, the local β at the pinch
edge is approximately unity, and most of the magnetic energy
occuring in such a low-βm Z-pinch discharge is localized as
either vacuum field or in a low-β edge plasma. Indeed, for
precisely this reason magnetically confined plasmas with axial
magnetic fields such that β is low everywhere consequently
require even greater quantities of magnetic energy for thermal
confinement.

The result r2
p ∼ e−1/βm holds asymptotically for the

Kadomtsev-stable Z-pinch profiles. Lacking a return current,
the total magnetic energy is divergent for all the values of γ .
However, the magnetic energy is small enough for r ≫ rp

that we may cut off the integral at the wall for a sufficient
approximation. In the case of the Bennett pinch, an exact
solution can be found, but since the cutoff is not valid for
rp ≈ rw, we approximate rp ≪ rw for(

rp

rw

)2

≈ e−1e−1/βm (45)

such that the diffuse Bennett pinch has a smaller radius than
a sharp pinch of equivalent thermal and magnetic energies,
being one e-folding factor smaller for the same value of
βm . A similar calculation of the Kadomtsev pinch for γ =

5/3 demonstrates the equivalent asymptotic behavior as a
function of βm with an additional benefit of approximately
one more e-folding factor, as shown in Fig. 2. The physical
reason for the asymptotic variation as e−1/βm is the inductive
coupling of the current contained within r ≤ rp and the return

Fig. 2. Z-pinch size asymptotically varies exponentially with the ratio
of total confined thermal to magnetic pressures. Here, PB is the magnetic
energy per unit length and PT the pressure energy per unit length. For the
Kadomtsev-stable profiles, smaller values of γ give an increasing benefit
over sharp pinches in terms of confinement, but at the expense of a lower
temperature for the same confined pressure as the specific heat increases.

Fig. 3. Functional dependence on adiabatic index for marginally
Kadomtsev-stable pinch radius according to (rp/rw)2 = α(γ )e−1/βm calcu-
lated numerically. The stable pinch radius collapses as γ → 1 for the same
magnetic and pressure energies PB , PT , or equivalently at fixed βm .

current at r = rw, such that the inductance for rp ≪ rw
is well-approximated by the usual coax factor ln(rw/rp) for
βm ≲ 1.

For Kadomtsev’s pinch, radius depends on adiabatic index
γ and the parameter βm through (rp/rw)2 = α(γ )e−1/βm (valid
for rp ≪ rw), where α(γ ) is plotted in Fig. 3. Indeed, the total
pressure energy per unit length of the Kadomtsev profile may
be calculated as PT = p0πr2

p(γ /(2(γ − 1)))2. From this, one
can see that given fixed quantities of pressure energy PT and
magnetic energy PB , as γ → 1 the pinch radius rp → 0 and
the on-axis pressure p0 → ∞ such that p(r) → PT δ(r).

H. Inductance, Enthalpy, and Flux of Kadomtsev’s Pinches

Section III-G introduced the energy measure βm ≡ PT /PB

and its relationship to the characteristic pinch radius. Here, the
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relationship to inductance is made precise, and along the way
a remarkable fact is noted that total pinch enthalpy H = I∞ψ ′

where ψ ′ is the flux per unit length and I∞ the total enclosed
current.

We begin by calculating the magnetic flux per unit length
ψ ′

=
∫ r

0 Bθdr (or magnetic vector potential Az = −ψ ′) as

ψ ′

ψ ′

0
=

γ

2
√

2(γ − 1)2

(
log(1 +3)+

γ − 2
1 +3−1

)
(46)

from ψ ′
=
∫

∞

β
Bθ (β ′)(dr/dβ ′)dβ ′, where 3 ≡ 2(γ −1)/(γβ)

and ψ ′

0 = B0rp with B0 =
√
µ0 p0 the characteristic flux

density. Then computing the total enthalpy obtains (with P0 =

p0πr2
p)

H =
γ

γ − 1
PT + 2PB =

√
2

γ

γ − 1
P0
ψ ′

ψ ′

0
. (47)

From µ0 I 2
∞
/8π = (γ /(2(γ − 1)))2 P0, we have H = I∞ψ ′.

Here, H and ψ ′ are integrated up to a cutoff while I∞ is the
total current. Notably, under uniform axial flow vz , enthalpy
flux is precisely circuit power Hvz = ϕ I∞ where voltage ϕ =

vzψ
′. Finally, as ψ ′

= L ′ I with L ′ inductance per unit length,
dividing (47) and applying the Bennett relationship gives

L ′
=
µ0

4π
γ

2(γ − 1)

(
1 +

2(γ − 1)
γ

β−1
m

)
3

1 +3
. (48)

Equation (48) is well-approximated by 3/(1+3) ≈ 1 for cut-
off β ≪ 1. For example, the γ = 2 Bennett pinch inductance
is L ′

≈ (µ0/4π)(1 + β−1
m ). Notable is the limγ→1 L ′

=

(µ0/4π)β−1.

IV. MARGINAL PROFILE AND SHEARED AXIAL FLOWS

This section begins with some theoretical remarks on
sheared axial flows under completely ideal conditions in
Z-pinch experiments, and then presents some observations
from resistive MHD modeling of the FuZE experiment [45],
[47]. In the sheared-flow-stabilized Z-pinch concept, a flow
Z-pinch is formed downstream from a coaxial plasma gun.
As a starting point, we draw some basic conclusions about
steady flow using MHD theory in a similar manner to the
analysis done by Morozov and Solov’ev [48] and Morozov
[49]. To begin, recall that in compressible ideal MHD there
are three axisymmetric streamline invariants, namely, specific
enthalpy, specific entropy, and specific magnetic flux

ht ≡
γ

γ − 1
p
ρ

+ 2
pB

ρ
+
v2

2
(49)

s ≡
R

γ − 1
ln
(

p
ργ

)
(50)

sm ≡R ln
(

pB

ρ2r2

)
. (51)

By expressing the convective derivative (v⃗ · ∇)v⃗ in terms of
its potential and vortex parts, we may also formulate Crocco’s
theorem in steady state [50]

v⃗ × ω⃗ = ∇ht − T ∇s − Tm∇sm (52)

where ω⃗ = ∇ × v⃗. If we consider purely axial downstream
flow such that flow forces are zero, the force balance is

dh
dr

= T
ds
dr

+ Tm
dsm

dr
(53)

where the specific MHD enthalpy h = ht − v2/2 does not
include the kinetic energy. If the flow is self-organized into a
near-Kadomtsev-stable profile with ∇sz = 0, then

dh
dr

= 2
ds
dr

(54)

where 2 = T (p0/p)(γ−1)/γ is the potential temperature
(which is only constant radially for the adiabatic pinch with
∇s = 0). Equation (54) follows by factoring T ∇s from (53)
and eliminating β = T/Tm using (34). Expressing the specific
entropy as s = cp ln2 shows that (54) integrates into the
Kadomtsev pinch’s specific enthalpy profile [which should be
distinguished from the invariant of (33)]

h = cp2 = cpT
(

1 +
γ − 1
γ

2
β

)
. (55)

As the specific enthalpy is conserved along streamlines, a first
approximation is an isoenergetic condition transverse to the
flow, i.e., (dht/dr) = 0, supposing that flow originates
from one “reservoir.” In the isoenergetic case, the energy
relationship is

cp2+
v2

2
= const. (56)

Equation (56) means that the axial flow profile vz = vz(r) of a
pinch self-organized into a Kadomtsev-stable state downstream
from its source is ideally a function only of the specific entropy
profile s = s(r) through 2(r) = 20es(r)/cp . Because the
pressure profile p = p(r) is fixed by marginal stability, this is
equivalent to thinking of the flow shear ∂rvz as a function of
the temperature profile T = T (r) in the first approximation.
Furthermore, (56) predicts that when ∇s = 0 the axial flow is
radially uniform. Because entropy modes drive ∇s → 0, this
suggests that flow shear of a pinch marginally stable to both
interchange and entropy modes must be controlled through
engineering the gradient of specific enthalpy exiting the coax-
ial plasma accelerator, for example, through an oblique shock
wave attached to the tip of the central electrode.

Considering isothermal pinch profiles, for a given uniform
specific enthalpy ht , say of the reservoir, (56) has no solu-
tion past some radius. For example, the Bennett pinch has
β = (rp/r)2, such that the energy relationship reads like
c1v

2
+ c2r2

= c3 for positive constants c1, c2, and c3, defining
an elliptical velocity profile, decreasing from a maximum
on axis. This result occurs because isothermal pinches have
specific enthalpy h → ∞ as r → ∞, which is problematic
in experiment. Under the isoenergetic assumption, we can
determine the conditions for axial velocity to be an increasing
function of radius by writing (56) as

v2
= 2ht0

(
1 −

cp20

ht0
es/cp

)
(57)

with ht0 the given constant specific enthalpy. Equation (57)
suggests that for velocity to increase with radius, entropy
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Fig. 4. Thermal and magnetic pressures of the Kadomtsev pinch profile are
depicted alongside the adiabatic temperature profile (where specific entropy
s is relaxed to ∇s = 0), with pressures normalized to p0 and the temperature
normalized to T0. The adiabatic temperature profile is marginally stable to
the nonideal entropy modes for the pressure profile of Kadomtsev’s pinch.
Temperature profiles which decrease more slowly than the depicted, or even
increase with radius, are superadiabatic (∇s > 0) and unstable to the nonideal
entropy modes similar to the Schwarzschild criterion for convective stability.

should decrease with ∇s ≤ 0, which is also the entropy mode
stability condition given marginal interchange stability. The
temperature profiles with ∇s < 0 are called subadiabatic.
Such profiles are axially peaked and decrease at least as
fast as the adiabatic profile T (β) = T0(1 + 2(γ − 1)/γβ)−1

depicted in Fig. 4. These considerations suggest that adiabatic
temperature profiles are to be expected rather than isothermal
ones. On the other hand, velocity may freely increase with
radius for arbitrary profiles of specific enthalpy.

It must be cautioned here that our discussion is not
self-consistent because the flow shear predicted by (56) for
the marginally stable state also modifies the stability condition
in a nontrivial manner, allowing for super-magnetoadiabatic
pressure profiles [27] (and most importantly, kink stability
and 3-D self-organized states). There is also the issue of
weak collisionality; the axisymmetric minimum energy state is
Kadomtsev distributed only under the ideal fluid closure. The
kinetic equilibrium of a weakly collisional Z-pinch induces
non-Maxwellian distribution functions in the presence of,
e.g., axially sheared flow or temperature gradients, as the
ion distribution function is distributed over the canonical
momentum Pz = mvz + q Az where Az is the magnetic vector
potential [51]. This introduces intriguing phenomena such
as a tendency for velocity to trend with the magnetic flux
function [52], [53] which are beyond the scope of the fluid
model. That is to say, simulation of the appropriate model is
necessary to self-consistently model flow pinch behavior in
the weakly collisional regime of the FuZE experiment.

A. Results From MHD Modeling of the FuZE Experiment

Here observations are presented of whole device 2-D
axisymmetric resistive magnetohydrodynamic modeling of the
FuZE experiment, a diagram of which is shown in Fig. 5,
using the WARPXM discontinuous Galerkin finite element
code [54]. The modeling approach uses an unstructured mesh
of the whole device (including the accelerator) to solve the

Fig. 5. Diagram of the FuZE sheared-flow-stabilized Z-pinch device, showing
the coaxial plasma accelerator of 100-cm length coupled to the 50-cm-long
pinch assembly region [45]. The phrase “terminus of the inner electrode”
refers to the tip of the central conductor marking the end of the coaxial
accelerator and the beginning of the pinch assembly region.

resistive MHD model with von Neumann–Richtmyer artificial
viscosity coupled to a circuit model for the capacitor bank
discharge. The simulations are initialized with plasma in the
accelerator and the capacitor bank connected across the inner
and outer electrodes. Simulations show plasma leaving the
“acceleration region” (between the inner and outer electrodes)
and forming a Z-pinch plasma in the “assembly region”
(downstream from the terminus of the inner electrode). Related
publications [47], [55] include the whole device simulations
used for the comparisons here. Refer to [55] for all details of
simulation methodology.

We investigate the role of marginal profiles in the data
obtained by modeling. The results of this section are not meant
to robustly model all the aspects of the sheared-flow-stabilized
Z-pinch and its stability, in which 3-D, two-fluid [56], and
kinetic physics play key roles, but rather to demonstrate
the robustness of attraction to organized states under rapid
changes in the discharge, and to suggest the structure of the
flow pinch to consist of a central, close-to-marginal flowing
core surrounded by a low-β sheared flow. We consider the
profiles in two representative stages pre- and postcompression
to examine the profiles at peak performance.

Regarding the used model, resistive MHD simulation cer-
tainly captures the drive toward marginal interchange stability.
However, only two-fluid modeling further captures the drive
toward the adiabatic pinch temperature profile through activity
of the entropy modes. Furthermore, as the pinches of the FuZE
experiment are approaching the large Larmor radius regime,
future research will consider the role of kinetic equilibrium
and associated phenomena in the fluid description of weakly
collisional flow Z-pinches.

1) Diffuse Flow Pinch Prior to Compression, or “Zipper-
ing”: Fig. 6 shows the current and voltage traces produced
by experiment and simulation of a typical high-performance
FuZE discharge. Considering the flow pinch properties suffi-
ciently far downstream from the terminus of the inner electrode
of the coaxial accelerator such that the flow is primarily axial
(specifically, 20-cm downstream from the terminus), Fig. 7
shows the radial plasma profiles prior to pinch “zippering”
(also referred to as pinch assembly, as depicted in [57, Fig. 3]).
In this terminology, flow pinch zippering is similar to the
classical zippering of gas puff pinch experiments [58]. The
Kadomtsev pressure profile of Fig. 7 is calculated by (34) and
the local β = p/pB with γ = 5/3.
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Fig. 6. Voltage (a) and current (b) traces of a 25-kV FuZE discharge com-
pared with the same traces from 2-D resistive MHD modeling. Specifically,
this voltage is measured at the gap between the inner and outer electrodes. The
simulation voltage is thought to overpredict conditions around t = 8 µs due
to a blow-by instability observed in simulation within the coaxial accelerator,
which may not occur in this way under these experimental conditions, instead
being modified by 3-D filamentation and the Hall effect. On the other hand,
the peak voltage around t = 14 µs is captured well.

It is thought that the flow pinch observed in Fig. 7 is only
partially representative of experimental conditions due to the
limitations of our model, but it is nevertheless interesting
to observe the dynamics in the context of stability theory.
To interpret the results, recall that linear flow shear (in ideal
MHD, of either shear orientation) is stabilizing to the convec-
tive modes. The pinch is well described by a Kadomtsev-stable
profile from the axis up to approximately the pinch radius,
and axial velocity decreases with radius. In this situation, the
pinch core is primarily in a marginally stable equilibrium in
which flow shear has not significantly altered the pressure
distribution p = p(β) away from Kadomtsev’s pinch profile,
and for which the flow shear is thought to influence stability
of the kink modes (or to encourage the existence of a 3-D
relaxed state). The specific enthalpy is not radially uniform
so that (56) does not directly apply, and the temperature and
kinetic energy are observed to trend with one another. That
∇ht ̸= 0 is thought to occur due an oblique shock upstream
at the terminus of the central electrode which breaks the ideal
streamline invariants including total specific enthalpy ht . The
thermal pressure profile tracks closely with the magnetoadi-
abatic expectation p ∼ ⟨ jz⟩γ once corrected by an estimate
for the excess background pressure which plays no role in the
pinch equilibrium.

Fig. 7. Simulated pinch radial profiles prior to “zippering,” at t = 8 µs
in the discharge, measured 20 cm downstream from the terminus of the
coaxial discharge channel showing (a) radial profiles of current density, axial
velocity, temperature, and pressure and (b) the corrected pressure | p̃| and
area-averaged current density ⟨ jz⟩ raised to the power of γ as p ∼ ⟨ jz⟩γ , i.e.,
the magnetoadiabatic profile. Corrected pressure is defined as p̃ ≡ p − pexcess
where pexcess is the excess pressure taken to be pexcess/p0 = 0.38 and must
be used for magnetoadiabatic comparison because a uniform excess pressure
is unknown to the MHD force balance. Here, rw is the conducting wall of
10-cm radius. The Mach number at r = 0 is M ≈ 1.8. The dashed black
line depicts the pressure profile if it were Kadomtsev-distributed with the
local β, taking γ = 5/3. The diffuse flow pinch approximately follows
Kadomtsev’s profile until a radius with significant shear where the distribution
is super-magnetoadiabatic. Profile agreement ceases where the low-density
edge plasma carries return current (where jz < 0). The flow pinch is observed
to be stable for many Alfven transit times, hence the super-magnetoadiabatic
profile around r = 0.3rw could be attributed to linear flow shear.

2) Profiles of the Post-“Zippering” Compressed Flow
Pinch: Following “zippering” of the pinch discharge, the
diffuse flow pinch of Fig. 7 is near-adiabatically compressed
when magnetic energy increases significantly, and the pinch
core shrinks to a small radius in line with Section III-G. Fig. 8
shows such a simulated post-zippering flow pinch and a com-
parison of its pressure to area-averaged current density. The
profile within the compressed pinch radius is close to marginal
in the sense that expected m = 0 growth times consist of many
magnetosonic transit times, as described below, and the profile
is surrounded by a low-β edge plasma with sheared axial flow
deviating from the marginal state. A layer of edge plasma
around r = 0.5rw, out of view of the figure, carries some
return current. A super-magnetoadiabatic profile is observed
in the low-β plasma layer in-between the pinch edge and
the return current-carrying edge. Namely, an “isothermal-like”
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Fig. 8. Conditions at time t = 13 µs into the discharge, prior to the loss
of flow power and just after “zippering” into small radius and maximum
performance (as measured by a posteriori neutron yield rate calculation), with
(a) plot of Fig. 7(a) zoomed radially up to r = 0.4rw and (b) comparison of
corrected pressure | p̃| to averaged current density ⟨ jz⟩ for the data of (a),
where pexcess = 0.03 p0 (see Fig. 7 for definition of corrected pressure).
In (b), the solid curve plots p̃ = p̃(⟨ jz⟩) while the dashed lines are for
reference. The profile is moderately sheared outside of the core region as
the peak magnetosonic Mach number Mmax = 0.2. A super-magnetoadiabatic
profile, i.e., with better-than-Kadomtsev confinement, is observed at all radii.
Outside the pinch radius rp ≈ 0.05 rw , the profile is observed to follow
the super-magnetoadiabatic scaling | p̃| ∼ ⟨ jz⟩. This state is observed to
last until the end of plasma voltage around t = 14 µs in Fig. 6, at which
point the flow-sustaining electromagnetic power is extinguished. In the 2-D
axisymmetric simulation, the pinch then fully relaxes into a static Kadomtsev
profile, yet in 3-D would quickly undergo static kink instability.

profile p ∼ ⟨ jz⟩ (better than Kadomtsev) is observed in this
layer rather than the magnetoadiabatic profile p ∼ ⟨ jz⟩γ .
A clear interpretation of this observation is difficult, but we
do note that every polytropic relation p ∼ ⟨ jz⟩a corresponds
with some polytropic MHD equilibrium.

To clarify the phrase “close to marginal” used above,
consider that if the profile were strongly unstable we could
estimate from the displacement frequency of (29) a growth-
time τ ≈ rp/c where c measures the magnetosonic speed (with
K ≈ 1 at the pinch edge for a strongly unstable profile). Using
rp ≈ 0.5 cm and c ≈ 6.5 × 105 m/s, we find a growth-time of
τ ≈ 10 ns, which is not observed. However, using the observed
scaling p ∼ ⟨ jz⟩, we estimate τ−2

≈ 2(γ−1)(c2/rp)(−∇ ln p)
from (30) and obtain τ ≈ 3.5 µs, which is comparable to the
steady flow-through and dynamical timescales.

In addition to the single simulation examined here, we have
considered simulations conducted under a variety of alterna-
tive realizations of discharge voltage, current, and capacitor
bank configuration. Conditions similar to the results discussed
previously are observed in each realization. Namely, pinch
pressure and current are, prior to “zippering,” Kadomtsev-
distributed (i.e., following the polytropic relationship p ∼

⟨ jz⟩γ ) with βm ≲ 1. The pressure distribution breaks from
marginal stability following compression, yet is often observed
to remain polytropic with an exponent less than γ . We leave
a thorough investigation of this phenomenon to future work.

To summarize, we observe that axisymmetric compression
of the marginal profile remains near-marginal and benefits
from enhanced stability. As the compressed profile is close
to the static marginal profile, it is likely undergoing slow
m = 0 relaxation on the order of 1 − 10 µs (with an indeter-
minable role played by flow shear), but voltage decreases on
a faster time-scale. We point the reader to [55] for an in-depth
discussion of the simulation’s macroevolution.

3) Observed Temperature Profiles: The core plasma tem-
perature and low-β edge plasma temperature are observed
to be super-adiabatic, meaning that temperatures drop off
more slowly than if specific entropy were radially constant.
We expect that with higher fidelity physics entropy mode
activity would relax temperature to the adiabatic profile. While
two-fluid and 3-D physics are expected to change the nature
of the marginal state attained in modeling, it seems likely that
this conceptual picture of a core plasma with relaxed gradients
surrounded by low-β sheared flow will continue to hold under
appropriate conditions, in line with the stepped relaxation
region approach used with success in MHD modeling [59].
We expect three-dimensionality to complicate this picture
in suprising ways, for example, the saturated state attained
by weakly unstable kink modes in a sheared-flow-stabilized
Z-pinch with conducting wall boundary.

V. CONCLUSION

This work revisited the Kadomtsev profile describing
axisymmetric marginal stability of the Z-pinch and inves-
tigated its thermodynamic properties, filling a gap in the
literature for the static profile. Self-organization based on ther-
modynamic principles in the magnetic confinement and plasma
turbulence communities is a fruitful topic of research [38],
[59], [60], [61], so it is hoped that this article contributes
to further research in this field by elucidating the properties
of self-organization in one of its simplest solvable manifes-
tations other than the force-free Taylor states, namely, the
axisymetrically constrained Z-pinch. In this simple model,
we combine the well-known result from the minimum energy
principle together with the thermodynamics of a perfect gas
to demonstrate that the state marginal to both the interchange
and drift-entropy modes is one where the gradients of both
specific entropy and magnetic flux are zero. This result is
happily in accordance with the equivalence between minimum
energy and maximum entropy principles and establishes a clear
analogy to the Schwarzschild–Ledoux stability criterion used
in other branches of hydrodynamics. However, we emphasize
that the core result, namely, Kadomtsev’s stability function,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON PLASMA SCIENCE

is most easily determined by Kadomtsev’s minimum energy
method. We do point out, however, that an interesting avenue
for future research is to deduce equilibrium stability as a
condition on sz using an entropy functional method.

In addition, the analogy between Kadomtsev’s pinch and
the adiabatic profile used in meteorology and oceanography
was used to draw out parallels to sheared-flow stabilization
of the respective interchange modes in these fields, and
how these marginal states are closely related to statistically
probable distributions, here referred to as frozen Boltzmann
distributions. Indeed, Kadomtsev’s pinch is precisely this sort
of frozen Boltzmann distribution in the magnetic energy. This
was then extended to a demonstration in Section III-G that the
pinch radius itself also follows an exponential relationship in
the ratio of magnetic to thermal energies. It was also observed
in Section III-H that the extensive total enthalpy H of the
Kadomtsev pinch scales with magnetic flux per unit length ψ ′

as H = I∞ψ ′ for all the values of γ , with the significance that
unstable profiles like the sharp pinch can be said to contain
an excess “unmixed” thermal enthalpy.

Furthermore, theory is presented here suggesting that non-
isothermal temperature profiles are more likely than isothermal
ones in the collisional fluid regime according to the activity
of the entropy modes. This conclusion is further supported by
the results of Section IV where it was shown that the specific
enthalpy of an isothermal Kadomtsev-stable pinch diverges
as β → 0 in the edge plasma, but the specific enthalpy is
constant for adiabatic (i.e., constant specific entropy) profiles.
Indeed, the simulation results of the FuZE experiment shown
in Section IV-A demonstrate nonisothermal profiles even
without two-fluid physics. These simulation results indicate
attraction to the marginal state in the flow pinch formed down-
stream from a coaxial accelerator, and the sustainment of a
near-marginal state following pinch “zippering”/compression.
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