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Abstract— We use machine-learning (ML) models to predict
ion density and electron temperature from visible emission
spectra, in a high-energy density pulsed-power-driven aluminum
plasma, generated by an exploding wire array. Radiation trans-
port simulations, which use spectral emissivity and opacity values
generated using the collisional-radiative code PrismSPECT, are
used to determine the spectral intensity generated by the plasma
along the spectrometer’s line of sight (LOS). The spectra exhibit
Al-II and Al-III lines, whose line ratios and line widths vary with
the density and temperature of the plasma. These calculations
provide a 2500-size synthetic dataset of 400-D intensity spectra,
which is used to train and compare the performance of multiple
ML models on a three-variable regression task. The AutoGluon
model performs best, with an R2-score of roughly 98% for
density and temperature predictions. Simpler models [random
forest (RF), k-nearest neighbor (KNN), and deep neural network
(DNN)] also exhibit high R2-scores (>90%) for density and
temperature predictions. These results demonstrate the potential
of ML in providing rapid or real-time analysis of emission
spectroscopy data in pulsed-power-driven plasmas.

Index Terms— Machine learning, magnetohydrodynamics
(MHD), spectroscopy.

I. INTRODUCTION

SPECTROSCOPY is a powerful technique for inferring
plasma parameters from emitted electromagnetic radia-

tion. For instance, line widths and line ratios can be used
to determine electron density and temperature [1], [2], [3],
velocity can be determined from the Doppler shift of spectral
lines [1], [4], and magnetic field strength can be inferred
from the Zeeman splitting of line radiation [5], [6]. The wide
applicability of spectroscopy makes it an attractive tool for
implementation in a variety of laboratory plasmas [1], [4],
[7], [8], [9].

In emission spectroscopy, a typical intensity spectrum can
contain several peaks (called emission lines) overlaid on a
continuum [1]. The lines correspond to bound–bound electron
transitions in the ions of the plasma, while the continuum
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emission results from free–free (Bremsstrahlung emission) and
free–bound electron transitions (recombination radiation) [1],
[4]. Line radiation generated by the plasma arises due to either
collisional or radiative processes [1]. Collisional processes,
such as electron impact excitation/de-excitation and three-body
recombination, change the energy levels of bound electrons
via collisions with other electrons [1], [4]. Similarly, radia-
tive processes, such as photoexcitation/de-excitation, induce
energy transitions due to the interaction of bound electrons
with photons [1], [4]. Collisonal-radiative models balance the
rates of excitation (and ionization) against that of de-excitation
(and deionization), to determine the spectral emissivity and
opacity of radiation emitted from the plasma [2].

The typical approach to determining the ion density ni

from emission spectra is to identify lines dominated by Stark
(collisional) broadening, and then to compare the line widths
with tabulated data [1], [9], [10], or with the predictions of
collisional-radiative codes, such as PrismSPECT [11], [12].
Similarly, for the characterization of electron temperature Te,
we typically compare the intensity ratios of two or more lines
(typically, interstage lines for which density changes have
a small effect) with the predictions of collisional-radiative
models [1], [3], [10].

When the plasma is not optically thin, radiation transport,
which describes how the energy distribution of radiation
changes as it propagates through an absorbing, emitting, and/or
scattering medium, must be adequately modeled for accurate
interpretation of emission spectra. The optical thickness of
a material to radiation of frequency ω is characterized by
τ ≡

∫
α(ω, s)ds, which is the line integral of the spectral

opacity α(ω) along the path s [4], [13]. When τ ≪ 1, the
plasma is optically thin, and the output spectrum is simply
the line-integrated emissivity ϵ(ω) of the plasma along the
path s. Similarly, for τ ≫ 1, the plasma is optically thick, and
the output spectrum (for a plasma in local thermodynamic
equilibrium) is the Planckian [4], [13]. In plasmas that are
not optically thin, the radiation spectrum recorded by the
spectrometer is significantly altered by radiation transport.
Furthermore, if the plasma exhibits spatial inhomogeneity
along the line-of-sight (LOS), the resulting spectrum may be
dominated by strongly emitting or absorbing regions.

In high-energy-density pulsed-power-driven systems, the
condition for optical thinness may not be satisfied [14], [15].
In this article, our focus is to diagnose pulsed-power-driven
plasmas for laboratory astrophysics applications, which typi-
cally exhibit ion densities and electron temperatures between
ni ≈ 1 × 1017

− 1 × 1019 cm−3 and Te ≈ 1 − 50 eV,
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respectively [14], [16], [17], [18]. Pulsed-power devices gener-
ate plasma flows by driving large currents (1-30 MA) through
thin ∼10–100 µm diameter wires. These plasmas are not
optically thin to visible radiation; therefore, radiation transport
modeling becomes important for spectral analysis [19], [20].

A key drawback of the aforementioned emission spec-
troscopy analysis approach is that it requires significant
collisional-radiative and radiation transport modeling for the
analysis of a given spectrum. The use of machine-learning
(ML) models can reduce the computation time required for
spectral analysis, especially for large batches of spectral data,
and provide rapid real-time results during experimentation.
Spectroscopy has previously been combined with supervised
ML techniques, primarily in lower density plasmas. Visible
emission spectroscopy combined with regression methods and
neural networks has been used to predict density and tem-
perature in low-temperature low-density (ne ∼ 1 × 1010cm−3

and Te ∼ 1 eV) laboratory plasmas [21]. Similarly, neural
networks have been used to predict electron energy distribution
in low-temperature nonthermal plasmas [22], and classifiers
have been used for trace element and impurity detection in
RF-generated plasmas [23]. Neural network regressors and
classifiers have also been shown to accurately predict elec-
tron temperature and divertor detachment from UV/Extreme
Ultraviolet (XUV) spectroscopy measurements in magnetic
confinement fusion devices [24], [25], [26]. In the examples
above, the labeled dataset for training is generated by simulta-
neous spectroscopy and independent density and temperature
measurements with other diagnostics, like Thomson scattering
or Langmuir probes [24], [25], [26]. This eliminates the need
for complicated theoretical or computational modeling. How-
ever, simultaneous independent measurements using secondary
diagnostics are not always possible; for example, in experi-
ments with poor diagnostic access or diagnostic unavailability.
Moreover, alternative diagnostics, such as Langmuir probes
also perturb the plasma. Finally, in experiments with low rep-
etition rates, such as in pulsed-power plasmas, it is challenging
to generate a purely experimental dataset for the data-hungry
supervised ML task. In such situations, we must, therefore,
rely on synthetic data for training.

In this article, we use an ML approach to predict electron
density and temperature profiles along the spectrometer line
of sight (LOS) from visible emission spectroscopy data in a
pulsed-power-driven aluminum plasma. In contrast to previous
work [21], [22], [25], [26], which focuses on lower density
and/or optically thin plasmas, here we aim to character-
ize high-density nonoptically thin spatially inhomogeneous
plasmas, characteristic of pulsed-power-driven plasmas gen-
erated using exploding wire arrays [16], [17]. We approach
the problem in two parallel ways. In the first approach,
we frame the prediction problem as a single-objective opti-
mization problem, where we minimize the deviation between
a simulated spectrum and a target spectrum. We generate
the simulated spectra using collisional-radiative calculations
performed using PrismSPECT, which are then used to solve
radiation transport in a spatially inhomogeneous plasma. In the
second approach, we solve a multivariable regression problem,
where we predict ion density ni (s) and electron temperature

Te(s) as a function of position s along the spectrometer LOS
from a given spectrum. We train multiple supervised ML
models—linear regressor, k-nearest neighbor (KNN), decision
trees (DTs), random forest (RF), deep and convolution neural
networks, and AutoGluon—using synthetic data, generated
from radiation transport simulations. The AutoGluon model
performs best, with an R2-score of roughly 98% for density
and temperature predictions, and significantly reduces the
computation time over optimization-based curve fitting meth-
ods. Our results demonstrate the potential of ML methods in
providing rapid or real-time analysis of emission spectroscopy
data in pulsed-power-driven plasmas.

II. DATASET GENERATION

A. Radiation Transport Modeling

We use PrismSPECT [12] to compute emissivity ϵ(ω)

and opacity α(ω) values for an aluminum plasma, in the
visible range of the electromagnetic spectrum (400 nm <

λ < 700 nm). We use a steady-state nonlocal thermodynamic
equilibrium model with Maxwellian free electrons. We run
10 000 PrismSPECT simulations, for electron temperatures Te

linearly distributed in the range [0.5, 25] eV, and ion density ni

logarithmically distributed between [1 × 1016, 1 × 1019
] cm−3.

Our in-house radiation transport solver computes the output
intensity spectrum Iω(s) given spatially varying emissivity
ϵω(s) and opacity αω(s) values, by solving the steady-state
radiation transport equation along the 1-D path s [13]

∂s Iω(s) = ϵω(s) − αω(s)Iω(s). (1)

Emissivity and opacity values vary along the LOS due to
spatial variations in density and temperature. PrismSPECT
computes ϵω and αω for spatially homogeneous plasmas.
To construct the spatially varying emissivity and opacity,
we first assume some m-dimensional density and temperature
distributions ni (s), Te(s) ∈ Rm along the LOS. Here, m is
the number of points required to capture the spatial variation
along the LOS. We then calculate the emissivity and opacity
values at each position s along the LOS from the values of
ni (s) and Te(s) at that location. The radiation transport solver
then determines the output intensity distribution by solving (1).
We use a spectral resolution of 3.75 × 10−3 eV for our
radiation transport calculations, which results in a [400 × 1]
dimensional intensity spectrum for each position.

In Fig. 1, we compare the output intensity generated by
the radiation transport solver with that from a planar plasma
simulation in PrismSPECT. Here, the ion density and electron
temperature of the plasma are ni = 5 × 1017 cm−3 and Te =

2.5 eV, respectively, while the size of the plasma is 10 mm.
The planar plasma simulation includes the effect of radiation
transport, for the case of a homogenous (i.e., constant density
and temperature) slab of a specified size. The output of the
radiation transport solver agrees with that from PrismSPECT.
Fig. 1 also shows the case for which the optical thickness is
set to 0. For the τ = 0 case, lines with high opacities are
no longer damped by absorption from the plasma, and thus,
the line ratios are significantly modified when compared with
the case with radiation transport. This illustrates that in our
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Fig. 1. Comparison of the output intensity calculated by the radiation
transport solver with that from a planar plasma simulation in PrismSPECT
(ni = 5 × 1017 cm−3, Te = 2.5 eV, and L = 10 mm) and with a zero opacity
τ = 0 case.

Fig. 2. Comparison of emissivity predictions made by a KNN model trained
on PrismSPECT simulation results. We compare results for randomly chosen
members of the test set. Emissivity is scaled to [0, 1].

pulsed-power-driven plasma of interest, optical thickness is
important, and must be included in the spectroscopy analysis.

The radiation transport solver requires emissivity and opac-
ity calculated at each density and temperature value along the
LOS as inputs to generate the intensity spectrum. We interpo-
late the emissivities and opacities for the intermediate values
not simulated with PrismSPECT, using a weighted KNN
regressor with k = 4, trained on the output of the 10 000
PrismSPECT simulations. The output is the weighted average
of the four closest neighbors, based on Euclidian distance in
[T ∗

e , n∗

i ] space. Note that T ∗
e and n∗

i are normalized values of
the temperature and density based on (3), and the weights are
inversely related to the distance to the neighbors. To evaluate
the performance of the regressor, we compare the predicted
spectra with the previously unseen emissivity spectra in the
test set. As observed from Fig. 2, where we compare the
predicted emissivity with the actual emissivity for randomly

Fig. 3. (a) Simulated ion density at peak current, generated by a 40-mm
diameter exploding wire array with 150 aluminum wires, driven by a 10-MA
current pulse (300-ns rise time). This simulation was performed using
GORGON, a two-temperature resistive MHD code. (b) Variation of density
and temperature along a chordal LOS as shown in (a).

chosen members of the test set, the predictions agree well with
the actual spectra. The coefficient of determination (also called
the R2-score) is a commonly used metric to characterize the
performance of regression, and is defined as follows:

R2
= 1 −

∑(
yi − ŷi

)2∑(
yi − ȳ

)2 . (2)

Here, yi is the predicted value, ŷi is the actual value, and ȳ ≡

1/n
∑n

i=0 yi is the mean of the actual values. For the problem
above, the KNN regressor exhibits an R2-score of 99.62%,
showing that the model accurately reproduces the emissivity
and opacity spectra for density and temperature values not
included on the simulation grid in PrismSPECT.

B. Density and Temperature in Exploding Wire Arrays

Exploding wire arrays, which consist of a cylindrical cage of
wires around a central cathode, are commonly used sources of
pulsed-power-driven plasma for laboratory astrophysics exper-
iments [14], [16], [17], [19]. The magnetic field is oriented
in the azimuthal direction inside the wires, and results in
a j × B force that accelerates the ablating plasma radially
outwards from the wires. Due to radially diverging flows,
the density decays rapidly with distance from the wires. This
can be observed from Fig. 3(a), which shows the simu-
lated ion density distribution generated by a 40-mm diameter
exploding wire array with 150 aluminum wires, driven by a
10-MA current pulse with a 300-ns rise time. This simulation
was performed using GORGON—a two-temperature Eulerian
resistive magnetohydrodynamic (MHD) code [20], [27].

As discussed before, we require m-dimensional arrays to
fully capture the spatial variation in density and temperature
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Fig. 4. Normalized spectral intensity simulated by the radiation transport
solver. In (a)–(c), the blue curves correspond to output spectra generated for
a Gaussian density variation (n0 = 5 × 1017 cm−3, σ = 5 mm), and constant
temperature (Te = 2 eV) along the spectroscopy LOS. (a) Change in the
intensity spectrum with increasing temperature. (b) Change in the intensity
spectrum with increasing density n0. (c) Change in the intensity spectrum
with increasing σ .

along the LOS. However, we can use simplifying assump-
tions to make the problem more computationally tractable.
If the emission is recorded along a chordal LOS, as shown
in Fig. 3(a), the density variation can be approximated as
Gaussian [see Fig. 3(b)], i.e., ni (s) = n0 exp[(s − s0)/2σ 2

].
Here, n0 is the peak density, σ is the standard deviation of
the Gaussian function, and we set the mean s0 to half the
total path length. The density distribution shown in Fig. 3 is
consistent that measured experimentally with laser imaging
interferometry in previous pulsed-power experiments [16].
Our MHD simulations [Fig. 3(b)] and previous experimental
measurements also show little spatial variation in the tem-
perature due to short thermal diffusion time in pulsed-power
plasmas [17]. Therefore, we approximate the temperature to
be constant along the LOS, i.e., Te(s) = T0. This allows
us to reduce our 2 × m dimensional problem to just three
variables—n0, T0, and σ . Both the density and temperature in
Fig. 3(b) also exhibit small amplitude modulations, which arise
due to oblique shocks resulting from the azimuthal expansion
of plasma from the discrete wires [28]. Our radiation transport
calculations, however, show that the effect of these modula-
tions on the recorded intensity spectrum is small.

Fig. 4 shows a synthetic intensity spectrum, generated by
the radiation transport solver, with values n0 = 5×1017 cm−3,
Te = 2 eV, and σ = 5 mm. Here, we normalize the spectrum
between [0, 1] by dividing by the maximum intensity. The
spectrum exhibits Al-II and Al-III lines, which correspond to
transitions in singly- (Mg-like) and doubly-ionized (Na-like)
aluminum respectively. When the temperature is increased
[Fig. 4(a)], the relative intensity of the Al-III lines compared
to the Al-II lines increases. This is expected because the ion-
ization is higher at a higher temperature, and thus, the relative

population of the higher Z Al-III ions increases relative to
the singly ionized Al-II ions. The Al-II and Al-III lines only
appear simultaneously between 1.5 and 3.5 eV. In Fig. 4(a),
at 4 eV, the Al-II lines are completely suppressed. When we
increase the density [Fig. 4(b)], the lines not only become
broader (due to Stark broadening) but also the line ratios
change as well. This is because increasing the density also
increases the optical thickness, and the optically thick lines are
damped more strongly. This can be observed from Fig. 4(b)
when we compare the relative intensity of the Al-II 466.4 nm
line (which is relatively optically thin) with that of the higher
opacity Al-II 624.0 nm line. The more optically thick Al-II
624.0-nm line is strongly damped at higher densities. Finally,
changing the value of σ [Fig. 4(c)], also changes the line ratios
because the optical thickness increases with the size of the
plasma; however, the sensitivity of the spectrum to changes in
σ is relatively smaller than that in density and temperature.

To generate our training dataset for the ML task, we ran-
domly sample values of 1 × 1016

≤ n0 ≤ 1 × 1019 cm−3,
5 ≤ σ ≤ 30 mm, and 0.5 ≤ T0 ≤ 25 eV from a uniform
distribution. Our radiation transport solver then uses these
sampled values to calculate intensity spectra for each n0, σ ,
and Te. We generate a total of 2500 [400 × 1] intensity
spectra to use as training data for our three-variable regression
problem. Finally, we scale and normalize the values of n0 , σ

and T0 so that they lie within the interval [0, 1]. We use linear
scaling for the temperature and σ , and logarithmic scaling for
the density

n∗

0 =
log10

(
n0

[
cm−3

])
− log10

(
1 × 1016 cm−3

)]
log10

(
1 × 1019 cm−3

)
− log10

(
1 × 1016 cm−3

)
T ∗

0 = (T0[eV] − 0.5 eV)/(25 eV − 0.5 eV)

σ ∗
= (σ [mm] − 5 mm)/(30 − 5 mm). (3)

We also scale the intensity output of the radiation transport
solver to the range [0, 1]. This means we only use the shape
of the intensity spectrum for our prediction, which obviates
the need for absolute intensity calibration.

III. METHODOLOGY

A. Single-Objective Optimization

Our goal is to predict density and temperature profiles given
a measured intensity spectrum Itarget. One way to frame this
problem is as a single-objective optimization problem

min
x

: f (x) = MSD
(
Itarget − I (x)

)
where: x = [n0, σ, T0]

s.t. : 1 × 1016
≤ n0

[
cm−3]

≤ 1 × 1019

5 ≤ σ [mm] ≤ 30
0.5 ≤ T0 [eV] ≤ 25. (4)

We minimize the mean squared deviation (MSD) between
the target and predicted intensities. The objective function can
be represented as follows:

MSD =
1
N

N∑
i

[
Ipred(ωi ) − Itarget(ωi )

]2
. (5)
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Here, Ipred(ωi ) and Itarget(ωi ) are the simulated and target
intensities at frequency ω, and N = 400 is the size of
the intensity spectrum. We use the radiation transport solver
described in Section II-A to generate the predicted intensities.

We perform the optimization using a (µ + λ) genetic
algorithm (GA) implemented using the pymoo package in
Python. The GA optimization algorithm iteratively searches
for solutions that minimize the objective function over multiple
generations [29]. In each generation, the best-performing solu-
tions are selected and included in the population for the next
iteration. Solutions are combined in each iteration in a process
called crossover to create offspring solutions. The solutions are
also subject to random changes in the values of the variables
x to increase the diversity of the solutions, in a process
called mutation. For the optimization here, we use a randomly
generated initial population size of 150, with simulated binary
crossover and polynomial mutation (probability = 0.5 and
distribution index ηc = 1). We terminate the optimization
when the MSD of the solutions becomes lower than a specified
threshold.

To determine the uncertainty in the optimization results,
we repeat the optimization 50 times with different starting
seeds to construct a family of optimal solutions. We exclude
solutions from runs in which the GA gets stuck in a local
minimum, where the objective function does not converge to a
value below the required threshold. Repeating the optimization
with different starting seeds (hence, different initial popula-
tions) allows us to construct distributions of n0, T0, and σ ,
which we then used to estimate the uncertainty in the solutions.
In Section IV-A, we report the mean and the range determined
from these distributions.

B. Multivariable Regression

An alternative approach is to formulate the problem as
a multivariable regression problem. Given an input of an
unseen intensity spectrum Itarget, we predict the correspond-
ing (normalized) values of n∗

0, T ∗

0 , and σ ∗ using ML-based
regression models. Here, we compare the performance of
multiple regressors for our three-variable regression task—
linear regression (LR), KNN regressor, DTs, RF, deep neural
network (DNN), and a 1-D convolution neural network (1-D
CNN). The choice of regression algorithm often represents a
trade off between model precision and interpretability. Simpler
models, such as LR and KNN models, are relatively easier to
understand and interpret, whereas DNNs and AutoML, which
often provide high performance, require more training time,
and are challenging to interpret [30].

The LR, KNN, DTs, and RF models are implemented
using the scikit-learn [31] package in Python. The KNN
algorithm predicts values based on the distance from the k
nearest data points in the training set [30]. Here, we use
k = 8 and Euclidian distance for our KNN regressor. DTs
follow a flowchart-like structure and make predictions by
asking questions at each level [30]. We use a DT regressor
with a depth of 5 and a minimum sample split of 5. RFs
are ensembles of many DTs [30]. Our RF regressor uses
140 estimators; the minimum samples required for a split is 4,
and the minimum samples per leaf are 5.

We use the TensorFlow [32] package to construct a three-
layer DNN. Neural networks consist of multiple “hidden”
layers, consisting of several neurons, sandwiched between
an input and output layers [33]. In our DNN architecture,
each layer is a fully connected dense layer with 100 neurons
(i.e., each neuron is connected to every other neuron in the
previous and next layers), with ReLU activation functions, and
padded with a batch normalization layer and a dropout layer
(p = 0.3) to help prevent overfitting. The final layer consists
of a 3-D dense layer. Similarly, the 1-D CNN consists of two
1-D convolution layers (kernel size = 3) with filter sizes of
8 and 16, respectively, and leaky ReLU activation layers. The
convolution layer performs a convolution operation using the
specified kernel on the input from the previous layer [33].
Each convolution layer is padded with a batch normalization
layer and a p = 0.1 dropout layer. The convolution layers
are followed by a 200-neuron dense fully connected layer
and a 3-D output layer. Both neural networks use the Adam
optimizer with a 0.5 × 10−4 learning rate and a mean squared
error (MSE) loss function. The key difference between the
DNN and CNN architectures is that the DNN treats the input
vector as a 400-D vector of parameters, whereas the CNN
treats it as a 1-D image, and therefore, has information about
the relative spectral location of each element in the input
vector.

Finally, we also implement a tabular AutoGluon model
using Python’s AutoGluon package [34]. AutoGluon pro-
vides an automated approach to ML, by automatically
comparing and combining the performance of many dif-
ferent models. The performance of AutoGluon has previ-
ously been shown to exceed that of more traditional ML
models [34].

Each regressor is trained on the 2500 × 400 synthetic
spectra with a 2000:500 split between the training and test
sets, and k = 3 stratified k-fold cross-validation for the
training set. Members of the test set are not shown to the
ML model during the regression task and are used to evaluate
the regression performance after training. The hyperparameters
described in this section were determined using hyperpa-
rameter optimization implemented using the Python package
Optuna [35].

We use two metrics to characterize the performance of
the different regression models. These are the coefficient of
determination (also called the R2-score), and the MSD from
the simulated curve. The R2-score is defined in (2), and is
calculated from the predicted and actual values of n∗

0, T ∗

0 ,
and σ ∗. Similarly, the MSD (5) measures the deviation of the
predicted intensity spectrum from the actual spectrum. Here,
the predicted spectrum is determined by feeding the predicted
values of n∗

0, T ∗

0 , and σ ∗ from the ML model into the radiation
transport solver. The R2-score and MSD are calculated for
the N = 500 test set, which contains spectra not previously
seen by our ML models. For good performance, we aim
to maximize the R2-scores and minimize the MSD. The
R2-score may provide spurious performance metrics in case
of nonunique solutions; whereas, the MSD characterizes how
close the predicted spectra are to the actual spectra, allowing
us to overcome this issue.
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TABLE I
COMPARISON OF THE PERFORMANCE OF DIFFERENT ML MODELS ON THE REGRESSION TASK

Fig. 5. (a) Comparison of target intensity spectra with spectra
determined via optimization for the test case n0 = 1 × 1018 cm−3,
T0 = 2 eV, and σ = 10 mm. The target spectrum is the blue solid curve, while
the predicted spectrum and the predicted values are in orange. (b) Robustness
of the fitting to noise and stray lines.

IV. RESULTS AND DISCUSSION

A. Optimization Results

Using GA-based optimization, we predict values of
n0, T0 and σ for several test cases. Fig. 5(a) shows the
comparison of the target intensity spectra with spectra deter-
mined via optimization for a randomly selected test case
(n0 = 1 × 1018 cm−3, T0 = 2 eV, and σ = 10 mm). The
predicted values of n0, T0 and σ reproduce the target spectrum
well. For the test case shown in Fig. 5(a), the MSD from
the target spectrum is roughly 6 × 10−5, and the predicted
values are n0 = 1.0 × 1018 cm−3

± 7%, T0 = 2.0 eV ± 1%,
and σ = 9.9 mm ± 20%. The range in the value of σ for
the family of optimal solutions is comparatively higher than
that in the density and temperature. This is consistent with
our observation in Fig. 4(c), which shows that changes in σ

generate linear changes in the optical depth, whereas those in
n0 and T0 result in larger nonlinear changes in opacity and
relative intensities.

In many real situations, the experimental data that we want
to fit may be noisier than the synthetic spectrum shown in
Fig. 5(a). Furthermore, the spectrum may also be contaminated
by stray lines, generated by impurities in the plasma or by
radiation emitted from other photoionized surfaces. In order

to test the robustness of the prediction, we add noise and stray
lines to the synthetic target spectrum [see Fig. 5(b)]. The added
noise is randomly sampled from a continuous uniform distribu-
tion U (−0.1, 0.1). The predicted solution reproduces the target
spectrum well, despite the added noise and stray radiation.
In this case, the MSD of the optimum solutions is about
3×10−3, which as expected, is larger than that for the smooth
case. The predicted solutions are n0 = 1.2×1018 cm−3

±20%,
T0 = 2.0 eV ± 2%, and σ = 9.9 mm ± 30%. There is a
larger uncertainty in the solutions for the noisy target spectrum
when compared with the smooth target spectrum [Fig. 5(a)];
however, the predicted solutions still include the values used
to generate the test case.

Although optimization using GA provides good results,
the computational time is high (>10 min per prediction).
This is primarily because the GA has to simulate a large
number of potential candidates iteratively using our radiation
transport model over several generations before convergence
is achieved. Although we use GA as an example here, other
optimization-based curve-fitting algorithms can also exhibit
high computation times. This method can be highly effective
with small datasets; however, it can be less attractive in cases
where we must analyze large datasets of spectra, or when
we require quick or real-time analysis of spectral information.
The use of ML-based regression models, discussed in the next
section, can be more useful in such situations.

B. Multivariable Regression Using Machine Learning

The training of ML models can be computationally time-
intensive; however, once the training is complete, large
datasets can be evaluated rapidly. The training time of models
typically depends on the complexity of the model. Table I
lists the comparison of the performance of the ML regressors
described in Section III-B. Here, the R2-score is computed
using the predicted and actual values of all three variables,
while we compute the two-variable R2-score using only the
value of density n∗

0 and temperature T ∗

0 . The uncertainty in the
R2-score was determined from the range of scores calculated
for each split in the cross-validation process. AutoGluon was
the best-performing model, with an R2-score of 74.20% ±

2.1%. Since AutoGluon trains and compares the performance
of multiple different models simultaneously, the training
time was high compared with the other models. The next
best-performing models (DNN, RF, and KNN) exhibited
R2-scores between 67%–71% and shorter training times. The
two-variable R2 scores, calculated for density n∗

0 and temper-
ature T ∗

0 only, are roughly 30% higher than the three-variable
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Fig. 6. Violin plots of the MSD of the predicted intensity spectra from the
actual intensity spectra in the test set. The red lines represent the medians
of the distribution, the blue rectangle represents the interquartile range, and
the end-caps represent 1.5× the interquartile range. The blue-shaded regions
show the shape of the full distribution.

R2-scores, which shows that the models predict n∗

0 and T ∗

0 with
better accuracy than the third variable σ ∗. There is a larger
uncertainty in the prediction of σ ∗, because as observed from
Fig. 4(c) and in Section IV-A, changes in σ ∗ generate linear
changes in the optical depth, whereas those in n∗

0 result in
larger nonlinear changes. We also find that in cases where σ ∗

is under predicted, the density is slightly over-predicted and
vice versa, indicating that the model relies on small changes
in density rather than on σ ∗ to incorporate the effects of
changing optical depth. The majority of models, with the
exception of LR and DTs, exhibit two-variable R2-scores
>90%, showing the effectiveness of these models in predict-
ing n∗

0 and T ∗

0 , despite the relatively poorer prediction of
σ ∗. AutoGluon, once again, exhibits the highest two-variable
R2-score (98.98% ± 1%).

In these models, we only use the shape of the intensity
spectrum to make predictions. This can be advantageous as
it obviates the need for absolute intensity calibration of the
intensity spectra. However, adding information about the abso-
lute intensity can potentially improve the predictions, as the
absolute intensity also depends on the temperature, density,
and size of the plasma. This would, however, require accurate
modeling of intensity attenuation and losses in the optics used
for the experiment. When we include the absolute intensity in
the training data (that is, we do not normalize the intensity
between [0, 1]), the models show improved prediction of σ ,
and the R2-scores increase by roughly 3%–7%.

Fig. 6 shows the comparison of the MSD of the predicted
intensity spectra from the actual intensity spectra in the test
set for the different ML models. Here, we use the predictions
of n0, T0, and σ from the ML regressors as inputs into the
radiation transport solver to determine the predicted spectra.
The red lines represent the medians of the distributions,
the blue rectangles represent the interquartile range, and
the shaded regions show the shape of the full distribution.
As expected, the predictions of the AutoGluon model, which
exhibit the highest R2-score, also exhibit the lowest MSD, i.e.,
the predictions match the original intensity spectra well. The
median MSD is relatively small (<1×10−3) for all the models;
however, for models with lower R2-scores, the distribution of
the MSD exhibits a larger spread and extends to higher values.

Interestingly, although the DNN exhibits R2-scores similar to
the RF and KNN models, its MSD distribution is significantly
wider. For the DNN, the distribution is also wider than for
the 1-D CNN model, which exhibited lower R2-scores. This
may indicate that although the predictions of n0, T0, and σ

made by the DNN are close to the actual values, the values
are consistently off, resulting in a relatively larger deviation
between the predicted intensity calculated from these values
and the actual intensity used to predict the values.

To gain further insight into the performance of the models,
we plot the distribution of predicted values against the actual
values. For the best-performing AutoGluon model (Fig. 7),
we find that predicted values of n∗

0 and T ∗

0 from the test
set exhibit the least deviation from the diagonal, whereas
predicted values of σ ∗ exhibit a relatively larger deviation from
the diagonal, as expected. However, AutoGluon is approxi-
mately able to capture the relative trend in the values of σ ∗,
as seen in the positive slope of the distribution in Fig. 7(b).
This is in contrast to other models, which exhibit larger
deviations in the predictions of σ ∗. In Fig. 7(a) and (c),
deviations from the diagonal also become more pronounced
at higher densities and temperatures (indicated by the red
rectangles in these figures). Our radiation transport simulations
show that at these higher temperatures (T0 ≳ 20 eV) and
densities (n0 ≳ 1 × 1018 cm−3), continuum emission begins
to dominate over line emission, and the spectrum can become
completely devoid of lines. This may make it harder to predict
n0 and T0 from the shape of the spectrum.

To compare the performance of ML methods against GA
optimization, we randomly select a 25-member subset from
the test set used for ML regression. Using this subset, we make
predictions with both AutoGluon and GA optimization. The
evaluation time for this subset using the trained AutoGluon
model was ∼1 s, while the optimization took significantly
longer (>1.5 h). For AutoGluon, the median MSD was 5 ×

10−5, and the two- and three-variable R2-scores were 98% and
72%, respectively, similar to that of the larger test set (see
Table I). The GA predictions demonstrated a median MSD of
about 4 × 10−4, which is similar to that of the AutoGluon
model. AutoGluon thus demonstrates a performance close to
optimization-based curve fitting in minimizing the deviation
between actual and predicted spectra but requires significantly
less computational time. The two-variable R2-score for density
and temperature prediction was about 98% for the optimiza-
tion, similar to that of AutoGluon, once again showing the
excellent prediction capability for these variables. However,
in predicting σ , AutoGluon outperformed the optimization,
which demonstrated a three-variable R2-score of about 65%
for this subset.

A key challenge with more complicated ML models, such as
neural networks and AutoGluon, is the lack of interpretabil-
ity. To gain insight into features that inform the prediction,
we investigate the relative importance of different parts of the
intensity spectrum for the prediction of density and temper-
ature. In order to do so, we calculate the sensitivity of the
density and temperature predictions to perturbations in the
spectral intensity value at different wavelengths. Fig. 8 shows
the sensitivity map computed for the AutoGluon model for a
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Fig. 7. Distribution of predicted values of (a) n∗

0 , (b) σ ∗, and (c) T ∗

0 against the actual values for the AutoGluon Model. Here, the values of peak density,
temperature, and the spread of the density function σ have been normalized. Blue points compare the values for the training set, while orange points do so
for the test set.

randomly selected member of the test set. For this intensity
spectrum, the actual values of density, temperature, and σ are
1.4 × 1018 cm−3, 7.3 eV, and 25 mm, and the predicted values
are 1.5 × 1018 cm−3, 6.9 eV, and 22 mm. We approximate the
gradients in density and temperature (∂n∗

0/∂ϵ and ∂T ∗

0 /∂ϵ)
by perturbing the input intensity spectrum at a given wave-
length by a small value ϵ, and dividing the change in the
predicted value (|δn∗

0| or |δT ∗

0 |) by the perturbation ϵ. Here,
we pick the perturbation ϵ from a Gaussian distribution of
amplitude 0.1, and the mean gradients are calculated over
multiple iterations to determine the final value. Such sensitivity
maps are commonly used in image classification problems
to identify parts of an image that may contribute to the
final classification [36]. Here, we use it to identify features
of the spectra that contribute to the final predictions in our
regression problem. In Fig. 8, as expected, the lines (Al-III
415.2 nm, Al-III 448.1 nm, Al-III 452.5 nm, and Al-III
570.7 nm) contribute significantly to the prediction of density
and temperature, whereas parts of the spectrum that correspond
to the continuum are less important. This can be observed from
the large gradients ∂n∗

0/∂ϵ and ∂T ∗

0 /∂ϵ at the positions of
these lines. The Al-III 570.7-nm line appears to be particularly
important for the temperature prediction, while the Al-III
448.1-nm and Al-III 452.5-nm lines (which have merged at
this higher density) are relatively more important to the density
prediction. In addition to the locations of the Al-III lines,
smaller peaks in the gradients, particularly in temperature,
also appear at parts of the spectrum devoid of lines. The
locations of these peaks correspond to Al-II emission lines
that appear predominantly at lower temperatures (0.5–1.5 eV),
indicating that the absence of these lines contributes, although
less significantly, to the temperature prediction.

Another limitation of these models is the reliance on syn-
thetic data, which, in turn, is affected by the uncertainty and
assumptions in the theoretical modeling used to generate the
synthetic dataset. Benchmarking the results using independent
diagnostics can be one way to probe the applicability of these
ML models to real experimental data. However, as mentioned
earlier, independent measurements are not always possible,

Fig. 8. Sensitivity of the predictions of density and temperature to variations
in the spectral intensity value at different wavelengths for a randomly chosen
intensity spectrum from the test set.

and the uncertainty in collisional-radiative modeling is inher-
ent in the analysis of most spectroscopic data. As discussed
in Section IV-A, the experimental data can also be noisy, and
include background radiation and contamination by impurities.
When we use the trained ML models to make predictions
from noisy spectra contaminated with stray radiation, the
R2-scores typically fall by 10%–20%. For a given experiment,
the instrument response, the bit depth of the spectrometer, and
attenuation by the optics may also need to be properly included
in the synthetic dataset. The analysis of experimental spectra
using these methods will be pursued in a future publication.

V. CONCLUSION

We explore the use of ML methods for rapid spectro-
scopic analysis of emission spectra in the visible regime.
Our goal is to predict density and temperature in a pulsed-
power-driven aluminum plasma generated by an exploding
wire array. In contrast to previous work, which has typi-
cally focused on low-density homogenous plasmas, we aim
to diagnose a high-energy density nonoptically thin plasma,
which necessitates the use of radiation transport calculations
to accurately model the recorded intensity spectrum. These
radiation transport calculations use spectral emissivity and
opacity values computed using the collisional-radiative code
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PrismSPECT. Consistent with previous observations in explod-
ing wire arrays, we assume a constant temperature and a
Gaussian density variation (peak density n0 and standard
deviation σ ) along the diagnostic LOS.

The radiation transport solver is first used to directly solve a
single-objective optimization problem, which varies the values
of n0, T0, and σ to minimize the MSD between a generated
spectrum and the target spectrum. This approach provides
reliable fits to the target spectrum, robust to noise and stray
line radiation; however, it can be time intensive, which limits
its usefulness for rapid or real-time analysis of large datasets.

We then use the radiation transport solver to generate a
[2500 × 400] dataset of synthetic emission spectra, and we
compare the performance of different ML models on their
ability to predict density, temperature, and σ from the given
intensity spectra. The AutoGluon model performs best, with an
R2-score of roughly 98% for density and temperature predic-
tions. Simpler models (RF, KNN, and DNN) also exhibit high
R2-scores (>90%) for density and temperature predictions,
showing the potential of ML models in providing rapid and
accurate analysis of spectral data. However, the prediction of
σ is relatively poor, which is typical of radiation transport
problems, and is related to the relatively smaller sensitivity
of the optical depth on this parameter, when compared with
the peak density n0. The performance of the AutoGluon model
was also compared with single-objective optimization by mak-
ing predictions on a smaller subset of the test set. AutoGluon
demonstrated a performance comparable to GA-based curve
fitting, showing similar MSD and R2-scores, but requiring a
fraction of the time for evaluation.
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