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Abstract— Spacecraft charging is a major topic of space-
weather research since charging can lead to spacecraft anomalies,
ranging from inconsequential to catastrophic. Spacecraft surface
charging calculations use sophisticated numerical codes and are
typically performed with a direct (forward) approach: the local
properties of the space environment, the spacecraft geometry, and
the spacecraft material properties are the input, while the electric
field on and around the spacecraft and the corresponding plasma
particle distributions are the output. This approach can be limited
or highly inaccurate when some of the critical input parameters
are either unknown or have large uncertainties. For instance, the
Van Allen Probes spacecraft, also known as RBSP, is an example
of a modern spacecraft with state-of-the-art measurements.
Predicting the RBSP spacecraft potential requires knowledge of
the cold and warm plasma populations which dominate surface
charging. However, the cold plasma properties (particularly
temperature) are not well characterized. In addition, the material
properties are known from measurements in laboratory “clean”
conditions but how materials age in space due to their interaction
with the environment is not well understood. To mitigate these
limitations, we developed an inverse approach to use available
spacecraft-charging data to infer some of the unknown properties
of the space environment around the spacecraft and spacecraft
material degradation. Our inversion is composed of an ensemble
of constrained optimization solutions that provide an estimate of
the parameter values of interest. Our approach is validated with
an analytical model of spacecraft charging, based on the orbital-
motion-limited theory, together with a quasi-Newton optimization
method. Our results show convergence and the ability to estimate
the correct parameters in synthetic observation experiments.

Index Terms— Inverse problem, magnetospheric cold plasma,
material aging in space, plasma diagnostics, spacecraft charging.

I. INTRODUCTION

SPACECRAFT orbiting the near-Earth environment acquire
a net electric charge by collecting plasma particles from

the ambient space plasma and by emitting electrons via sec-
ondary emission due to electron/ion impact or photo-emission
on surfaces exposed to sunlight [1], [2]. Several plasma pop-
ulations coexist in the near-Earth environment: the cold and
dense particles of the plasmasphere (energy ∼electronvolt), the
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warm plasma of the plasma sheet/ring current (∼1–100 s keV)
and the hot and rarefied radiation belts (∼megaelectronvolt).
These populations are responsible for different types of space-
craft charging. Cold and warm plasma particles deposit their
charge on spacecraft surfaces and give rise to surface charging,
while hot electrons can penetrate satellite shielding and reach
internal components causing deep-dielectric charging [1], [2].
Surface charging can be nonuniform on the spacecraft, causing
potential differences across adjacent surfaces (i.e., differ-
ential charging). Spacecraft charging is a critical topic in
space-weather research since charging can lead to spacecraft
anomalies [3], [4], [5], [6], [7]. The latter can range from
inconsequential (e.g., single-event upsets and memory bit
flipping) to catastrophic (damage to sensitive electronics or
total loss of the spacecraft). Galaxy XV is a recent example
of a spacecraft possibly lost due to surface charging after a
geomagnetic storm [7].

Over several decades, sophisticated numerical tools have
been developed to predict spacecraft surface charging. Such
tools include community codes, for example, NASCAP [8],
SPIS [9], MUSCAT [10], as well as research codes such as
CPIC [11], [12], PTetra [13], and others. These tools are
generally applied in a direct or forward approach, that is,
the plasma environment, and the spacecraft geometry and
materials are the inputs of the code. The output is then
the electric field on and around the spacecraft, as well as
the spacecraft potential, and the plasma particle distributions
consistent with this electric field.

There are two major difficulties in accurately performing
a direct spacecraft charging calculation. The first is that the
parameters that characterize the magnetospheric cold plasma
are typically unknown due to the difficulty of in situ measure-
ments of the cold populations in the Earth’s magnetosphere,
as discussed in a recent review of the impact of the cold plasma
in magnetospheric physics [14]. Second, materials can undergo
significant changes once the spacecraft is in orbit, and hence
their associated parameter values can have large uncertainties.
Materials for space applications are well characterized in the
laboratory before launch, but, once in orbit, these materials are
exposed to the harsh space environment and their properties
are strongly modified (see, e.g., [15] and [16]). Unfortunately,
we do not yet have any robust methodology to assess and
quantify material aging in space. Given the challenges of
direct charging calculations in the Earth’s magnetosphere,
we propose an inverse charging calculation as a complement.
The idea is to use the available spacecraft charging data (for
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instance, the spacecraft potential or even direct information
from the booms measuring the electric field near the space-
craft) together with other available environmental parameters
as input to a spacecraft charging calculation to estimate those
parameters that are unknown or have large uncertainties.

There are a number of spacecraft charging inversion
approaches that have been exploited by several authors in
the past. A common technique on space missions is to
estimate the plasma density from spacecraft potential data
using an inverse approach. Similarly, some authors have
used available spacecraft datasets to compute the photo-
electron current which includes material parameter estimates
in some form. In a seminal work, Grard [17] estimated
photoemission parameters in space by combining laboratory
measurements of photoemission from various materials with
the best available solar spectrum data collected in space.
Pedersen et al. [18] determined a relation between spacecraft
potential, space plasma density, and electron flux by using
data from GEOS-1, GEOS-2, and ISEE-1. The photoelectron
current density was also calculated using material parame-
ters estimated by [17]. Schmidt and Pedersen [19] related
the spacecraft potential of GEOS-2 with the background
plasma density. Escoubet et al. [20] used the ISEE-1 space-
craft potential data to estimate the ambient electron density in
the magnetosphere with high accuracy in time. In the first
step, material parameters were estimated using a nonlinear
least-square fit based on electron temperature, density, and
spacecraft potential data from CDAW 6 and from the work
of [19]. Once the photoemission parameters were known, the
spacecraft potential was computed and fit that of the ISEE-
1 spacecraft using the electron temperature and density as
fitting parameters. Ishisaka et al. [21] estimated the electron
density of the solar wind and the electron foreshock using
the GEOTAIL spacecraft potential data. Nakagawa et al. [15],
on the other hand, used the GEOTAIL spacecraft potential and
electron density data to estimate material properties instead.
It was found that material parameters in space have higher
values compared to those predicted by [17] but were consistent
with previous in-flight measurements from GEOS-, ISEE-1,
and Viking. Scudder et al. [22] fit the photoelectron current
density with two exponential functions using POLAR space-
craft data. Similarly, Thiebault et al. [23] fit the photoelectron
current with a sum of two half-Maxwellians to determine the
plasma density relation with the Cluster spacecraft potential
data. On the other hand, Pedersen et al. [24] also estimated
the electron density using the Cluster spacecraft potential data,
but obtained the photoelectron current density using the CIS
ion density and the WHISPER electron density measurements.
Finally, Boardsen et al. [25] used the material parameters
estimated by [22] to calculate the electron temperature of
the inner low-density magnetospheric plasma using an inverse
approach based on the POLAR spacecraft data. Although all
the works described above used an inverse approach, to the
best of our knowledge, ours is the first inverse-spacecraft
charging technique that estimates both material parameters and
some of the plasma parameters at the same time and this is
the main contribution of our article.

The article is organized as follows: Section II presents the
mathematical approach of our inverse technique. Section III

presents the outcome and discussion of our inversion method
using synthetic data experiments. Finally, in Section IV,
we provide a summary of our findings and future work.

II. METHODOLOGY

To illustrate our inverse approach, we focus on what is
perhaps the simplest charging regime, a positively charged,
conducting spacecraft in sunlight immersed in the mag-
netospheric cold (∼electronvolt energy) plasma, where the
spacecraft potential φsc is dictated by the emission of the pho-
toelectrons balancing the collection of ambient cold electrons.
The thermal ion current is negligible for these conditions,
while secondary electron emission is not considered here.
For simplicity, we will consider the ambient cold plasma
represented by a Maxwellian phase space density.

The electron current collected by a conducting spherical
spacecraft can be approximated using the orbital motion
limited (OML) theory [26] as follows:

Ie = −e4πr2
scne
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The photoelectron current, approximated with a single
Maxwellian distribution [17], is given by the following
equation:
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Iph = A4πr2
sc Jph

(
1 +

eφsc

Tph

)
exp

(
−

eφsc

Tph

)
, for φsc ≥ 0.

(4)

Here, rsc is the radius of the spacecraft, which is taken
to be spherical, e is the positive elementary charge, and
me, ne, and Te are the mass, density, and temperature of
the ambient electrons, respectively. For photoelectron emis-
sion, Tph and Jph are the temperature and current density
of the photoelectrons, respectively, while A is the frac-
tion of the spacecraft illuminated area relative to the total
surface area. The spacecraft surface charging is then com-
puted by solving the equilibrium equation (i.e., floating
condition)

Ie(φsc, ne, Te) + Iph
(
φsc, Tph, Jph

)
= 0. (5)

Note that OML can be a poor approximation to the transition
between negatively and positively charged regimes [27] but we
shall not be concerned about that here since the objective is to
demonstrate the technique in a simple charging model. Let us
now specialize in the application of the inverse charging tech-
nique to spacecraft data available from in situ measurements.
As a reference, we use the NASA Van Allen Probes spacecraft,
also known as RBSP, a modern spacecraft with state-of-the-art
measurements that operated between 2012 and 2019 to study
the dynamics of the Earth’s radiation belts. The measurements
available from RBSP include the spacecraft potential, the
total electron density, and fluxes of electron populations with
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energies larger than 15 eV. The spacecraft geometry is also
known. The spacecraft potential, the density of the cold
electrons (inferred from the total electron density), and the
geometry of the spacecraft are inputs to the inverse calculation.
The temperature of the cold electrons and the photoemission
parameters will then be the output of the inverse technique.
Note that we assume that photoemission is dominated by the
RBSP solar panels coated with ITOC (since, nominally, this
is much higher than that from the black Kapton body [28] so
that photoemission can be characterized by only one spacecraft
material). Furthermore, for most of the synthetic experiments
presented in Section III, we only consider a single Maxwellian
component for the photoelectrons. However, it is known from
past spacecraft missions that photoelectron emission can be
approximated by a sum of multiple Maxwellian components
with different energies and current densities [15], [22]. The
use of a single Maxwellian component here is justified by the
fact that by we are targeting a relatively narrow range of low
spacecraft potential values, 0–10 V in our experiments, where
the contribution of the additional Maxwellian components
to the photoelectron current is less important and can be
neglected. Nakagawa et al. [15] show that at lower values
of spacecraft potential (a few V), the photoelectron current
is dominated by the contribution of the Maxwellian with
the lower temperature and higher current density. Meanwhile,
at higher values of the spacecraft potential, the current is
dominated by the Maxwellian with the higher temperature
but lower current density value. Sensitivity of the inverse
technique to this assumption is assessed in Section III-F.
Finally, we note that, because of the spacecraft’s motion, the
plasma parameters can change very quickly, on time scales
of seconds. The material parameters, on the other hand, are
expected to change on longer time scales (weeks to months)
and therefore can be considered constant if we use spacecraft
data in hours/days periods.

Our inverse charging technique will take φsc(t), ne(t), and
the spacecraft geometry as inputs such that, through (5),
we can write symbolically

φsc(t) = φsc
(
Te(t), Tph, Jph

)
(6)

with t time. The output of the technique is then Te(t), Tph,
and Jph.

Our technique utilizes a constrained minimization approach
to estimate the output parameters such that the appropriate
values of the parameters of interest are given by the following
equation:

Te(t), Tph, Jph = argmin
Te(t),Tph,Jph

∥∥φsc
(
Te(t), Tph, Jph

)
− φobs

sc
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subject to : Ie(φsc(t), ne(t), Te(t))

+ Iph
(
φsc(t), Tph, Jph

)
= 0 (7)

where φsc(t) is the surface charging estimation provided by
OML, while φobs

sc (t) is the observed surface charging data
available for instance from RBSP, and ∥·∥2 is the L2 - norm.

As stated above, the problem is under-determined. If we
have N observations of the spacecraft potential at different
times, we need to estimate N + 2 unknowns: N points in
time corresponding to Te, and the two material parameters

Fig. 1. Possible solutions for the electron temperature given all other
parameters as in Table I. Te solutions are given where the colored lines cross
I = 0 (black dashed line). In this example, there are zero, one, and two
solutions for Te represented by the crossing at I = 0 of the orange, red, and
green lines, respectively.

that are constant, Tph and Jph. To solve this issue, we use an
expansion of Te as a function of time using polynomials (or
splines) as follows:

Te = α0 + α1t + α2t2
+ · · · =

NT −1∑
k=0

αk tk (8)

where αk are the NT coefficients of the polynomial to be
determined. Assuming that N ≫ NT + 2, the minimization
problem is reformulated as follows:

αk, Tph, Jph = argmin
αk ,Tph,Jph

∥∥φsc
(
αk, Tph, Jph

)
− φobs

sc

∥∥
subject to : Ie(φsc(t), ne(t), αk)

+ Iph
(
φsc(t), Tph, Jph

)
= 0 (9)

which is now an overdetermined problem that can be solved
in a least-squares sense.

The minimization problem, as stated in (9), is solved using
a trust-region method [29] with appropriate constraints for the
parameters Jph, Tph, and the coefficients αk .

A. Possibility of Multiple Solutions for the Electron
Temperature in the Inverse Technique

By inspecting ( 2) for φsc > 0, it can be seen that the
electron current depends on both (Te)

1/2 and Te, leading to a
quadratic equation for (Te)

1/2 when all the other parameters are
given. This means that it is possible that two different values
of the electron temperature exist for the same (positive) value
of the spacecraft potential, considering all other parameters
are fixed. Fig. 1 shows an example where different system
parameters lead to a different number of possible solutions
for the electron temperature Te given the spacecraft potential.
In the figure, the net current I = Ie + Iph is plotted as a
function of Te. The net current I is computed from (1) to (4)
using the parameter values in Table I. The colored lines in
the plot correspond to the results of using the different sets
of parameters in the table. The number of solutions for Te is
given by the number of times that the colored lines cross I = 0
(black dashed line). The orange line never crosses I = 0,
hence, there is no solution for Te for the given parameters.
The green line crosses I = 0 at Te = 6.84 eV, thus, for the
specified parameters, there is a unique solution for the electron
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TABLE I
REFERENCE VALUES USED TO GENERATE THE I VERSUS Te CURVES

SHOWN IN FIG. 1. THE TOTAL CURRENT I IS COMPUTED
AS I = Ie + Iph USING (1)–(4)

temperature. The red line crosses I = 0 at Te = 2.36 eV
and Te = 10.04 eV. As such, for this set of parameters, two
solutions for the electron temperature exist.

It must be noticed that the presence of two solutions for
the electron temperature associated with the same spacecraft
potential is not a numerical artifact: these are true phys-
ical solutions of the system. Although we have used an
approximated, the semianalytical model (OML) for spacecraft
charging, this feature has been confirmed with kinetic simula-
tions (not shown) where the spacecraft potential is calculated
with the first-principles model CPIC [11], [12]. Note that the
possibility of multiple solutions for the electron temperature
has been previously observed in the work done by [25].
Nevertheless, since these potential two solutions for Te are
physical, our inverse technique will be capable of finding them
when they exist. This is also illustrated in an example shown
in Section III-D.

III. RESULTS

The technique has been tested with synthetic experiments
in which we specify the time-dependent profiles for density
ne(t) and temperature Te(t) of the cold electrons as well as the
photoemission material parameters Tph and Jph and compute
the spacecraft surface potential using OML. We then feed
the OML spacecraft potential φsc(t) and the cold electron
density ne(t) to the inverse technique and use it to compute
the cold electron temperature Te(t) and the photoemission
parameters Tph and Jph. The computed values are compared
against the reference values to evaluate the accuracy of the
inverse technique.

We use some of the individual synthetic experiments
to illustrate the inverse technique and some of the obsta-
cles that needed to be overcome. For simplicity, in
Sections III-A–III-C, we use an example case where only
one solution for the electron temperature exits at each local
time. On the other hand, in Section III-D, we show an
example with two Te solutions at each local time. To assess
the accuracy of the technique, we report in Section III-E,
the errors in the parameter estimation evaluated against
32 synthetic experiments independent of the ones used in
Sections III-A–III-D. Last, in Section III-F, we showcase an
example where the photoemission properties of the material
are represented by two Maxwellians.

Note that time-dependent profiles of density and tem-
perature of the plasma, the static photoelectron emission
parameters, and the time-dependent profile of the estimated
spacecraft potential for all the 36 cases considered in this study

Fig. 2. Input to the inverse approach. Noise-free signal of spacecraft potential
(left) and density (right) as a function of time.

Fig. 3. Output of the optimization using noise-free input signals. Estimate
of the electron temperature (left) and relative errors for material parameters
and RMSE for Te(t) (right).

are stored in [30] with open access. For the 35 single material
cases, we have used Tph = 2 eV and Jph = 40 µA/m2 as
nominal material parameters. Last, in all cases presented in
this article, the spacecraft is approximated as a perfectly
conductive sphere of radius 1 m.

A. Case I: Without Noise in the Observations Used as Input

First, we considered noise-free input signals for the density
and spacecraft potential as a function of time. Fig. 2 shows
an example of input data for the optimization. Fig. 3 shows
the output of the inverse technique, that is, the electron
temperature as a function of time (left) and the errors on
the estimated parameters (right). We report relative errors
for the material parameters: 0.2% and 0.007% for Tph and
Jph, respectively. As for the error in the estimation of Te(t),
we report the root-mean-squared-error (RMSE) which gives a
better sense of the global error due to the time dependence
of the electron temperature compared to, for instance, the
maximum of the error over the whole time interval. In this
example, the RMSE for Te(t) is 0.11%. Since very similar
results were obtained for other examples which are not shown
here, we conclude that, when the input data is free of noise,
the technique allows parameters estimation with high accuracy
[Fig. 3 (right)].

B. Case II: With Noise Added to the Observation Used as
Input

In practical situations, in situ measurements have noise.
Therefore, white noise was added to the spacecraft potential
and to the cold electron density signals of the example in
Section III-A to test the robustness of our inverse technique
against noise. Fig. 4 shows an example of the spacecraft
potential with 7% of white noise added (black dots). Since the
technique performs exceptionally well with noise-free signals
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Fig. 4. Noisy signal of the spacecraft potential (black dots) smoothed using
(GF, blue), (BF, green), and GPR with the RBF kernel (RBF, red) techniques.

Fig. 5. Electron temperature solutions obtained with the inverse technique
after smoothing the noisy input data in Fig. 4 using different techniques while
varying parameters in the smoothing filters.

as input, the first obvious approach to deal with noise was
to smooth the noisy observations using different filters with
various filter parameters. Colored lines in Fig. 4 represent
examples of smoothing the noisy spacecraft potential data
(black dots) using the Gaussian filter (GF), Butterworth filter
(BF), and Gaussian process regressor (GPR) with the radial
basis function kernel (RBF) techniques. Then, the inverse
procedure is applied on the smoothed data and the results are
presented in Fig. 5, which shows the estimation of the electron
temperature as a function of time.

Note that the colored curves shown in Fig. 5 correspond
to the data-smoothing technique used with the parameters
given in Table II. These filters are available in Python 3 from
the scipy (scipy.signal) and Scikit-learn [31] libraries and
the parameters listed in Table II are those that enable the
application of those filters. For instance, the blue solid and
dash-dotted lines labeled as “GF1” and “GF2” represent the
use of the Gaussian filter for the parameters corresponding to
cases 1 and 2 in Table II. Likewise, green and red curves
correspond to the BF and GPR (using the RBF kernel),
respectively. For reference, the inverse technique was also
applied using the noisy data, that is, without smoothing it, and

TABLE II
PARAMETERS USED IN THE SMOOTHING TECHNIQUES

Fig. 6. Errors in the parameter estimation obtained after smoothing the
noisy data in Fig. 4 using different techniques while varying parameters in
the smoothing filters. Relative errors are given for the material parameters,
Tph and Jph, while RMSE is for Te(t).

the estimated Te(t) is labeled as “Raw” (orange dashed line)
in Fig. 5. The filter parameters in Table II were chosen to vary
the level of “smoothness” of the noisy signals used as inputs
in the inverse technique and to assess its effect on the solution.
In Fig. 4 (right), it can be seen that some combinations of filter
parameters yield smoother curves (see, e.g., RBF1) compared
to others that produce a more oscillatory representation of the
noisy data (see e.g., RBF2).

The electron temperature as a function of time estimated
by the inverse technique using the smoothed signals (Fig. 4)
as inputs is shown in Fig. 5. Fig. 6 shows the errors in
the estimated parameters corresponding to each one of the
smoothing techniques in the same format as in Section III-A.
Based on the results presented in Section III-A, we expected
that the smoother curves would yield more accurate estimates
of the parameters than what was found in practice. In fact,
the lowest error in this example case is obtained when the
least smoothed curve is used as input, that is, RBF2. The
errors reported in Fig. 6 suggest that the RBF smoothing
techniques yield the lowest errors, RMSE for Te are RBF1
= 4.8% and RBF2 = 3.9%. Note, however, that RBF1 and
RBF2 correspond, respectively, to the smoothest and least
smooth curves, as can be seen in Fig. 4 (right). All other
combinations of filter and parameters generated curves of the



2596 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 9, SEPTEMBER 2023

Fig. 7. Ensemble of inputs (gray lines) generated from the noisy input data
(black dots) using the GPR technique.

input data with a smoothness degree intermediate between
those obtained with RBF1 and RBF2. The fact that the least
smooth curve yields the most accurate estimates, that is,
RBF2, might suggest that the smoothing of the noisy data is
unnecessary. However, when the noisy data was used as input
without any smoothing (labeled as RAW in Figs. 5 and 6),
the RMSE in the electron temperature was estimated at 27%
and it is the largest error found in this example case. The
most striking finding in this part of the study was that when
the same filter parameters listed in Table II were applied to
different synthetic examples, the results were not consistent
with the ones presented in this example, that is, other filtering
techniques produced the lowest errors. As a result, we were
unable to find a robust approach to smooth the noise in the
observations that would lead consistently to highly accurate
estimation of the parameters. These results led us to conclude
that the technique is very sensitive to noise in the input data.

C. Case III: Statistical Approach to Overcome Noise

To overcome the negative impact of noise in the observa-
tions, instead of using a deterministic approach, we resorted
to a probabilistic approach. The idea is to create an ensemble
of input functions representing the noisy input data, whose
probability distribution respects the mean and the variance
of the original data. For this part, we use the GPR with the
RBF kernel [32]. With M functions of the input probability
distribution, we solve M optimization problems and construct
an ensemble of M solutions of the inverse technique and
the related probability distributions for the output parameters.
We found that taking the mean of the probability distribution
of the solution ensemble allows one to statistically recover the
parameter solution accurately. Fig. 7 shows an example of the
ensemble of inputs generated with GPR. Using the mean and
the variance of the input data, GPR calculates the probability
distribution over all admissible functions that fit the data.

Fig. 8 shows the solution ensemble of the electron temper-
ature as a function of time (gray lines). The red line (with red
dots) is the solution computed as the mean of the solution
ensemble at each local time. Examples of the probability
distribution at three different local times are shown in the
bottom row of Fig. 8. Here, one can appreciate that the
probability distributions of the electron temperature at time =

0.24, 0.62, and 0.97 shown in Fig. 8 exhibit a single maximum.
As such, we determined empirically that when the distribution
at a given local time has a single maximum and the probability
distribution locally approaches a normal distribution, the mean

Fig. 8. Solution ensemble for the electron temperature (top). The probability
distribution at selected local times (bottom) follows a quasi-normal distribu-
tion that allows the calculation of the electron temperature as a function of
time (red line) by taking the mean of each of these distributions (black dots).

of the distribution is a good estimate of the parameter solution.
Note that it is possible that at some local times, two solutions
for Te exist very close to each other. In these cases, the
nature of this statistical approach will be to merge them into a
single peak, with the local distribution possibly showing more
departure from a normal distribution than in the example of
Fig. 8. In such cases, the mean of the distribution is still a
good estimate of the solution.

By applying this criterion, we were able to estimate Te(t)
with high accuracy for the example case shown in Fig 8, where
the reference solution for the electron temperature (black
line) and the solution constructed by taking the mean of the
probability distribution at each local time are extremely close
to each other. Indeed, in this example, the RMSE for the
cold electron temperature is only 0.48%. For completeness, the
probability distributions of the material parameters are shown
in Fig. 9. Since the material parameters are assumed to be
constant over the time period considered, the final solution is
computed as the mean of each distribution and is represented
by the blue vertical lines in Fig. 9, while the true value of
the material parameters is represented by the green lines. The
relative errors for both material parameters, Tph and Jph, are
2.1% and 0.59%, respectively.

D. Case IV: Two Solutions for the Electron Temperature

A synthetic case with a single solution for Te at each local
time has been used in Sections III-A–III-C to showcase the
steps and reasoning that led us to a statistical approach to
estimate the output parameters of the inverse technique. In this
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Fig. 9. Material parameters solution ensemble. The probability distribution
for the temperature (Tph) and current density (Jph) of photoelectrons are shown
on the left and right, respectively. Both ensembles show distributions that are
reasonably approximated by a normal distribution. The final solution for both
material parameters is computed as the mean of the distributions (blue vertical
line), while the green vertical line represents the true solution.

Fig. 10. Example of a case with two solutions in the electron temperature
as a function of time Te(t). The red and blue dotted lines represent the
two solutions found by our inverse technique for Te(t). The faded-thin
red and blue lines represent the solution ensemble of the corresponding
solution. The black solid and dashed lines are the true parameter val-
ues. In the bottom row, distributions at specified local times are shown.
RMSE1 = 4.0% and RMSE2 = 2.27%.

section, we present a synthetic case where two solutions for
the electron temperature exits at every point in time and can
be clearly identified. The inputs and parameter solutions can
be found in [30] under the Case two Te solution folder. The
Te solution ensemble of this example case is shown in Fig. 10
(top) while examples of distributions at different local times
are shown in the bottom. The thin-faded blue and red lines in
the top of the figure represent the probability distribution of the
corresponding Te solution while the solid blue and red lines are
the mean of such distributions, that is, the final solutions. The
solid and dashed black lines represent the two true solutions
for Te.

By examining the Te distributions at local time = 0.14, 0.41,
and 0.83 in the bottom of Fig. 10, the two solutions can be

Fig. 11. Material parameters solution ensemble corresponding to the two
solution example case. The probability distribution for the temperature (Tph)
and current density (Jph) of photoelectrons are shown on the left and right,
respectively. Despite the two solutions for the electron temperature, here both
ensembles show normal distribution with a single maxima.

easily identified by the two peaks in the distributions. This
example shows that our inverse charging technique is capable
of finding the two possible solutions of Te very accurately. The
RMSE, estimated with respect to the corresponding reference
solution (solid and dashed black lines), is 4.0% for solution
one (blue) and 2.27% for the second solution (red). We con-
clude that the inverse technique can estimate both physical
solutions accurately.

Regarding the estimation of the material parameters for this
example, their solution ensembles are shown in Fig. 11 where
only a single peak is present in both distributions. The single
peak in both probability distributions confirms that the two
different values found for Te are true physical solutions of
the system having all other parameters fixed (n, φsc, Tph Jph,
and A). Moreover, despite the two solutions for Te in this
example, the technique can estimate the material parameters
very accurately: the relative errors for Tph and Jph are 2.6%
and 2.3%, respectively.

We note that, in practical cases, the fact that there might
be two physical solutions for Te could result in large errors in
the estimation of the parameters if one is unable to determine
which one is the desired solution. In such cases, the relative
error would become the order of the difference between the
two solutions, which for the example of Fig. 10 could be
more than 100%. In practice, however, one might be able to
choose the right solution based on physics considerations, such
as, for instance, by using data from a particle instrument to
identify whether the particle distributions match one of the two
temperature solutions or not. Another option, for cases where
the two solutions might occur only in part of the time domain,
could be to track the one solution that covers the whole
time domain. Another thing to consider is that there could
be cases where two (or more) different sets of parameters,
including different material parameters, could fit the same
input spacecraft potential. This would show as two peaks
in the probability distributions of the estimated parameters.
Assuming that material parameters do not change on time
scales of hours to days, one might be able to discard one of
the two sets of solutions by comparing adjacent time intervals.

E. Results of 32 Synthetic Experiments

To test its robustness, we applied the inverse statistical
approach to 32 new synthetic cases, where the density and
temperature (as a function of time) were varied in a specific
range of parameters. The profiles of the density and tempera-



2598 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 9, SEPTEMBER 2023

ture of the cold electrons, material parameters, and spacecraft
potential for all synthetic cases can be found in [30]. Note that
in the example presented in Section III-C, only one solution of
Te was found at each local time, while the example presented
in Section III-D had two solutions. In practice, one or two
solutions of Te could be found at any given local time along
the entire time interval. Thus, if the probability distribution at
a given local time resembles a normal-type distribution with a
single maximum, we compute a single Te solution as the mean
of the distribution (as done in Section III-C). If two solutions
are clearly identified in the ensemble solution at a given local
time, that is, the distribution shows two clearly identifiable
and well-separated peaks, we compute two solutions by taking
the mean of each distribution independently (as done in
Section III-D). Similar to what was shown in Section III-D, for
those local times where the technique finds two solutions for
Te, it is possible to compute two RMSE errors as well. This
allows us to assess the accuracy of our approach independent
of the number of solutions found for Te. On the other hand,
if the distribution at a given time does not resemble locally
a normal-type distribution, the calculation of the solution is
discarded and not accounted for in the final solution of the
electron temperature as a function of time. This means that,
in practical cases, it might not always be possible to estimate
Te accurately at each point of the time interval, as it was
done for the cases in Sections III-C and III-D. Nonetheless,
across all 32 cases considered here, those local times on which
no-acceptable solutions were found correspond, on average,
to less than 20% of the entire time interval. Last, since we are
interested in computing the temperature of the cold electrons
whose values are of the order of several eV in the examples
considered (Te < 11 eV in all cases), we have imposed a 15 eV
cutoff in the technique, that is, we automatically discard any
solution with Te > 15 eV.

Fig. 12 shows the errors in the parameter estimation for
the 32 cases. The first and second rows show the relative
errors for the material parameters, Tph and Jph, respectively.
The estimation of the photoemission parameters is extremely
accurate with no more than 6% error across all cases consid-
ered. As for the electron temperature, two RMSE estimates
are given as explained above. The first RMSE is shown in the
third row while the second RMSE is in the fourth row. Both
RMSE values remain below 15% across all cases. Note that it
was only possible to compute the second RMSE value in six
out of 32 cases. This is because: 1) not all 32 cases have two
solutions along the time interval and 2) when two Te solutions
are present at a given local time, it is sometimes difficult to
separate clearly both solutions (contrary to what it was shown
in the example in Section III-D) and thus, the computation of
the solution is discarded under such circumstances. Overall,
the methodology presented here allows us to overcome the
noise in the input data to recover the parameters robustly and
with high accuracy.

F. Inversion Technique With Photoemission From Two
Distinct Materials

In all synthetic experimental results presented so far, includ-
ing those in Section III-E, it is assumed that photoelectrons

Fig. 12. Computed errors of the parameters estimated by the inverse
technique applied to 32 synthetic cases. The relative error is shown for the
material parameters in the first and second rows. For the electron temperature,
the root-mean-square error is reported in the third and fourth rows.

are emitted from a single surface material according to a
Maxwellian distribution characterized by a single temperature.
This assumption was in part motivated by the fact that we are
targeting the RBSP spacecraft as a case of study. RBSP is a
Sun-pointing spacecraft where a portion of the illuminated area
is covered with a low photoemitting material [black Kapton,
Jph = 2 µA/m2, NASA material, and processes technical
information system (MAPTIS)], whereas the solar panels are
covered with a higher photoemitting material (ITOC, Jph =

16.8 µA/m2, and NASA MAPTIS). Moreover, the illuminated
area A covered with ITOC is more than twice the one covered
with Kapton. Thus, in this case, we expect photoemission
to be dominated by the material with the higher Jph and
larger A. Aditionally, we considered fairly low values of S/C
potential so that photoemission could be represented by a
single Maxwellian. Since, in general, design and materials can
vary considerably from spacecraft to spacecraft, it is of interest
to understand whether the inversion technique can recover
accurately cases where photoemission occurs from different
materials. We address this question here for a case with two
distinct photoemitting materials contributing to the overall
current balance. Note that the two materials case treated here
is formally equivalent to having a single material emitting
photoelectrons at two different energy bands, as suggested
in [15] and [22].

An example of a case where two materials significantly
contribute to spacecraft charging is shown in Fig. 13, where the
photoelectron current is plotted as a function of the spacecraft
potential. In this example, the parameters of the first material
are Tph1 = 2 eV, Jph1 = 80 µA/m2, and A = 0.3, while for the
second material, we have Tph2 = 10 eV, Jph2 = 30 µA/m2, and
A = 0.3. In Fig. 13, one can clearly see that the first material
(orange line) contributes more to the current balance at lower
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Fig. 13. Photoelectron current given by the contribution of two materials with
different photoemission properties. The orange line represents the current of
the first material, whereas the purple line is the contribution from the second
one. The total current is represented by the blue line.

Fig. 14. Spacecraft potential as a function of time used in the example where
photoemission from two materials contributes to the current balance.

Fig. 15. Solution ensemble of the electron temperature as a function of
time. Te(t) is recovered accurately even when two materials contribute to the
photoelectron current. The red line represents the solution computed by the
inverse technique, whereas the black one is the true solution.

Fig. 16. Material parameters solution ensemble. The probability distribution
for the temperature and current density of the photoelectrons for the first and
second materials are shown in the top and bottom rows, respectively. As in
the case of a single material, the final solution is computed as the mean of
each distribution.

spacecraft potential values, whereas the second one (purple
line) dominates at higher values of the spacecraft potential.
The total current from both materials is represented by the
blue line in Fig. 13.

By looking at Fig. 13, it is expected that if the spacecraft
potential given as input to the inverse technique covers the
range where each of the two materials can contribute signif-
icantly to the current balance, our inverse technique should
be able to estimate accurately the parameters of the two
materials as well as the electron temperature as a function
of time. Figs. 15 and 16 show Te(t) and the material param-
eters solution ensembles for an example case where the two
materials, with the photoemission parameters as in Fig. 13,
were considered. The spacecraft potential used as input in the
inverse technique, in this case, is shown in Fig. 14. As can be
seen in Figs. 15 and 16, the technique estimates the parameters
with high accuracy: the RMSE for Te is 13.57%, while the
relative errors in Tph1 and Jph1 for the first material are 2% and
5%, respectively. For the second material, the relative errors
in Tph2 and Jph2 are 0.5% and 5.5%, respectively.

IV. CONCLUSION

We developed an inverse spacecraft surface charging tech-
nique that, for the first time, can estimate spacecraft material
parameters and some properties of the ambient plasma simul-
taneously. The inverse technique is based on a statistical
approach to overcome issues associated with noise in the
input data. In this work, we have explored its application
to a specific charging regime where a conducting spacecraft
is positively charged in sunlight due to the balance between
photoemission and the collection of cold electrons. Several
synthetic experiments showed that the inverse technique could
recover the output parameters robustly and with high accuracy.

Despite the proof-of-principle nature of this study, once
mature, this technique could have important scientific and
practical applications. It enables a method to obtain some
of the properties of the environment (i.e., the cold plasma
populations) that are typically very hard to obtain. This is
of particular interest to the magnetospheric cold-plasma com-
munity and it supports work toward new cold-plasma space
missions that are being pursued. Another key aspect is that it
delivers a new way to study material aging in space. Finally,
this technique can aid spacecraft anomaly resolution, since
it gives the spacecraft a “material identification card” which
is a necessary ingredient in any forensic work to attribute
anomalies to the space environment.
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