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Abstract— A novel, automated, 2-D line-shift measurement
algorithm is presented for optical interferometry in plasma
diagnostics. By using the smoothing and leveling (SL) algorithm
as a preprocessing stage to the Fourier transform method (FTM),
the proposed SL-FTM algorithm extracts the line shift without a
priori knowledge of the spectral properties of the image, a com-
mon requirement of other FTM-based algorithms. The algorithm
is simple to implement, and demonstrated for side-on views of
plasma from exploded wires, where the interference patterns
suffer from low contrast, low signal-to-noise ratio (SNR), and
spatially varying intensity. SL-FTM and FTM are compared via
Monte Carlo simulation of noisy images with realistic background
variation. They are shown to have the accuracies of 0.019 and
0.016 lines, respectively. In addition, the cause of the accuracy
difference is studied using a modified Jaccard similarity measure.
The measure shows how SL-FTM provides a smoother phase
surface than FTM, but underestimates the maximum line shift by
up to 15%. Also, the well-known contour tracing method (CTM)
is automated as SL-CTM. The automated forms of FTM and
CTM (i.e., SL-FTM and SL-CTM) permit, for the first time, their
direct comparison for a wide range of noisy images. SL-CTM,
and by extension, CTM, achieves the best accuracy of 0.013 lines.
Finally, each method is shown to have accuracy that exceeds the
standard diagnostic accuracy requirement of 0.05 lines.

Index Terms— Contour tracing method (CTM), Fourier trans-
form method (FTM), interferometry analysis, smoothing and
leveling (SL) algorithm.

I. INTRODUCTION

OPTICAL interferometry is a powerful diagnostic tool
for high density plasmas, where the plasma frequency

is near the optical regime. It is noninvasive, accurate, with
high temporal and spatial resolution, and is grounded in the
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straightforward physical connection between number density
and refractive index. The 2-D relative phase shift is directly
related to the line-integrated electron and neutral atomic den-
sities as follows:

1φ(y, z) =
2πα

λ

∫
na dx − 4.49 × 10−14λ

∫
ne dx (1)

where na represents the atomic density, ne represents the
electron density, α is the atomic polarizability, and 1φ is the
relative interference phase shift. The constant in the second
term implies units of cm for wavelength, cm3 for polarizability,
and cm−3 for densities [1]. Often, the phase shift from neutrals
is assumed negligible in the above equation, and the total
electron content can be readily measured. Though for the
experimental conditions examined in this work, and similar
partially ionized wire explosions, direct determinations of
electron density cannot be made without a priori knowledge of
neutral density, as neither term in (1) is dominant. To measure
both densities, two interferograms are obtained simultaneously
at two wavelengths (e.g., 532 and 1064 nm), and (1) is
duplicated for each wavelength leaving two equations and two
solvable unknowns, the line-integrated atomic and electron
densities [2], [3]. However, the utility of this diagnostic tool
is hindered by the common necessity and associated error of
manual fringe to phase reckoning and the lack of algorithms
suitable for automation.

The Fourier transform method (FTM) for phase analysis
of interferograms is well known for its versatility to extract
the 2-D phase function in a wide variety of applications [4],
[5], [6]. As the fringe lines present a 2-D spatial frequency
that is modulated with the desired phase function, FTM is
similar to a heterodyne process. It demodulates the image
from the 2-D spatial frequency (represented by the reference
fringe lines) and then filters the baseband content centered
at zero frequency (dc) to recover the relative phase change
caused by the plasma. However, in order to recover the
spectral response from the dc background, FTM requires
careful selection of the spatial-carrier filter [7]. Furthermore,
FTM relies on well-defined fringe lines.

Recently, two iterative methods have been developed to
improve the 2-D phase recovery. The straightforward approach
in [8] evaluates the 2-D phase spectra of the dc term and
the bandwidth of the spatial carrier. However, the requisite
number of iterations is highly dependent on the data, and the
method suffers when the image has low contrast that occurs in
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z-pinch plasma diagnostics [9], [10], [11]. The model-fitting
iterative approach of [12] increases FTM accuracy by an order
of magnitude. However, its least squares fitting of a 36-order
Zernike polynomial is complicated and requires additional 2-D
interpolation to transform from Cartesian to Polar coordinates.
Also, the accuracy is degraded in cases of weak contrast and
spatially varying brightness in which Nakayama et al. [12] rely
on additional iterative algorithms.

The typical four-step approach to reconstruct the relative
phase from z-pinch and exploded-wire plasma interferometry
is what we refer to as the contour tracing method (CTM). The
steps are as follows: 1) measure the fringe line shifts of the
test and reference images by manually tracing the fringe lines
(or the nulls as in [9]); 2) assign integer multiples of 2π to the
traced lines representing level contours of a surface; 3) inter-
polate the set of lines (contours) to a surface representing the
unwrapped relative phase; and 4) calculate the relative phase
difference between the reference and test phases resulting from
steps 1) to 3). As described in [9] and [10], the line shift
measurement is based on a tedious visual inspection of the
image and requires use of specialized photograph and image
enhancement software to increase the clarity of the lines. Also,
according to [9], the phase assignment of step 2) is aided by
an unspecified algorithm, which is presumably a mental model
of how the analyst interprets the spatial relationship between
neighboring lines. In this work, we employ such an algorithm
for single-wire interference patterns. The surface interpolation
returns a smooth phase profile and represents the best possible
phase reconstruction from the noisy image. For comparison of
the two approaches, CTM is considered the standard.

Here, the smoothing and leveling (SL) algorithm first pro-
posed in [11] for 1-D phase reconstruction from side-on views
of single exploded-wire interferometry is modified for 2-D
fringe shift measurement. The SL algorithm is combined with
CTM as SL-CTM and with FTM as SL-FTM. Each algorithm
automatically extracts the fringe shift from monochromatic
interferograms. The SL stage reduces the fringe amplitude
variability to produce well-defined fringe lines, thus making
them easier to automatically trace for CTM. In context of
FTM, the process effectively removes the dc background term
and normalizes the fringe intensity throughout the image.
Hence, it is easier to design the spatial carrier filter for FTM
without a priori knowledge of the spectral properties of the
image and without need of iterative filtering. In the case of
diagnostic plasma interferometry, which has highly varying
brightness and weak contrast [13], the proposed SL-FTM
and SL-CTM algorithms are shown to reconstruct the relative
phase with an accuracy of ±0.06 radians (i.e., a shift error <

0.02 lines), which exceeds the standard accuracy requirement
(0.05 lines [14]) needed to recover volumetric atom and
electron densities.

In the following, Section II reviews the phase recovery
process with FTM followed by a description of SL-FTM
and SL-CTM in Section III. Section IV presents an example
with measured data and then assesses the accuracy using
Monte Carlo simulation of known interference images with
spatially varying intensity and additive noise. Also, the sim-
ulated backgrounds are adaptations of measured background

profiles from single-wire diagnostics. The detailed presentation
of SL-FTM shows how it is simple to implement without
the need of iterative optimization. Finally, Section V presents
discussion and conclusions about the underlying assumptions
and application of SL-FTM and SL-CTM.

II. RECONSTRUCTION OF THE 2-D PHASE FUNCTION

A. Interference Pattern Model

The interferometric images used in this work are captured
in the small-scale wire explosion experiment of [11]. In sum-
mary, the electrical source for the explosion is a benchtop
80-kV, 2.5-kA pulse power supply with a 10-ns rise time. The
power is coupled, in this case, to 25-µm-diameter aluminum
wires in a small vacuum chamber between brass electrodes
with ≈ 1-cm spacing. Wire explosion dynamics are captured
primarily using refraction-based optical techniques, driven by
a Q-switched Nd:YAG laser with a 10-ns pulsewidth, and
frequency doubled, so that both the 1064-nm fundamental
mode and the 532-nm second harmonic may be utilized.

The commonly used Mach–Zehnder-type interferometer
was used for this work. It consisted of a collection of lenses,
mirrors, and beamsplitters, which split the incident plane wave
(E = E0e− jkx ) into a reference beam and a probing beam
that travel through a common segment of ambient air and
then through different paths of unequal optical lengths. The
reference path is entirely in air, and the probing beam traverses
air, two vacuum chamber windows, a vacuum (<10 mTorr),
and the ionized material. The reference and probing beams
are combined at a beamsplitting cube before the camera,
focused, and after passing through wavelength and density
filters irradiate the camera as follows:

E(y, z) = E0e− jk0 L
[
e− jk0δL

+ e− jk0
∫
ℓ

n dx
]
. (2)

In (2), the reference frame is defined with x along the optical
path, and the yz plane is in the camera’s focal plane. Also, the
initial electric field strength is E0, and the plasma’s index of
refraction n is nonhomogeneous. The common path segment
has length L , and δL is the path length differential imposed
by the interferometer. However, the plasma has an irregular
cross section, and the path through the plasma has a spatially
varying length ℓ(y, z), which causes 2-D phase variation.
Finally, the conventional uniform plane wave notation in (2)
accommodates the lossy nature of the plasma region. When
lossy, the index of refraction is complex, and the imaginary
part has a sign consistent with an attenuating propagation.

The measured field intensity (I ∝ |E |
2) at the camera

includes nonideal radiometric effects caused by the beams,
optical components, and the plasma. The intensity at pixel
(y, z) is modeled as follows:

I (y, z) = a(y, z) + b(y, z) cos
[
κy y + κzz + φ(y, z)

]
. (3)

In (3), a is the background contribution, b is the fringe inten-
sity variation, and κy and κz are the spatial frequencies. The
normalized pixels in the N -bit digital image have quantized
values in [0, 1 − 2−N

] and result in a strong dc component.
However, the cumulative radiometric effects spread the spectra
of a and b causing overlap and complicating reconstruction



3572 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 12, DECEMBER 2023

Fig. 1. Unprocessed images of Al plasma at 200 ns after wire explosion
(a) 1064 and (b) 532 nm. (c) and (d) Contours of the Fourier power spectra
in dB, respective of (a) and (b). The lines are powers in dB at −13 (green),
−10 (blue), −3 (red), and −1 (black), relative to the peak at the spatial carrier.

of φ. Fig. 1(a) and (b) shows the interference images of the
1064- and 532-nm diagnostics of Al plasma at 200 ns after
wire explosion. The fringe lines have varying brightness and
low contrast but especially so in the 532-nm image.

Fig. 1(c) and (d) shows the contours of the 2-D energy
spectra of Fig. 1(a) and (b). The black contour denotes
the −1-dB level, and the levels at −3, −10, and −13 are
represented by red, blue, and green contours, respectively.
We also note how the background term a has been removed
as I −⟨I ⟩, and before applying the discrete Fourier transform
(DFT), where ⟨I ⟩ is the mean intensity of the image. If the
background is not removed, the dc energy term dominates.
By removing the dc energy first, it is easier to observe how
the spectra of the fringe line shift are generally separated
from the dc term, but often poorly without prefiltering the
images. In context of the FTM filter size, to be discussed in
the next section, the −10-dB contour shows how the residual
dc energy significantly influences the 2-D filter bandwidth,
which is critical for accurate phase reconstruction.

B. FTM Algorithm

FTM is particularly useful for surface profilometry, because
the interference patterns are based on reflection from an irreg-
ularly shaped but stable surface. The phase can be recovered
from a single image when the images have strong contrast, and
the fringe lines are generally clearly visible and reproducible.
Even if a reference image is unavailable, the phase function
can be recovered with high accuracy. However, for the z-pinch
plasma diagnostic where the plasma volume develops differ-
ently with each experiment and with varying refractive index,
the fringe lines have significant intensity variation. A reference
image is often required to provide a phase reference unlike
profilometry. In cases where the field of view is large enough
to include the segments of the fringe lines that are unperturbed,
a single image will suffice. Here, we assume that a reference
image is taken before wire explosion, and the test image is
taken soon afterward. The fringe lines of the reference image

Algorithm 1 FTM [6]
Input

I input grayscale image
Output

φ̃ unwrapped phase
Start
1. Measure spatial frequencies κy and κz

2. Demodulate I to baseband and low-pass filter as

c(y, z) = h(y, z) ∗
[
I (y, z)eiκy yeiκz z] ,

3. Recover the wrapped phase φ as

φ(y, z) = arctan
(
Im{c(y, z)}
Re{c(y, z)}

)
.

4. Unwrap phase: φ̃ = unwrap(φ)

generally align well with the fringe lines of the test image.
Therefore, we apply FTM to each image and calculate the
relative phase difference as 1φ = φtest − φref, where φref
and φtest are the recovered reference and test phase profiles,
respectively.

The conventional FTM algorithm consists of four steps
listed in Algorithm 1 [6]. The first step to measure the spatial
frequencies κy and κz can be accomplished with the 2-D DFT
or by visual inspection of the fringe line spacings along y and
z. We use a DFT process with a peak detection algorithm that
identifies the energy peak away from dc and measures κy and
κz . In the second step, the image is demodulated to baseband
and filtered as follows:

c(y, z) = h(y, z) ∗
[
I (y, z)e jκy ye jκz z] (4)

where h is an ideal 2-D rectangular window function with size
Q y × Qz , Q y = ⌈2π/κy⌉, Qz = ⌈2π/κz⌉, ⌈·⌉ is the ceiling
operation, and ∗ denotes 2-D convolution. The third step is to
calculate the phase as follows:

φ(y, z) = tan−1
(
Im{c(y, z)}
Re{c(y, z)}

)
. (5)

The last step is to unwrap the phase. In our experience
with single- and double-wire experiments, the phase unwrap-
ping was trivial, but as we expect complex interference
patterns, such as from the end-on view of multiwire z-pinch
experiments, it may be necessary to employ advanced phase
unwrapping techniques, such as phase gradients [15] or graph
cuts [16].

The main FTM principles of [6], [12], and [8] are to
demodulate the image to the baseband spatial frequencies,
where the spectrum of c = be jφ is centered at dc. When
the fringe lines are densely spaced, or have a relatively
high spatial frequency, the spectral content of c is nicely
separated from the spectrum of a as in Fig. 1(d). However,
the phase reconstruction degrades when there is significant
spectral overlap of the dc and carrier regions as in Fig. 1(c).

Fig. 2 shows the measured background intensity a and
fringe intensity variation (b =

√
c∗c) of the images in Fig. 1.

In the 1064-nm spectrum, the background a has sufficient
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Fig. 2. Background intensity a from (a) 1064- and (c) 532-nm images of
Fig. 1, respectively, and (b) and (d) corresponding fringe intensity variation b.

Fig. 3. Phase shift in units of lines reconstructed from Fig. 1(a) and (c).
(a) FTM at 1064 nm. (b) FTM at 532 nm. (c) CTM at 1064 nm. (d) CTM at
532 nm.

bandwidth that even after filtering, c and b show rippling.
The background function a and fringe intensity b represent the
varying brightness and weak contrast that cause distorted phase
profiles from FTM. Fig. 3 shows the recovered phase functions
after conversion to normalized line shift [δ = 1φ/(2π)] for
FTM and CTM. It is notable here that in Fig. 3, the phase
shift at 532 nm is nearly twice that of the 1064-nm phase
shift, indicating a dominance of the neutral term in (1), for this
particular time in the detonation. Line units are convenient for
measuring accuracy and for comparing results of FTM with
CTM, because the height of the surface δ is the line shift
observed in the interferogram. The overlapped spectra of a
and c appear in Fig. 3(a) and (b) as rippling, which degrades
the 2-D density measurement in the plasma diagnostic.

III. SMOOTHED AND LEVELED FTM AND CTM

A. SL Algorithm

When the images are noisy or have very low contrast, it is
difficult to visually calculate the fringe shift. The SL algorithm
sharpens the fringe lines using a three-stage approach: 2-D
Gaussian blurring, 1-D low-pass filtering (smoothing), and 1-D

Algorithm 2 SL Algorithm
Input

I unprocessed image of size M × N
Output

Ĩ smoothed and leveled image of size M × N

Step 1 Apply 2D Gaussian smoothing filter ▷ optional

Start smoothing and leveling

Step 2 Smooth sm

for each vector sm = I (ym, z) do
Filter sm as s̃m = hm ∗ sm using (9)

end for

Step 3 Level s̃m

for each vector s̃m = I (ym, z) do
Form non-overlapping segments of z

a. Find extrema of s̃m(z) :
{
zc, s̃m(zc)

}
b. Partition z into J intervals

z̃ = {min (z), zc, max (z)}

for For each interval z̃ j do
Scale s̃m(z) to the peak magnitude A = 1 as

if s̃m(zc) ≥ 0 then
s̃m(z) = +

A
max s̃m (z) s̃m(z), z ∈ z̃ j

else if s̃m(zc) < 0 then
s̃m(z) = −

A
min s̃m (z) s̃m(z), z ∈ z̃ j

end if
end for

end for

amplitude leveling. Although the algorithm was introduced in
[11] as a preprocessing step for a 1-D fringe-ratio extraction
algorithm, the mathematical description and parameters were
undefined. In the following, the details are provided, and
the algorithm is improved for 2-D to show how SL makes
SL-FTM much easier to implement than the recently reported
iterative methods of [8] and [12].

The SL algorithm is listed in Algorithm 2. In the first step,
a 2-D Gaussian kernel is applied to the unprocessed image as
follows:

Ĩ (y, z) =

(
1

2πσ 2 e−
y2

+z2

2σ2

)
∗ I (y, z) (6)

where σ is experimentally determined to be 0.1–0.2 W for a
digital filter width W . The filter width is determined by visual
inspection of the high-frequency ripple along the fringe lines.
In an automated approach, a 2-D spectral analysis can identify
the high frequencies and determine the filter width. In cases
where images have low noise or negligible high-frequency
noise, this step is skipped.

The smoothing stage assumes linear fringes and accommo-
dates lines with tilt as seen in [11]. For horizontal fringe lines
and an image of size N × M , each column of the image is
modeled as a discrete sinusoidal signal plus additive white
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Gaussian noise as follows:

sm[n] = I [n, m] = I (ym, zn) (7)
= a0 + am cos(κzzn + φ0) + η[n] (8)

where m = 1, . . . , M, n = 1, . . . , N , a0 is the dc bias, am is
the signal amplitude, and η is the noise. A biased second-order
difference filter is applied as hm ∗ sm + bm where the filter is
augmented with sliding-average filters as follows:

hm = Km[hw ∗ (hd ∗ {hw ∗ [hd ∗ (hw ∗ δ)]})] (9)

and

hw[n] = rect
( n

W

)
, n = 1, . . . , W (10)

hd [n] = (−1)n−1, n = 1, 2 (11)

Km =
range(hw ∗ sm)

range(hw ∗ hd ∗ hw ∗ hd ∗ hw ∗ sm)
(12)

bm = median(sm). (13)

In (12), the range(·) operation returns the peak-to-peak value.
Although a single sliding-average filter can be used for hm ,
it tends to blur the low-contrast regions beyond recovery. The
cascaded first-order filters with intermediate sliding-average
filters take advantage of the large discontinuities caused by
numerical derivatives, and they actually preserve the amplitude
variation of the fringe patterns. The bias bm ensures that
the median level of sm is retained if needed. However, it is
generally omitted in the amplitude leveling step. Thus, the
smoothing step effectively removes a(y, z) from (3).

The amplitude leveling stage finds the critical points of
each sinusoid and scales the peak-to-peak values to [−1,1].
The complete SL algorithm is listed in Algorithm 2. After
the smoothing stage and the initial check for critical points,
there are residual localized extrema that are excluded through
a check of |sm(zc)| ≤ 0.1 max(|sm(z)|). The remaining extrema
tend to be clustered about the positive and negative peaks of
the sinusoid. Thus, the final set of zc is selected as the maxima
(sm ≥ 0) and minima (sm < 0) and is used to partition z into J
intervals. The scaling step is straightforward, and with A = 1,
it effectively normalizes b(y, z) in (3). The resulting smoothed
and leveled image Ĩ (y, z) ≈ cos(κy y + κzz + φ(y, z)).

We note a limitation of the leveling algorithm. As described
in (8) and in Step 3 of Algorithm 1, each filtered signal s̃m

is partitioned into multiple segments according to the critical
points. Each partition is rescaled to ±1, but in some cases
where the signal-to-noise ratio (SNR) is very low (<3 dB),
the rescaling can fail. As an example, in Fig. 1(b), near y =

4.5 mm and z = 2.25 mm, the SNR is less than < 3 dB. The
corresponding region in Fig. 4(b) has segments of the fringe
line that are improperly scaled resulting in faint segments
along the fringe line. However, as FTM is a spectral domain
algorithm, the small number of faint pixels has negligible
effect. Also, the automated CTM (SL-CTM), and its use of
curve fitting, inherently overcomes breaks in fringe lines.

B. SL-FTM

SL is a prefiltering step with FTM and is similar to other
image processing methods used to improve the clarity of the

fringe patterns [17]. SL-FTM is particularly useful for fringe
curves that are open and linear. When closed loops occur in
the interference pattern, the leveling algorithm would need to
be modified. However, for the side-on view of the exploding
wire experiments, the fringes are linear and open. Hence, the
smoothed and leveled image is input to FTM and processed
according to Algorithm 1.

We note how SL-FTM is applied to both the reference and
test images, and the spatial carrier frequency can be measured
from the reference image. However, we use the test image
to measure κx and κy out of convenience, as we also need
to measure the spatial bandwidth of the test image (part of
the FTM algorithm), and to demonstrate the relative phase
measurement when a reference image is unavailable. Hence,
the reference image is only used to calculate 1φ, as described
in Section II-B. Also, when the fringe lines of the reference
and test images are nicely aligned, min 1φ = 0 and 1φ >

0. This condition is convenient for the Monte Carlo analysis
where we measure the difference between the known phase
surface and the recovered phase surface. When the reference
image is unavailable, a minimum value correction is applied
to ensure min 1φ = 0, as discussed in Section IV.

C. SL-CTM

In addition to direct 2-D analysis using FTM, we found the
SL filter suitable for automated fringe line extraction as part of
CTM. The leveling stage returns images with pixel amplitudes
in [−1, 1]. In [11], fringe lines are extracted by treating
the image as a surface and then finding the contours that
correspond to positive peaks, which are the fringe lines. Each
contour forms a closed loop around the pixels representing
the fringe lines. Then, the 2-D coordinates of each contour
are averaged to calculate the line segment along the middle of
the contour. The resulting line segments are the fringe lines.
When the image has very low SNR, a single fringe line may
be represented by several contours, and the leveling algorithm
may fail to properly scale some sections of the fringe lines as
discussed in Section III-A.

In those cases, multiple line segments will represent the
same fringe line. When we have only a few images to analyze,
we manually associate the segments to a single fringe line.
The process takes only a few seconds for each image, but it
becomes highly impractical when there are many images to
analyze and motivates the development of an automatic line
fitting step. The last step of SL-CTM is to fit the line segments
to their fringe line with an appropriate curve. For the single-
wire interferograms, we use a straight line to fit the fringe
lines in the reference image and a Gaussian curve to fit the
test-image fringes. However, when the fringe lines have tilt,
i.e., they are not purely horizontal or purely vertical, we also
ensure that the Gaussian model includes the same tilt as the
reference lines. When the reference image is unavailable, the
regions of the test image where the fringe lines are straight
can be used to determine tilt correction.

Therefore, with appropriate programming, we automate the
line tracing step of SL-CTM to save considerable time. The
details of how we implement SL-CTM are not shown here,
because the purpose of SL-CTM is to serve as a reference
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Fig. 4. (a) and (b) Smoothed and leveled interferometric images of Al plasma
at 200 ns after wire explosion corresponding to Fig. 1(a) and (b). (c) and
(d) 2-D contours of the respective energy spectra in dB (black: −1 dB, red:
−3 dB, blue: −10 dB, and green: −13 dB). (e)–(h) 2-D relative phase in units
of lines measured with (e) and (f) SL-FTM and (g) and (h) SL-CTM.

for the error analysis of SL-FTM, and the authors intend
to report SL-CTM in a future publication. In Section IV,
we demonstrate processing of over 500 2-D images with
SL-FTM and SL-CTM in a Monte Carlo error analysis.

IV. RESULTS

A. Examples of Measured Data

Fig. 4(a) and (b) shows how after SL filtering, the images
of Fig. 1(a) and (b) have noticeably improved fringe lines
improving the ease and accuracy of calculation. Also, the
spectra of Fig. 4(c) and (d) show how the dc energy is signifi-
cantly removed when compared with Fig. 1(c) and (d). Thus,
it is straightforward to implement the algorithm to find and

associate the strongest spectral energy with the spatial carrier.
Also, the algorithm can easily find the spatial bandwidth of
the fringe shift by finding where energy drops to a specified
level relative to the peak (e.g., −10 dB). The algorithm when
implemented in a computer program operates without any
knowledge of the spatial carrier frequency or the bandwidth
about the carrier, which is a distinct advantage of using SL as
a preprocessing step for FTM. In addition, the filter removed
the high frequency variation observed in the fringe lines as
caused by the interferometer.

Fig. 4(e)–(h) shows the SL-FTM and SL-CTM recon-
structed phase shift 1φ. The normalized phase shift δ =

(1/2π)(1φ(y, z) − min 1φ(y, z)). Due to the relative mea-
surement, the minimum value correction ensures that the 2-D
line shift profile starts at zero. The minimum value is selected
where δ is far from the peak, i.e., |y| > 3.0 mm.

For the 532-nm data, the relative phase surface is smoother
with SL-FTM than FTM as expected, because the dc term is
sufficiently isolated from the energy about the spatial carrier.
However, there is still dc leakage in the 1064 nm, which
appears as rippling along the surface. In general, SL-FTM
provides smoother 2-D phase than FTM. However, SL-FTM,
being a filtering operation, removes energy from the intensity
spectrum and underestimates the height of phase surface much
like well-known digital windowing functions. To compare
the results of FTM and SL-FTM with the standard CTM,
we perform a Monte Carlo analysis in the next section.
However, we use SL-CTM as a surrogate for CTM, because
it is impractical to manually trace the fringe lines in CTM for
hundreds of noisy images. As SL-CTM is based on CTM with
error sources resulting from the line fitting step, we consider
SL-CTM as a worst case of CTM.

B. Error Analysis
The typical line shift error tolerance reported for density

measurements [10], [14] is 0.05 lines and is based on the
ability to resolve the line shift in a noisy image. According to
[14], the line shift tolerance is equivalent to a density accuracy
of 5%–7% for Gaussian fringe curves. However, it is important
to note how the phase is related to the line integral of the
density function, whereas the FTM literature assesses FTM
error by simulating an interferogram of a stable surface that
has a specified variance given as peak-to-valley ratio in units of
wavelength. The accuracy of the profilometry measurement is
directly proportional to the reconstructed phase. Thus, when
the reconstructed phase is compared with the known phase
and reported as root-mean-square error (RMSE) [12], [18],
the error is a direct report of the profilometry accuracy.

To assess the effect of SL on FTM and CTM, we measure
the difference between a known relative phase function φ(y, z)
for y ∈ [−3, 3], z ∈ [0, 10] and the reconstructed phase from
a noisy image with spatially varying effects. We simulate a set
of interferograms as a + b cos(κy y + κzz +φ +φ0)+η, where
φ0 is a uniform random variable in U [0, 2π ], b = 0.5, and
η is a zero-mean Gaussian random variable with variance set
for signal-plus-background-to-noise ratio (SBNR) (a+b)/η in
[−10, 23] dB. The background a is randomly selected from
a set of 14 previously measured backgrounds [13] and is
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randomly rotated and scaled to increase the variability. The
scale factor of a sets the signal-to-background ratio (SBR)
(a/b) ∈ [0.25, 2.5].

Each simulated interference image is processed using FTM,
SL-FTM, and SL-CTM, and the resulting line shifts are
compared with the known profile φ/(2π) as RMSE with units
of lines. However, we note how the RMSE fails to show
where or how the difference is significant. Therefore, we also
compare the line shift surfaces (e.g., Fig. 4) using the Jaccard
similarity measure with index J = (|A ∩ B|/|A ∪ B|). The
Jaccard index is the ratio of the size of the intersection of sets
A and B to the size of their union. When the two sets are
identical, J = 1, and when the sets are mutually exclusive,
J = 0.

As the domains of the reference and noisy phase profiles
are the same, we define A as the set of pixels, where
1δ = δsim − δref < 0.05. The subscripts sim and ref denote
the reconstructed simulated and known reference line-shift
profiles, respectively. Set B is defined as the pixels with
∇δsim · ∇δref/|∇δsim||∇δref| < 0.05. Set B is the set of pixels
where the surface gradients of the reconstructed phase profile
have directions within ±22.5◦ of the known phase profile.
Thus, the Jaccard index gives insights into how the phase
profiles differ better than the RMSE measure.

1) Varying Signal to Noise With Constant Background:
First, we simulate 30 images for each level of additive noise
and a fixed SBR of 0.5. As in a dual-wavelength measurement,
a pair of reference (before wire explosion) and test images
are simulated for each wavelength. At 1064 nm, the spatial
carrier frequencies are κz = 2π/1.8 and κy = 2π/500 and are
doubled for the 532-nm image. For computational efficiency,
we limited the pixel sizes to 0.02 mm, and the frequencies
were set to avoid image aliasing.

The reference image phase is zero-mean Gaussian as
follows:

φref(y, z) ∼ N
(
0, π2

× 10−2) (14)

where N (µ, σ 2) denotes the Gaussian distribution with mean
µ and variance σ 2. The test image phase after wire explosion
has the skewed Gaussian profile

φtest(y, z) = π exp
[
−(z/10 + y − 0.1)2

± π/60
]
. (15)

In (15), the constant ±π/60 is toggled randomly for each test
image.

There are two important notes. First, we expect the SL
filtering operation to lose some information in the original
image. Therefore, we run FTM and SL-FTM with the same
filter h. This approach allows us to observe if and how SL
filtering might limit the accuracy. Second, the spatially varying
background spreads the energy about the dc component and
hinders the automated peak detection algorithm with FTM.
Rather than use a sophisticated signal detection algorithm,
we simply use SL-FTM first, which can easily identify the
non-dc energy and return (κy, κz). Then, we run FTM with the
same frequency and find h for the 10-dB spatial bandwidth
about (κy, κz). Finally, we rerun SL-FTM with (κy, κz) and
filter h. Hence, the Monte Carlo process is fully automated
and is a significant advantage of using SL-FTM.

Fig. 5. Accuracy with varying SBNR and fixed SBR = 0.5. (a) 1064-nm
RMSE. (b) 532-nm RMSE. (c) 1064-nm Jaccard index. (d) 532-nm Jaccard
index.

The RMSE trends shown in Fig. 5(a) and (b) are the
same for the 1064- and 532-nm simulations where SL-CTM
achieves the smallest accuracy at −18 to −19 dB (equivalent
to 0.013–0.016 lines). FTM and SL-FTM errors are −17.5 and
−16.25 dB (or, 0.019 and 0.024 lines), respectively. The flat
curves indicate the robustness of each method to the additive
noise. However, the Jaccard indices shown in Fig. 5(c) and (d)
offer greater insight into how much more the SL-CTM
phase profile agrees with the known phase profile than the
FTM-based solutions. Where the SL-CTM index ranges from
−0.75 to −0.5 dB (0.8–0.9), FTM and SL-FTM only reach
−1.75 dB (0.67) for 1064 nm and −3.4 (0.46) for 532 nm.
Analysis of the sets A (local height difference) and B (local
gradient difference) reveals how SL-FTM underestimates the
height of the Gaussian phase surface and has fewer pixels
that are less than 0.05 lines from the true surface. Also, both
of the SL-FTM and FTM solutions have oscillatory behavior,
and nearly half of the pixels have gradient directions greater
than 22.5◦ from the true direction. In the case of the 532-nm
images, the oscillations are twice those in the 1064-nm image
and result in a much smaller set B than the 1064-nm set.
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Fig. 6. Accuracy with 30-dB SBNR and varying SBR. (a) 1064-nm RMSE.
(b) 532-nm RMSE. (c) 1064-nm Jaccard index. (d) 532-nm Jaccard index.

These combined effects result in low Jaccard measures (less
than −3 dB or 0.5).

2) Varying Signal Plus Background to Noise With Constant
SNR: In the second simulation, we fix SBNR at 30 dB
(virtually zero additive noise) and adjust SBR to range from
0.25 to 2.5. The RMSE and Jaccard indices shown in Fig. 6
have similar trends as the additive noise case. FTM and
SL-CTM have comparable accuracy and are 1–2 dB better
than SL-FTM, which is still 5 dB better than the standard
line tolerance. However, the Jaccard measure shows how
SL-CTM recovers the surface profile with better agreement to
φ than FTM and SL-FTM. The line fitting and interpolation
of SL-CTM result in a smooth phase surface resulting in a
larger size of B. As in the previous simulation, SL-FTM still
underestimates the surface height resulting in a smaller set A
and lower Jaccard index than FTM.

C. Discussion

The SL-CTM and SL-FTM offer distinct advantages.
The contour tracing of CTM ensures the most accurate
reconstruction of the phase profile and without the need for

phase unwrapping. The interpolation from the traced lines to
a surface establishes a smooth fit and better phase recovery
than FTM. The incorporation of SL is very easy to implement
and helps to automate the tracing process saving considerable
preprocessing time. While these are clear advantages, it is
noted that the line fitting step removes subtle fringe shift
variation caused by the nonhomogeneous plasma. Also, the
phase can only be recovered from within the image domain
where the fringe lines are traced. Hence, the domain of
the plasma must correspond to the region of the image that
can be traced. In addition, the specific type of curve presented
by the fringe lines must be designed if the mental model of
step 3) of CTM is automated. The algorithm used in this
work modeled the traced segments as either lines or Gaussian
curves, and the mental model applied logic to recognize the
segments that formed a single fringe line. However, if only
a few interferograms are to be analyzed, the segments can
be joined using a manual approach. The automated contour
extraction aided by SL saves considerable time and does not
require additional image processing to improve the clarity of
the fringe lines.

The Fourier-based approach of FTM requires a different
type and amount of preprocessing than CTM. First, the spatial
frequency must be known or measured, and then, the spatial
frequency filter must be designed to pass the spectral region
representing the phase shift. These steps are usually iterative
but can be automated. SL was used in the Monte Carlo to
improve the automatic measurement of (κy, κz). Without SL
or another form of prefiltering, FTM will require a manual
calculation of the fringe lines. For cases where the same optical
setup is used, this step may be unimportant. The advantages
of FTM are as follows: 1) its ability to recover the phase
for an arbitrary yz domain and 2) to capture effects of subtle
fringe line variation. Thus, in some cases, the phase profile
recovered by FTM may appear less smooth than those of CTM,
as it naturally captures spatial perturbations of the fringe lines.
However, FTM requires a robust phase unwrapping method
and performs poorly when the spatial frequency is low with
respect to the bandpass filter width. The Jaccard index showed
how significant the dc leakage affected the resulting surface.
For density measurements where the final step is to invert (2),
the rippled line shift surface will limit the accuracy of the
volumetric density measurement.

V. CONCLUSION

The SL algorithm has been presented as a prefiltering stage
that enables automation of the FTM and the CTM, which
measure 2-D relative phase from optical interferometry. The
SL filtering was shown to greatly improve fringe line visibility
of measured interferograms from plasma diagnostics. As part
of the SL-FTM process, the spectral carrier frequency and
bandwidth were measured without a priori knowledge, and
without need of an iterative algorithm. The accuracies of FTM,
SL-FTM, and SL-CTM were compared using a Monte Carlo
simulation of over 500 noisy images with realistic background
variation.

The error analysis showed how each algorithm had an
error at least three times below the standard requirement
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of 0.05 lines needed for plasma diagnostics. In addition,
while CTM is accepted as the most accurate method, it is
impractical to manually trace the lines of such a large number
of images. Thus, the error analysis of SL-CTM provided a
first insight into how CTM compares with FTM for a diverse
set of images. Finally, an analysis with the Jaccard similarity
measure explained how the resulting 2-D line-shift surface of
SL-FTM was smoother than FTM’s result, but also underesti-
mated the maximum line shift resulting in the larger error of
SL-FTM. SL-FTM and SL-CTM have been shown to enable
bulk-automated processing of optical interferometry with open
fringe lines, such as from side-on views of exploded-wire
experiments.
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