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Error Estimation for Plasma Power Deposition in
Tokamak First Wall Designs

Wayne Arter , Senior Member, IEEE

Abstract— Accurate computation of power deposition is
expected to be critical for the successful design of plasma-facing
components (PFCs) in reactor-scale magnetic confinement
devices. The work provides analysis and model computations
to help explain the high levels of accuracy obtainable using
relatively coarse meshing of PFCs to treat cases with sharp-edged
shadowing of one PFC by another. It emerges that even small
misalignments of the surface grid with respect to the shadow
edge or “terminator” may greatly improve the accuracy to which
the total power to the tile is calculated, hence a strategy for
error control emerges which emphasizes meshing with different
constraint rather than different size of triangulation.

Index Terms— Accurate design, plasma-facing components
(PFCs), power deposition, tokamak.

I. INTRODUCTION

EXPERIENCE with magnetically confined hot plasmas
indicates that a significant fraction of the power may

escape through turbulence effects toward the walls of the con-
finement device. The associated leakage mechanism is indeed
likely to be exploited to allow for Helium “ash” removal
in a fusion reactor. Further, although it is expected that in
steady-state reactor operation, power in the escaping particles
may be diffused by interaction with a layer of largely neutral
gas, most reactor designs envisage startup and ramp-down
situations where the hot plasma contacts the plasma-facing
components (PFCs) of the device walls, and scenarios where
the neutral “insulation” may be transiently ineffective. In either
case, experiment indicates that the power directly deposited on
the PFCs by the particles may be concentrated in a relatively
small region. The turbulent nature of the mechanism makes
it difficult to be precise about the size to be expected in a
reactor-scale device—early estimates indicated that the power
density could be damagingly intense unless the PFCs were
carefully designed, and it remains a potential constraint on
reactor operation.
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Tools such as the SMARDDA-PFC program from the
SMARDDA modules [1], [2], [3] are in routine use to support
the design of PFCs in reactors based on the principle of
the tokamak magnetic confinement device (see [4], [5], [6],
[7]). Given the potentially critical nature of the code output,
it is important, particularly when λq , the width of the region
of which power is lost, becomes narrow, to be sure that
power is accurately deposited. Leaving aside questions of the
accuracy of the physical model, for cases where λq is of
order 5–10 mm, it is a concern that the PFCs which are
separately of meter-scale, are sufficiently accurately repre-
sented in the geometrical model. Customarily, the PFCs are
represented as by a triangulation of their surfaces, which
the preceding estimates suggest might each need millimeter-
scale sampling and thus contain a million triangles. For each
triangle, a fieldline is traced using an adaptive Runge–Kutta
integration, to determine whether it is shadowed by other
triangles. Thus, even though the SMARDDA algorithm for
testing for intersection is relatively sophisticated, cost scales at
least as strong as the product of the number of triangles tested
and the average cost of a fieldline integration. Computation
times even for one PFC on a desktop machines may therefore
easily exceed the 10 s or so regarded as a comfortable limit
for an interactive design capability. Furthermore, most design
questions normally involve a significant fraction of a first wall
composed of 100–1000 PFCs.

This potentially overwhelming cost was anticipated by
Arter et al. [2] in that a meshing interface was implemented
that allowed for refinement of each triangle by up to two
successive factors of four, wherein each inserted point was
located “on” the geometry produced by the computer-aided
design (CAD) system. It was planned that eventually refine-
ment might proceed only in regions where the surface power
density distribution Q varied rapidly. However, this was never
implemented and the interface became neglected in favor
of meshers that produced a single level of triangulation.
The switch was possible because experience as illustrated in
Section II indicated that, at least the total power PT deposited
on the PFCs may be accurately accounted for on triangulations
which are centimeter-scale. The accuracy to which the total
power deposited on a PFC tile may be calculated by coarse
meshes is upon consideration remarkable, when it is remem-
bered that in case of a sharp-edged shadow thrown by one
PFC on another, quadrature involves a discontinuous function.
Under such circumstances, results are expected to be no better
than first-order accurate (see Section III), thus for meshes with
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triangle side of order, the profile scalelength, order unity errors
might naively be expected.

Since the present computational strategy does not allow
for selective mesh refinement, computing PT is analogous to
pixel-based computer graphics rendering problems, such as
illustrated in Appendix A. However, in the PFC context, the
“pixels” are triangular not rectangular and may have different
sizes, shapes, and orientations. There is a good deal known
about locating edges in pixellated images, edge information
which could be exploited to produce more accurate quadrature,
except that the literature deals with regular planar tessel-
lations, and therefore does not seem easily transferable to
more irregularly meshed 3-D surfaces. Moreover, the question
of quadrature over pixels does not really arise in computer
graphics, cf. the treatment of sampling in [8, Sec. 7].

The most relevant work found is that of Kamgar-Parsi and
Kamgar-Parsi [9], who consider statistical measures of approx-
imation accuracy only for differentiable functions, restricting
attention to information from pixels forming regular planar
tessellations with triangles, squares, and hexagons. Kamgar-
Parsi and Kamgar-Parsi [9, Fig. 2] imply that triangles have
poorer approximation properties than squares that in turn
perform worse than hexagons. The current meshing interfaces
for complicated surfaces remove any shape other than triangles
from consideration, and Kamgar-Parsis’ work indicates that it
could be worthwhile to consider using them in a hexagonal
pattern in addition to the Union Jack pattern previously
employed [2] (see Section IV-A).

For these two tessellations with specially aligned shadow
edges, Section IV-B describes the theoretical results that
bear out the pessimistic estimates and serve a basis for
cross-checking calculations made by the specially written code
of Section V-A. The new IPROG software is capable of dealing
with arbitrary configurations of terminator and triangulation
and demonstrates that generically these dramatically reduce
the error in PT . The reasons for the reduction is traced in
Section V to a quasi-Monte-Carlo (QMC) sampling of Q
effected by nonalignment. The concluding Section VI contains
a summary.

II. PREVIOUS PFC COMPUTATIONS

Tests of the ability of SMARDDA-PFC to conserve total
energy, equivalently total power in the model context, have
been performed separately for many of the different tokamaks
considered. The most detailed sensitivity studies were per-
formed for the JET tokamak, which if not fully reactor-scale
has a long history of experiment, hence the focus here on
this device. A study denoted as 271.1 is representative and
is described in detail in Appendix A. Although the Eich
profile is used in the SMARDDA-PFC calculations, the
profile parameters are such that to a fair approximation, the
power deposition outside the last closed flux surface (LCFS) at
midplane is an exponential with a fall-off length λq = 17 mm.

The total power to be deposited is 10.2 MW, but to limit
computational expense, attention was restricted to one 15◦

segment of the divertor, whence 425 kW might have been
expected. However, the smallest gap at midplane between
the LCFS and the first wall is approximately 5 cm which

Fig. 1. Power deposition Q in MWm−2 for a 15◦ toroidal segment of JET
divertor in magnetic field eqid = 271.1 as described in the text, for (a) coarsest
and (b) finest griddings considered. The tile rows are labeled in (a). The
plasma is sited above the divertor geometry as indicated by Fig. 2.

is only 3λq ; thus, a fraction e−3
≈ 0.05 of the power is

unavailable for assignment to fieldlines in the SMARDDA-
PFC computation and a value of PT ≈ 400 kW is found in
consequence (this truncation of the exponential profile would
have to be treated by a linear scaling of Q values by ≈1.06 in
the event that surface temperature rises were to be calculated
but for present purposes, it is adequate simply to regard PT as
being reduced). Plots of the power deposited on the divertor
are of interest (see Fig. 1), where it will be seen from T6 in
Fig. 1(b) that shadowing leads to sharp cutoffs both in the
toroidal direction (decreasing y in the figure) and the radial
direction corresponding to increasing x . Although the former
is a commoner situation, the radial cutoff is also potentially
relevant to reactor operation, and the more challenging because
Q is rising exponentially fast at cutoff, hence this latter
situation will be the focus of investigation herein.

For the specified equilibrium, the tile row handling peak
power is that denoted T6, where triangle side-length h1 is
estimated using ParaView [10] by sampling a number N1

of triangles on the exposed surface, calculating their total
area A1 and using h1 = (A1/(2N1))

1/2. Four calculations
were performed, and avoiding tabulation, the results expressed
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as pairs “(h1 in mm, PT in kW)” were (16 432), (10 390),
(8406) and (3397). It will be seen that although h1 ≈ λq ,
the SMARDDA-PFC-ParaView combination gives a value
of PT within 10% of the likely true value, whereas naive
estimates h1/λq of error in Section III are an order of
magnitude larger. This unexpected accuracy is a feature of
many SMARDDA-PFC calculations, and its explanation is
the main aim of this work.

III. NAIVE ERROR ESTIMATES

SMARDDA-PFC’s principal role is to decide whether a
given triangle is shadowed by another one, for which the
criterion is that the barycentre lies in the “lit” rather than
the shadowed region. The code then assigns a single value
of power density Q = Qi to each illuminated triangle i ,
from which the total power on a tile is calculated as a simple
area-weighted sum of Qi

PT = 6i Qi Ai (1)

where Ai the triangle area. The overall dimensions of each
tile are of order 200 mm or more, meshed with as few as
200 triangles in the JET examples of Section II. ITER tiles
have typical dimensions of order a meter, and this size was
used in the computations of Section V-A as more reactor-
relevant.

The discussion of Section II covers mesh sizes up to 16 mm,
whereas the midplane Q-profile has an Eich profile, which
falls off as R > Rm increases at a rate close to exponential
over a lengthscale λq = 17 mm, and drops to zero in R < Rm

with a lengthscale of 1.1 mm. Both these lengths are, unless
the discharge is limited, appreciably shorter than those which
are realized on the PFCs, for two reasons, flux expansion and
due to the effect of projection on the surface.

The result follows from elementary geometrical consider-
ations given the power deposition formula, which say in the
case of the exponential profile is given at midplane as

Q ∝ exp(−(R − Rm)/λq), R > Rm (2)

where suffix “m” denotes a quantity evaluated at the largest
major radius (R = Rm) of the LCFS. Elsewhere for ψ > ψm

Q ∝ exp
(

−
(ψ − ψm)

λq Rm Bpm

)
(3)

where ψ is the local value of poloidal magnetic flux and
Bp = |∇ψ |/R is the strength of the poloidal magnetic field
in Wb/rad. Suppose a surface with unit normal n to have an
arc length coordinate s2 in a vertical plane through the device
major axis, i.e., a poloidal plane, so that

∇ψ · n × eφ =
∂ψ

∂s2
(4)

where eφ is the unit vector in the toroidal direction, hence

∂ψ

∂s2
= |∇ψ | sin θp = RBp sin θp (5)

and thus

1ψ ≈ RBp sin θp1s2 (6)

Fig. 2. Flux surfaces for eqid = 271.1, illustrating the angle θp . This is
the angle at intersection between made between the outline or silhouette of
the JET PFCs shown in green and the purple contours of flux as proxies
for projections of fieldlines onto a poloidal plane. Hot plasma lies in the
region above and bounded by the lowest concave upward flux contour, which
represents the LCFS ψ = ψm , passing through the midplane Z = 0 at
R = Rm . Typical values of θp are seen to be θp ≃ 30◦, ranging up to
approx. 60◦ at bottom left.

where angle θp is defined in the poloidal plane (see Fig. 2).
Substituting in (3) for ψ − ψm = 1ψ from (6), leads to a

formula for the profile spreading length over the surface

λ f =
λq

sin θp
×

Bpm Rm

Bp R
(7)

where it is important to note from Fig. 2 that the size of θp may
be much greater than θ , the angle between the total magnetic
field and the surface normal. The product of the last two terms
in (7) will be seen from the definition of Bp to give a quotient
of values of 1ψ at midplane and at the PFC surface, i.e.,
the flux expansion. In conventional tokamaks, this is often not
much more than one, except near the X-points, as may be seen
from use of the circular cylindrical formula for poloidal field

Bp =
µ0 Iφ
2πr

(8)

where Iφ is plasma current, and if (r, θ) are cylindrical
coordinates about the axis through the plasma center, R =

R0 + r cos θ so that

RBp =
µ0 Iφ cos θ

2π
+
µ0 IφR0

2πr
(9)

so that the product RBp generally changes more slowly even
than Bp as a function of r . The projection effect may be
seen from the flux plots to be relatively small for most of
the PFCs where θp ≈ 30◦ translates into a factor of only
1/ sin(30◦) ≃ 2.

The preceding arguments suggest that λ f may nonetheless
be of order triangle sidelength h1 = 16 mm, whence the
simple estimate of first order accuracy∝ h1/λ f still points
to gross inaccuracy in the calculation of PT . The immediately
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Fig. 3. Illustration of pixel patterns. (a) “Union Jack” pattern. (b) “Hexago-
nal” pattern. Dots correspond to the barycentres of the triangles. Note in both
cases that the “unit cell” of the pattern has a horizontal dimension h = 2h1,
where h1 is the length of a side of the triangle. Coordinate x increases from
x = 0 at far left, and may be identified with the direction of flux variation,
implying the vertical coordinate corresponds to the toroidal direction.

following section serves to quantify and confirm this high level
of error.

IV. MESH-ALIGNED SHADOWING

A. Patterns

Fig. 3 shows the two triangular patterns of pixels used
in the present study. Note that the “hexagon” pattern has in
fact been generated by the shearing of a quadrilateral unit
cell. There are well-known to be, in group theoretic terms,

17 wallpaper patterns (see [11, Sec. 26]), in which sense
these two patterns are distinct, as the Union Jack is classified
as p4mm whereas the hexagons area in class p3m1. The
remaining 15 patterns are ruled out, either because they involve
quadrilaterals, or because the relevant meshing capability is
unavailable. Note that most tiles are not precisely rectangular
because they form part of an axisymmetric device surface,
hence even the “Union Jack” meshing of JET PFCs varies
significantly from the idealization shown in Fig. 3, while the
more usual Delaunay meshing may be very different from the
regular hexagonal pattern drawn.

B. Theory

For the regular pixel patterns of Fig. 3 with the shadow edge
aligned with the vertical, the integrated power deposited by the
exponential profile may be calculated analytically, using the
properties of a geometric progression (GP). It is convenient
to work in terms of the horizontal coordinate normalized
by λ f , i.e., x/λ f → x . Let the shadow edge be at x = d .
Imagine for convenience and without loss of generality that
|d| is close to zero. Each triangle has the same area so
the quadrature equation (1) reduces to a summation. The
horizontal dimension of the tile may be assumed sufficiently
large that the power deposition Q is negligible at large x ,
and for definiteness suppose that the “height” or lateral y
dimension of the tile is b. Analytic evaluation of the total
power deposition per cell height gives simply

Ia =

∫
∞

0
exp(−x)dx = 1. (10)

1) Union Jack Mesh: For the Union Jack mesh, each
triangle has the same area A1 = h2/8 = h2

1/2, but the
triangle barycentres are not uniformly distributed in x , lying
at |x | = h1/3 = h/6 and |x | = 2h1/3 = h/3, but not at
distance |x | = h1 = h/2 from the left-hand edge of the
pattern in Fig. 3(a). Periodicity in x implies that it may be
assumed that −h/6 < d < h/3. Over a row of Union Jack
flags, the quadrature sum IUJ(d) thus takes two different forms,
depending whether the shadow boundary lies closer to edge
or the center of the flag, precisely

IUJ1

(2A1)
= Q(h6)+ Q(h6 + h/6)+ Q(h6 + h/2)

+ Q(h6 + 2h/3)+ Q(h6 + h)+ · · ·

− h/6 < d < h/6, h6 = h/6 − d (11)
IUJ2

(2A1)
= Q(h3)+ Q(h3 + h/3)+ Q(h3 + h/2)

+ Q(h3 + 5h/6)+ Q(h3 + h)

+ · · · h/6 < d < h/3, h3 = h/3 − d (12)

where h3 and h6 have been introduced to simplify expressions
which include an offset d measured with respect to the
left-hand edge in Fig. 3(a). Remembering the normalization of
the x-coordinate by λ f , Q(x) = exp (−x) for the exponential
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distribution. Each sum is then seen to consist of two GPs, thus

IUJ1

(2A1)
= e−h6

(
1 + e−h/6

+ e−h/2
+ e−2h/3

+ e−h
+ · · ·

)
,

− h/6 < d < h/6 (13)
IUJ2

(2A1)
= e−h3

(
1 + e−h/3

+ e−h/2
+ e−5h/6

+ e−h
+ · · ·

)
,

h/6 < d < h/3 (14)

which on rearranging give

eh6
IUJ1

(2A1)
= 1 + e−h/2

+ e−h
+ · · ·

+ e−h/6(1 + e−h/2
+ e−h

+ · · ·
)

− h/6 < d < h/6 (15)

eh3
IUJ2

(2A1)
= 1 + e−h/2

+ e−h
+ · · ·

+ e−h/3(1 + e−h/2
+ e−h

+ · · ·
)

h/6 < d < h/3 (16)

whence, for a sufficiently wide tile the GP sums give formulas

IUJ1

h
=

h
4

ed−h/6 (1 + e−h/6)

(1 − e−h/2)
, −h/6 < d < h/6 (17)

IUJ2

h
=

h
4

ed−h/3 (1 + e−h/3)

(1 − e−h/2)
, h/6 < d < h/3. (18)

Note that plotted as a function of d, two discontinuities in the
quadrature IUJ(d) per unit cell.

For small h, the integrals per unit height are approximately

I1 ≃ (1 + d − h/6)
(1 − h/12)
(1 − h/4)

, −h/6 < d < h/6 (19)

I2 ≃ (1 + d − h/3)
(1 − h/6)
(1 − h/4)

, h/6 < d < h/3 (20)

which simplify further as

I1 ≃ (1 + d), −h/6 < d < h/6 (21)
I2 ≃ (1 − h/4 + d), h/6 < d < h/3 (22)

from which it follows that estimates of I range from 1−h/6 to
1+h/6, to be compared with the analytic value Ia = 1. Thus,
although the relative error is, as expected O(h), the coefficient
is favorable, so that inaccuracy, remembering the scaling of
coordinates above, may be estimated as of order 1/8(h1/λ f )

in the mean where h1 is the dimensional value of triangle
side.

More precisely, define for I (d) the mean absolute error as

ϵma =
1
h

∫ h

0
|I (x)− 1|dx =

2
h

∫ h/2

0
|I (x)− 1|dx (23)

for a generic unit cell with twofold symmetry. For the Union
Jack pattern,

ϵmaUJ =
2
h

· 2
(∫ h/6

0
xdx +

∫ h/12

0
xdx

)
=

5h
72
. (24)

Hence, ϵmaUJ = 5h1/36 ≈ 0.139 h1.

2) Hexagonal Mesh: For the hexagonal mesh, each triangle
has the same area A2 = h2

√
3/16 = h2

1

√
3/4, and the triangle

barycentres are now uniformly distributed in x , lying at x = 0,
x = h1/2 = h/4, x = h1 = h/2 and at x = 3h1/2 = 3h/4.
It may be assumed that 0 < d < h/4. Over a row of hexagons,
the quadrature sum IHX(d) thus takes only the single form

IHX

(2A2)
= Q(h4)+ Q(h4 + h/4)+ Q(h4 + h/2)

+ Q(h4 + 3h/4)+ Q(h4 + h)+ · · · h4 = h/4 − d.

(25)

Remembering the normalization of the x-coordinate by λ f ,
Q(x) = exp −x for the exponential distribution, the sum over
a single GP, thus

IHX

(2A2)
= e−h4

(
1 + e−h/4

+ e−h/2
+ e−3h/4

+ e−h
+ · · ·

)
(26)

whence, for a sufficiently wide tile, the GP sum formula yields
per unit height

IHX

h
√

3
2

=
h
4

ed−h/4 1
1 − e−h/4 . (27)

Note that plotted as a function of d, a discontinuity
every h/4 in the quadrature IHX(d). For small h, the integral
per unit height is approximately ed−h/4(1 + h/8), and since
the minimum value of ed−h/4

≈ 1 − h/4, the range of values
is approximately 1 − h/8 < I < 1 + h/8 to be compared
with the analytic value Ia = 1. Thus, although the relative
error is, as expected O(h), the coefficient is favorable, so that
inaccuracy, remembering the scaling of coordinates above,
may be estimated as of order 1/8(h1/λ f ) in the mean where
h1 is the dimensional value of triangle side. Indeed, using the
definition equation (23), since there is fourfold symmetry

ϵmaHX =
4
h

· 2
∫ h/8

0

(
h
8

− x
)

dx =
h
16
. (28)

Hence, ϵmaHX = h1/8 = 0.125 h1.

C. Quadrature by Trapezoidal Rule

It will be seen that in the presence of a boundary located
between sample points, it is better to use the simple sum
over central points equation (1) rather the trapezoidal rule for
integrating a function. Consider first the simple sum applied
to the problem of equidistant sample points separated by a
distance h, then the first point within the illuminated region
is subjected to a power density value of Qi = exp (d − h/2)
(−h/2 < d < h/2), so the approximation to the integral is

ISP

h
= ed−h/2(1 + e−h

+ e−2h
+ e−3h

+ · · ·
)

(29)

whence, for a sufficiently wide tile, the GP sum formula yields
per unit height

ISP = hed−h/2 1
1 − e−h

= hed 1
2 sinh h/2

≈ ed(1 +O(h2)
)

(30)
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and on averaging over −h/2 < d < h/2, the simple sum ISP
is unity to order h2. Contrast this result with the fact that
the trapezoidal rule simply reduces the (leading) factor of
unity in (29) to one-half, supposing that it is most consistent
simply to omit the contribution of any h-interval in which
the shadow edge lies. Hence, the trapezoidal rule in the mean
will give a smaller value than the expected result by a factor of
1 − (h/2)e−h/2.

V. ARBITRARY SHADOWING

A. Computations

The repository SMARDDA-QPROG [12], designed pri-
marily to provide a test harness for new SMARDDA modules,
contains a suitable pair of skeleton objects for producing code
SMARDDA-IPROG to test the quadrature or “Integration”
properties of different mesh arrangements. In the present case,
although it is unlikely that the new objects would be incor-
porated in the core SMARDDA software, it is still helpful
to work within software layouts and conventions familiar to
SMARDDA developers.

For the current work, following edits to qprog.txt and
bigobj.txt, the set-up script was invoked by

./qprog.bash -l QPROG=sumtot Q=i \
STR="integral_estimates" \
BIGOBJ=sum BO=su BSTR="box_and_function."

The script edits qprog.f90 to give a new program sumtot.f90
with control module icontrol, and edits bigobj_m.f90
to generate an associated module sumtot_m.f90. Controls
of type inumerics are invoked in icontrol, using
inputs described in qprog.txt. The script further edits
bigobj_m.f90 to generate a module object sum_m.f90 from
the description provided in bigobj.txt, plus a second
type (sunumerics) to transfer parameter inputs described
in qprog.txt.

Thereafter, there were user edits to sumtot_m.f90, formerly
bigobj_m.f90, as follows:

1) sumtot_dia to call object diagnostics control routine
sum_dia;

2) sumtot_solve to select pixel pattern and loop over mesh
displacements;

3) sumtot_write to list key input parameters to the.out file;
4) sumtot_writeg to call gnuplot output control routine

sum_writeg.
And user edits to sum_m.f90, formerly bigobj_m.f90, as
follows.

1) Add to sum_solve to implement the quadratures.
2) Duplicate sum_solve as sum_solvehex to implement the

quadratures over hexagons.
3) Add to sum_dia for new output to.log file.
4) Add to sum_writeg and copy to sum_writehexg to output

picture of tessellation to.gnu file.
Consistent with SMARDDA practice, SI units were used for
lengths, while angles were assumed to be in degrees (usually
radians could also be specified subject to use of an input
switch). The “unit cell” size h was used in input, rather than
triangle sidelength.

Fig. 4. Illustration of a misaligned shadow on “hexagonal” pattern. The hori-
zontal x-direction corresponds to the radial coordinate directed approximately
in the X -direction of Fig. 1, and the vertical to the toroidal, approximately
the Y -direction of Fig. 1.

The exponential profile, with its discontinuity at the termi-
nator, was used throughout. Each tile, consistent with ITER
dimensions, was assumed to be a × b = 1 × 1 m, with
λ f = 0.1 m, hence there were approximately ten e-folding
lengths across the tile in x , so that the total power deposited
would be expected to deviate negligibly from unity (note of
course that values O(1) MW, would be expected in practice,
but the total power may be scaled without affecting relative
accuracy of computation). The code works by assuming that
the shadow boundary is fixed to lie along the y-axis, and the
triangle pattern is rotated with respect to y by an angle β
(see Fig. 4). For perfect alignment of the shadow boundary
with the y-axis (i.e., normal to one cell boundary), lateral
dimension b is irrelevant, but when there is misalignment by
an angle β > 0, then the number Ny of cells in y is important,
Ny = b cosβ/h = 2b cosβ/h1 for the Union Jack pattern,
and Ny = 2b cosβ/(

√
3h) for hexagons. Although this implies

that there are approximately 14% more hexagon rows, this is
not felt likely to be significant in the present context.

The variation of the computed integral I as d varies for
β = 0 is plotted in Fig. 5 for the Union Jack meshing and in
Fig. 6 for hexagons, showing both qualitative and quantitative
agreement with the analysis presented in Section IV-B. From
the data produced by these computations are derived the max-
imum relative error as h and β vary for the most significant
calculations performed using SMARDDA-IPROG, which are
listed in Table I. For the Union Jack tessellation, the errors are
visualized as a function of d for different mesh spacings in
Fig. 7 and for different mesh orientations in Fig. 8. The results
at different orientations of the hexagonal mesh are shown in
Fig. 9. The last is notable in that the rotation through 30◦ aligns
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Fig. 5. Integral as a function of mesh displacement d for the mesh-aligned
shadow boundary. Union Jack pixellation, h1 = 0.01.

Fig. 6. Integral as a function of mesh displacement d for the mesh-aligned
shadow boundary. Hexagonal tessellation, h1 = 0.005.

Fig. 7. Integral as a function of mesh displacement d for different values of
mesh resolution listed on the figure, β = 2.5◦. Union Jack pixellation.

the shadow boundary with nonhorizontal hexagon edges, and
recreates the nonuniform sampling in x found for the Union
Jack case.

The small size of the error for many of the tilted cases is
understood because there are now up to Nb different sample
values corresponding to each of the points in the “vertical”
cases. Provided the tilt is such that a region h1 distant from the
terminator is well sampled, i.e., b| sinβ| ≥ h1, equivalently
β ≥ h1/b (but not a special value such as β = 30◦ in

Fig. 8. Integral as a function of mesh displacement d for different values of
mesh rotation listed on the figure. Union Jack pixellation, h1 = 0.03.

Fig. 9. Integral as a function of mesh displacement d for different values of
mesh rotation listed on the figure. Hexagonal tessellation, h1 = 0.005.

the hexagonal mesh), the resulting sampling of Q(x) will
generically be QMC, analogous to lattice rule evaluation of
the integral [13] (see Appendix A). For such rules, an error
scaling as (ln Nb)

2/Nb is expected, and since Nb varies from
Nb = 32 when there are three points in λ f , to Nb = 200 when
there are 20, reductions of up to two orders of magnitude in the
quadrature error found at β = 0 are expected and confirmed
by Table I. The minimum value of β needed for the increased
accuracy is seen to be modest, as 1/32 rad corresponds to 2◦.
Of course, for small β, there are also “magic” values of the
tilt which effectively provide uniform sampling at a separation
of Nt h1 sinβ, where Nt is a small integer, giving an error
∝Nt/Nb, provided Nb| sinβ| ≃ Nt .

That quasi-random sampling is effected by the tilt, is sup-
ported by 1-D calculations comparing both Monte-Carlo and
QMC evaluation of the integral of the decaying exponential.
The random numbers for the Monte-Carlo sampling were
provided by the “Luxury” pseudorandom number genera-
tor of Marsaglia and Zaman, implemented by James [14].
Quasi-random numbers were provided as a Halton sequence
(see [15]). The source code for both generators was patched
into SMARDDA-IPROG to provide a comprehensive record.
For the bulk of the tilted calculations, Nb = 5000, hence this
number of samples was used in the numerical experiments.
For both the pseudorandom and the quasi-random generator,
sequences of ten estimates were made of the integrated power
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TABLE I
RESULTS OF COMPUTATIONS

and its average deviation, minimum deviation and maximum
deviation from unity were recorded. For the average deviation,
the pseudorandom calculations gave a value of 0.0130 com-
pared to 0.0007 for quasirandom, and the maximum deviations
were, respectively, 0.04 and 0.003. Comparison with the
values in Table I indicates that the quasirandom statistics give
much the better fit (it is worth noting that the estimate of
expected QMC error in Appendix A appears to be particularly
unfavorable relative to MC error, since the theory predicts only
a 70% reduction, not the factor of approximately ten deducible
from Table I).

VI. CONCLUSION

The work has demonstrated that relatively coarse meshes,
using triangles of side h1 ≈ λ f /3 may give tile-integrated
powers PT accurate to within 1% provided that the following
holds.

1) The mesh is not specially aligned with the shadow
boundary, so that edges deviate by at least an amount of
order h1.

2) The shadow boundary is of order ten or more h1 in
length.

Overall, there appears to be little difference in accuracy
between the Union Jack and the other triangular mesh pattern.
However, it is evident that a good strategy for verifying
convergence is to produce meshes with different constraints,
most obviously to drive mesh alignments with differently
oriented vector fields. In practice, relatively small changes
in the initial node spacing along an edge or in mesh quality
criteria such as the minimum allowed angle, will often be seen
to produce suitable effects in meshes on 3-D PFC surfaces.
Shadow edges which curve differently to the pattern of surface
tessellation are also similarly expected to be beneficial.

The location and maximum value of Q is less important
for the reason that it is expected that it is maximum value of
temperature Tmax is the most important quantity as affecting
the material properties of the surface. Computed Tmax is
sensitive to the properties of the (probably) metallic material
used in its construction, so that proper consideration of local
accuracy requires study of a coupled problem which is outside
the scope of the present work. Arguably for the relatively
specialized case of a strike-point (effectively a shadow edge)
sweeping over 3 cm radially, conserving total Q is more

critical than locating Tmax precisely. There is any event, the
practical constraint that thermal calculations normally involve
a 3-D mesh which computational costs will demand have edge
lengths much greater than a 2-D triangulation. Nonetheless,
elementary considerations imply, at least in the case of sharp-
edged shadows, that similar conditions as for PT apply to
achieve improved accuracy for the maximum Q computed
value on a tile. The extremum value on the mesh will be given
by the triangle with its center nearest the shadow edge, so it
is important to have a good spread of central point distance
about the terminator.

It is necessary to conclude with the warning that not all
shadowing is as simple as has been assumed, and particu-
larly for one-off calculations, a successive refinement strategy
should always be considered. One common example where
small triangles may be essential to capture key features of the
deposition is a case where a PFC tile face just fails to shadow,
thereby slightly exposing, the edge of an adjacent tile. More
subtle effects are conceivable.

APPENDIX A
PROVENANCING OF JET WORK

The presence in the Appendix rather than the main text,
of details of provenance, reflects the fact that the detailed
reproduction of a particular JET case is not crucial in the
present context where a generic effect is claimed. The main
provenancing of the JET studies mentioned is through a git
repository local to UKAEA, a clone of which can be provided
on request. The major subdirectories of the repository all
have README files to describe their content and in some
cases, point to READMEs in their subdirectories. To predict Q
deposited on the first wall, the SMARDDA-PFC software
requires three main pieces of information, namely:

1) magnetic equilibrium;
2) parameters describing power deposition;
3) geometry of first wall.
The magnetic equilibria used in the JET studies are saved

as eqdsk files in subdirectory Data/Equilibrium of the
repo and the file provenance.txt describes how they were
obtained. File g_p90271_t49.0_129 × 129.eqdsk defines the
equilibrium 271.1, which has toroidal magnetic field BT =

2.84 T and I ≈ 2.4 MA.
The parameters λq = 0.017 m S = 0.0011 m and Ptot =

10.2 MW describing power deposition for the JET pulse
#90271 at T = 49 s were provided by Silburn et al. [16] of
UKAEA using software written by him for parametric fitting
to JET thermal data. The supply of the JET divertor geometry
is described in subdirectory Data/STP.

For completeness, it is recorded that JET pulse #90271 has
an input neutral beam power of 20 MW, and is a strike-point
sweeping experiment, i.e., the current varies by a percent or
so such that the flux contours move back and forth by approx-
imately 3 cm with a frequency of 4 Hz. Additionally also, it is
noted that the Eich power deposition profile employed has the
form at midplane, in the above parameters, of

fi (x) = exp
(

s2
−

x
λq

)
erfc

(
s −

x
2λqs

)
(31)
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Fig. 10. Related computer graphics sampling problem. Each square of the
lattice corresponds to a pixel used to render the image, and in the simplest
algorithm, the pixel will be regarded as “full” of circle if its center lies within
the circle boundary.

where s = (S/2λq), and x = (1ψ/Rm Bpm), and the erfc
function is defined as

erfc(z) = 1 −
2

√
π

∫ z

0
exp (−x2)dx . (32)

It is mathematically striaghtforward to normalize the profile so
that Ptot leaves the midplane, and to show that the profile rises
from zero over a distance of order S to its peak and thereafter
falls off approximately exponentially at a rate λq if S ≪ λq .

APPENDIX B
RANDOM AND QUASI-RANDOM NUMBERS

Monte-Carlo methods have a long and excellent history
in many areas of science and technology, including plasma
physics. Nevertheless, Monte-Carlo methods have the draw-
back that their error ϵN is usually

ϵN ∝ 1/
√

Nr (33)

where Nr is the number of randomized samples used in the
calculation. Hence, compared to a deterministic method of
order p accuracy in d dimensions, with

ϵN ∝ 1/Nr
p/d (34)

they may exhibit very much slower convergence when p >

d/2. Conversely, this is the reason why Monte-Carlo is pre-
ferred for integration of functions of many variables, i.e., high
d-dimensionality integrals.

There are other situations where order p methods may be
of less utility, notably where the quantity being calculated
is badly behaved. An example is integration when either the
integrand or the domain of integration is not smooth, so that
theoretical degree of convergence is not achievable, instead

ϵN ∝ 1/Nr
p′/d (35)

where p′ < p. When estimating area, typically p′
= 1,

as may be seen from the problem of estimating the area of
a circle using a uniform square lattice of integers with side
2nL , so Nr = (2nL)

2. Suppose that the circle is comparable
in size to the entire lattice, but fitting within it, i.e., with radius
a0 = c1nL , where c1 < 1 (see Fig. 10). Assuming a0 ≫ 1,
the circumference of the circle intersects of order 2πa0 lattice
cells. The average error associated with each boundary cell
may be estimated as 0.5, hence the total error in area as πa0,
and the relative error in area is 1/a0. Since Nr = (2a0/c1)

2,
it follows that ϵN ∝ 1/Nr

1/2 in agreement with (35).
The above difficulties with both Monte-Carlo and deter-

ministic methods have motivated the development of QMC
methods [13], which have typically the property

ϵN ∝ (log(Nr ))
d/Nr . (36)

The principal source for QMC methods is the book by
Niederreiter [13], which however is highly mathematical in
tone.

A good way to understanding is to start by considering
the subject of quadrature, specifically looking at an integral
over two dimensions representing the area of a peculiarly
shaped finite object. Suppose the object fits in the unit square.
Mathematically, it is defined by

f (x) =

{
1, x within and on the object
0, otherwise.

The required area integral (and indeed for general integrands)
is then

I =

∫
f dτ (37)

where dτ is a volume element in d-dimensional space (so
dτ = dxdy in 2-D). The Monte-Carlo approximation to the
above integral equation (37) is defined as

IN =
1
Nr
6

n=Nr
n=1 f (xn) (38)

where xn are vectors of random variables on the unit inter-
val [0, 1). Any textbook (e.g., [13, Sec. 1]) will explain that
the error in the integral is

ϵN = σ( f )/
√

Nr (39)

where σ( f ) is the standard deviation of f in the region of
integration.

The error in the approximation equation (38) may be
expressed in terms of the “point set discrepancy” or discrep-
ancy for short (the discrepancy for randomly distributed points
is ∝ 1/

√
Nr , hence (39)). Unlike deterministic integration

methods where the quadrature points have fixed locations and
so the error depends only on the form of the function f , for
Monte-Carlo the error depends on how the sample points are
distributed. Hence, the use of discrepancy to measure error,
since discrepancy is measured with respect to a certain set of
subintervals, specifically 2-D rectangles within the unit square.
Precisely, consider the errors made in calculating the area of
the object within each rectangle in the set, then discrepancy
measures the largest such error. There are in fact two closely
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related measures of discrepancy, depending on whether the
subintervals all include the origin (“star discrepancy”) or
whether the set consists of all possible rectangles (“extreme
discrepancy”). The distinction is not of great importance
because the two measures lie within a factor of two of each
other.

In 1-D, it is easy to show that the discrepancy, however,
measured is least DN ∝ 1/Nr when the sample points xn

are uniformly distributed. The key fact is that there exist
sets of points (“low discrepancy sequences”) for which the
discrepancy does not increase very much as the number of
dimensions increases.

The simplest of these sets to describe is that due to Halton.
In 1-D, it is identical to a van der Corput sequence, which
involves generating numbers on the unit interval, using the
reversed bit patterns of the positive integers. It is best illus-
trated by example. Thus, 2 has the binary representation 10,
so the second element in the van der Corput sequence is .012 or
1/4, 3 = 112, so the third element in the van der Corput
sequence is .112 or 3/4, 4 = 1002, so the fourth element in
the van der Corput sequence is .0012 or 1/8. Hence, the first
seven elements of the van der Corput sequence are (in eighths)

4, 2, 6, 1, 5, 3, 7. (40)

It will be seen that there is a sort of fractal pattern about the
above distribution. Van der Corput sequences may be defined
for any prime b, by representing the integers in the base b, then
using the reversed representation as above to generate values
on the unit interval. The Halton sequence in 2-D contains pairs
of numbers, the first in the nth pair being the nth element
from a van der Corput sequence with base 2 and the second
being the corresponding element in a base 3 van der Corput
sequence. In fact, any two distinct primes could be used, and
the generalization to many dimensions should be obvious.

The discrepancy of the Halton sequence in 2-D is bounded
by a formula which may be approximated as

ϵN = A2(ln Nr )
2/Nr (41)

where A2 = 0.66. It will be seen that this is smaller than
the Monte-Carlo value of ϵN = 1/

√
Nr for Nr > 1000.

It is therefore also competitive with uniform sampling on a
rectangular lattice of Nr 2-D points, which in general gives
an error proportional to lattice spacing, i.e., 1/

√
Nr .
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