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Gyrokinetic Simulation of Kinetic Ballooning Mode
and Its Parametric Stabilization in Tokamak

Plasmas With Impurities
Yong Shen , Jia-Qi Dong, and Jia Li

Abstract— Kinetic ballooning mode (KBM) and its parametric
stabilization in tokamaks are studied qualitatively by means of
gyrokinetic simulation. The circular magnetic tokamak discharge
with the Shafranov shift is considered and the ŝ − α model
equilibrium is employed. The kinetic characteristics of ions, such
as Landau resonance, magnetic drift, and finite Larmor radius
(FLR) are all taken into account. The full ion transit and toroidal
drift effects are retained. Impurity effect is also included. As a
result, the existence of, and approaching way to the second
KBM stable regime were identified. It was first revealed that
impurities play a role of stabilizing when the impurity density
profile peaks in the same direction as those of the electron and
main ion density profiles, owing to that compressibility effects is
weakened. It shows that the mode maximum growth rate appears
at the turning point of magnetic shear ŝc = q/4 − q/2, while the
formula can be modified due to other plasma parameters such
as ηi and impurity species. Some parametric stabilizations of
KBM are suggested, including the accumulation of impurities
toward the plasma center; and entering or approaching to the
second stable regime by means of making the electron density
or ion/electron temperature gradients high enough, by which the
internal or edge transport barrier (ITB/ETB) is anticipated to be
formed in many cases. In addition, we showed that the artificial
control of safety factor and magnetic shear was also beneficial
to the stabilization of ballooning mode.

Index Terms— Gyrokinetic simulation, impurity effect, kinetic
ballooning mode (KBM), magnetic shear, parametric stabiliza-
tion, second stable regime.

I. INTRODUCTION

THE performance of the fusion plasma confinement is
largely determined by various kinks of instabilities. The

ballooning mode is widely believed to be one of the funda-
mental instabilities in a tokamak [1], [2]. A short wavelength
ballooning mode can determine the maximum pressure and
generate cross-field thermal and particle transport at the
plasma core and edge regions [3], [4], and many current hot
topics of fusion research involve ballooning instability. First,
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the ballooning mode plays a significant role in driving turbu-
lence near the plasma edge [5], [6], [7], and plays a key role in
edge transport. Saarelma et al. [8] found that ballooning insta-
bility prevented the H-mode access in plasmas with negative
triangularity shape on the DIII-D tokamak. And Eich et al. [9]
showed the H-mode density limit might be set by ballooning
stability at the separatrix for JET and ASDEX Upgrade. Sec-
ond, in addition to the ordinary ballooning modes [10], [11],
[12], [13], [14], [15], [16], some new ballooning modes have
now been explored, which have special significance in fusion
experiments. For instance, in order to mitigate the possible
harmful heat load from edge localized modes (ELMs) in the
high confinement mode (H mode) in future fusion devices,
it is necessary to suppress or to mitigate the ELMs. A type-I
ELM can be regarded as a short wavelength ballooning mode
or peeling-ballooning mode [17]. Besides, field-line localized
ballooning modes have been observed at the edge of high
confinement mode plasmas in ASDEX Upgrade [18]. Third,
there are inherent relations between ballooning mode and
other microscopic instabilities. For example, the type of edge
turbulence transition from resistive ballooning modes (RBMs)
to drift-type ion temperature gradient (ITG) modes has been
observed on the HL-2A tokamak [19]. Dubuit et al. [20]
showed the magnetic island generation by remote ballooning
turbulence close to the plasma edge. Therefore, in the research
of some key issues, further analysis of the characteristics
and stabilization of ballooning mode needs to be carried out
simultaneously.

Characterizing the nature of ballooning instability is of sig-
nificant importance for understanding the underlying physics
of turbulent transport in tokamak plasmas, both in magneto-
hydrodynamic (MHD) and kinetic theory. Kinetic ballooning
modes (KBMs) are excited by the curvature of the confining
magnetic field and the plasma pressure gradient. The sta-
bilization and destabilization factors in kinetic effects have
been partially involved in previous works [21], [22], [23],
[24]. It is commonly believed [22], [23] that finite Larmor
radius (FLR) effect is stabilizing while ion magnetic drift
resonance is destabilizing. When temperature gradients are
considered, the stability boundary may change fundamentally
due to the introduction of a new source of free energy
independent of the MHD drive. Results of linear numerical
simulations [24] showed that finite compressibility destabilized
ballooning modes which were otherwise stable due to the
ion diamagnetic drift effect. The numerical method is used
to simulate quantitatively and measure the characteristics of
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the ballooning mode under kinetic effects. The calculated
results, such as the mode growth rate and real frequency as
well as wavenumber spectrum, are of great significance to the
quantification of the scale of the transport driven by ballooning
mode induced turbulence, the latter of which still remains the
most challenging problems for the present plasma theory and
experiments.

The extended instability [25], which refers to the KBM
instability in the second stable regime of ideal MHD balloon-
ing mode, is shown to be a plausible candidate for the low-k
broadband fluctuation recently observed in the wide-pedestal
quiescent-H (QH) mode of DIII-D [26]. The study [25] shows
that this extended instability is caused by two parametric
effects, say, the effects of ITG (ηi ) and impurity. In fact, the
multiple parametric effects on KBM in tokamaks are an endur-
ing topic, which is often closely related to the destabilization
and stabilization of ballooning mode instability. In the study
of parametric stabilization, in addition to ηi effect [27], the
impurity problem was recognized mostly important due to its
inevitability in tokamaks and its influence on plasma confine-
ment [28], [29], [30]. Impurity effect on micro-instability is
an important subject in fusion research. Impurity impacts on
drift wave stability and impurity transport have been studied
(e.g., see [31], [32], [33]) in recent decades. It is also necessary
to further survey impurity impacts on KBM, which encouraged
us to take it as one of the research contents of this article.
Impurity effect is probably correlated to the “peaking direc-
tion” of impurity density. Here, assuming that the impurity
density has a peaking distribution in the plasma, when the
impurity density profile peaks in the same direction as those
of the electron and main ion density profiles, we say that the
peaking direction of impurity density profile is positive. Con-
versely, when the impurity density profile peaks opposite to
those of the electron and main ion density profiles, its peaking
direction is negative. In this article, we only study the former.

In addition to the impurity effect, the electron density
gradient may also be closely related to KBM instability, and
the roles of safety factor and magnetic shear are also deserved
attention in studies. In this article, we will study these topics
deliberately by means of gyrokinetic simulation. The research
involves analysis of the main parameter effects and parametric
stabilization of KBM. This work covers almost all major
kinetic effects except compression effects. This is the method
adopted by most previous studies [10], [11], [12], [13], [14],
[15], [16], so it is deserved to give ones a comprehensive
numerical result to link the previous research and the new
study including complete electromagnetic effect together, the
latter of which will be done in our next work. However,
although the compression effect has no qualitative impact on
the properties of ballooning modes, it has a small impact on
it quantitatively. Therefore, the work of this article is oriented
to “qualitatively study” on KBMs. We focus on the analysis
related to the mode maximum growth rate, which can mini-
mize the quantitative effect of parallel magnetic perturbation
on the mode growth rate. The results show the existence of the
second stable region of KBM and the way to approach it, and
the stabilizing effect of impurities was observed for the first
time. Some parametric stabilizations of KBM are observed.

The remainder of this article is organized as follows.
The physics models and mathematical solver are presented
in Section II. Numerical schemes and results are described
in Section III, where the KBMs are analyzed deliberately
and its parametric stabilization is studied, and Section IV is
devoted to conclusions.

II. PHYSICAL MODEL AND MATHEMATICAL SOLVER

We consider the circular magnetic tokamak discharge of
the circular magnetic flux surface with the Shafranov shift
and the ŝ − α model [34] equilibrium is employed. Here,
the pressure parameter α = −Rq2dβ/dr , with β being the
ratio of thermal to magnetic pressures, and R and r the major
and minor radii of plasma, respectively. The perturbed electric
field is presented by both the scalar potential φ̃ and parallel
vector potential Ã||. The kinetic characteristics of ions, such
as Lamdau resonance, magnetic drift, and FLR are all taken
into account. The full ion transit and toroidal drift effects
are retained. Impurity effect is included. In this article, H+

ions are considered as the main ion species. The electrons
are considered massless, highly toroidally transiting without
collision and trapping effects. The effect of parallel magnetic
fluctuations δB|| was ignored in the calculations, which, in fact,
does not qualitatively affect the correctness of the results
regarding KBM in tokamaks with ŝ − α model.

Coupled equations governing behaviors of the eigenmodes
in the system can be given [35] from charge neutrality

ñe = ñi + Zz ñz (1)

with

ñs =

∫
gsd3v (2)

and the parallel component of Ampere’s law

∇
2
⊥

Ã|| = −
4π

c

(
j̃ e|| + j̃ i || + j̃ c||

)
(3)

with

j̃ s|| = qs

∫
v||gsd3v. (4)

Here, Zs is the charge number of the species s = i, z, and e,
for hydrogen ions, impurity ions, and electrons, respectively.
ñs is the perturbed density

gs = −
qs FMs

Ts
φ̃ + hs J0(δs) (5)

is the nonadiabatic response of the distribution function
and Ts is charge and temperature of the particle species s.
J0 is the Bessel function of zeroth order. δs = v̂⊥(2bs)

1/2,
2bs = k2

⊥
v2

ts/�2
s , and �s = Zs B/msc is the gyrofrequency

of ion species s. The Maxwellian equilibrium distribution
FMs = n0s(πv2

ts)
−3/2exp(−v2/v2

ts) is employed. The nonadia-
batic response hs is determined by solving the 1-D gyrokinetic
equation in the ballooning representation

i
v∥

q R0

∂

∂θ
hs + (ω − ωDs)hs

= (ω − ω∗sT )J0(δs)FMs ×
Zs

Ts

(
φ̂(θ) −

v∥

c
Â∥(θ)

)
(6)

where θ is the extended poloidal angle, and ωDs = 2εnω∗sT

[cosθ + sinθ(ŝθ − αsinθ)]× (v2
||
/v2

ts + v2
⊥
/2v2

ts), ω∗sT = ω∗s
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[1 + ηs(v
2/v2

ts − 3/2)] with εn = Lne/R, ηs = Lns/LT s ,
ω∗s = ckθ Ts/Zs BLns is the diamagnetic drift frequency, kθ

the poloidal wave vector of the perturbations, and the den-
sity and temperature inhomogeneity are introduced in terms
of the gradient scale length, and Lns = −(dlnns/dr)−1,
LT s = −(dlnTs/dr)−1. Equation (6) can be solved with
the asymptotic decaying boundary condition hs(θ) = 0 as
θ → −sgn(v||)∞.

We can derive the following coupled integral equations
from (1) and (3) after straightforward algebra:[

1 + τi Z i fi + τz Zz fz
]
8̂(k)

=

∫
+∞

−∞

dk ′

√
2π
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(
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(7)
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(
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(
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(
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(8)

where 8̂(k) and Â||(k) are the Fourier components of φ̃

and (vti/c) Ã||(r), respectively, for the mode structures in the
ballooning space; τs = Te/Ts , fi = 1− fz , with fz = Zznz/ne,
Z i = 1, Zz = Z . The mode frequency ω(=ωr + iγ ) is
normalized to electron diamagnetic drift frequency ω∗e, the
wavenumbers k, k ′

K e
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(11)

And

K u
mn(k, k ′) = −i

∫ 0

−∞

ω∗edτ H u
mn(τ, k, k ′) (12)

for u = i , z, m = 1, 2 and n = 1, 2. Here (see Appendix)
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and g(θ, θ ′) = (ŝ + 1)(sinθ − sinθ ′) − ŝ(θcosθ − θ ′cosθ ′) −

(α/2)(θ − θ ′
− sinθcosθ + sinθ ′cosθ ′).

Here, note that the values of Lei and ηz are not the primary
parameters in the calculations because due to the quasi-
neutrality condition, Lei is not independent, in fact

Lei =
1 − fz Lez

1 − fz
.

Besides, in the assumption Ti (r) = Tz(r), we have

ηz =
ηi
[
(Lnz/Lne) − fz

]
1 − fz

.

Equations (7) and (8) constitute the set of eigenvalue equa-
tions for ITG and KBMs. If βe → 0, the ITG mode remains
unstable only. Increasing βe makes ITG mode stabilized, only
KBM may be unstable. We have solved the set of equations
using the Rayleigh-Ritz method by upgraded numerical code
HD7 [35], [36], [37]. The numerical results deliberately show
the comprehensive properties of KBMs in tokamak plasmas.

III. NUMERICAL RESULTS

The KBMs are first simulated when the temperature gradient
is ignored in the plasma in the absence of impurity ions
as the baseline for comparison. In a pure hydrogen plasma
(i.e., fz = 0) with ηi = 0, the dependences of the normalized
growth rate and real frequency of the mode on βe (electron β)

and α are shown in Fig. 1, where four cases are illustrated,
including the case with q = 1.2, ŝ = 0.2; the case with
q = 2, ŝ = 1, and the cases with q = 4, ŝ = 1, and
ŝ = 2. Here, η(≡ηi = ηe) = 0 is assumed. The other
parameters are εn = 0.2, kθρs = 0.3, τi = 1. The results
show that the mode characteristics are very similar to that
of ideal MHD ballooning mode [1] because for ηi = 0,
the eigenmode equations for KBM reduce to the ideal MHD
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Fig. 1. Dependence of the (a) and (c) normalized growth rate γ /ω∗e and (b) and (d) real frequency ωr /ω∗e of ballooning modes on (a) and (b) βe or
(c) and (d) α. Here, fz = 0 and ηi = ηe = 0. The other parameters are εn = 0.2, kθρs = 0.3, τi = 1.

ballooning equation in marginal stability regime at ωr = ω∗i ,
and therefore, we call these modes as “MHD-like” balloon-
ing modes. The critical β for the instabilities appears at
ωr = ω∗i , which is the same as that for ideal MHD ballooning
modes and independent of FLR and magnetic drift resonance
effects.

With the comparisons among the four cases in Fig. 1, we can
see an important property of the MHD-like ballooning mode.
That is, for the higher safety factor q , the mode maximum
growth rate is higher and the threshold values αc1 and αc2 (for
the first and second ideal MHD stable regimes, respectively)
are also higher, while the threshold values βe,c1 and βe,c2 are
lower. It is demonstrated that with the increase of magnetic
shear ŝ, the critical α for the ideal MHD stable regimes
increase. Moreover, when the q value is changed from 2 (the
black solid line) to 4 (the green solid line), or when the ŝ value
is changed from 1 (the green solid line) to 2 (the blue dashed-
dotted line) and the other parameters remain unchanged, there
is no occurrence of extended instability [25] in both βe and α

spaces, but only from one MHD-like ballooning mode to
another similar one. That is, from Fig. 1, we can conclude
that merely increasing q or ŝ may not change the attributes of
the MHD-like ballooning mode. Furthermore, it is suggested
that the safety factor and magnetic shear are not the drives
for the generation of the extended instability in the second
ideal MHD stable regime. However, as ηi = 1, the extended
instability occurs, as shown in Fig. 2.

Plotted in Fig. 2 are the normalized growth rates (a) and (c)
and real frequencies (b) and (d) of the modes as functions of βe

(a) and (b) and α (c) and (d) for q = 2, 4 and η = 0, 1 to

study the effects of ηi on the mode in a pure hydrogen plasma.
We see that the first critical βe and α for the ideal MHD stable
regime for the case with q = 2 and η = 0 (the black solid
line) are βe,c1 ∼= 0.012 and αc1 ∼= 0.45, respectively, as also
seen in Fig. 1. While the left critical βe and α where the
growth rate vanishes for the case of q = 2 and η = 1 (the
black dashed line) are significantly less than the thresholds for
the first ideal MHD stable regime, βe,c1 and αc1, respectively.
More evidently, however, the second critical βe and α become
much higher than the thresholds for the second ideal MHD
stable regimes, βe,c2 and αc2, respectively. These mean that
the extended instability occurs in the second ideal MHD stable
regime for the cases ηi = 1. In addition, as ηi = ηe = 0, the
normalized real frequency ωr/ω∗e weakly depends on βe and
α, whilst for ηi = ηe = 1, the real frequency strongly depends
on both βe and α, as shown in Fig. 2(b) and (d). In a word,
the occurrence of extended instability mainly depends on ion
inverse Lamdau damping (when ηi ≳ 1 is active) or other
causes (e.g., impurity effect (also see [25]).

In the following work, some parametric effects on KBM are
surveyed as ηi and ηe are nonzero. In order to demonstrate
evidently the physical properties of the mode, we study the
KBMs at a specific βe where the peak growth rate is obtained.
The values of some key parameters, such as q, ŝ, ηi , ηe, fz,

and βe, are listed in Table I. Other parameters are assumed
as εn = 0.2, kθρs = 0.3, τi = 1, unless otherwise stated.
And for the impurity case, Lez = 1 > 0, fz = 0.3, τz = 1,
and C6+ impurity ion is considered. Here, note that the peaking
direction of impurity density profile is inward, corresponding
to Lez > 0. On the contrary, if the impurity density profile is
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Fig. 2. In pure hydrogen plasmas, (a) and (c) normalized growth rates and (b) and (d) real frequencies of the modes as functions of (a) and (b) βe or
(c) and (d) α for deferent q and η. The other parameters are the same as that in Fig. 1.

TABLE I
PARAMETERS FOR FIVE TYPICAL CASES. HERE η ≡ ηi = ηe , AND OTHER

PARAMETERS ARE εn = 0.2, kθρs = 0.3, τi = 1; FOR THE CASE
fz = 0.3, C6+ IMPURITY ION IS CONSIDERED

peaked outward and opposite to that of the electron and main
ion density profiles, we have Lez < 0.

The impurity effect is illustrated in Fig. 3 for different η, q,

and ŝ parameters. Here, we plot the normalized growth rate
γ /ω∗e and real frequency ωr/ω∗e as functions of fz . It can
be seen in the figure that the dependence of real frequency
on fz is monotonically decreasing for fz increasing when
Lez = 1 > 0,. When ηi = ηe = 1 or 2, the instability
growth rate decreases with the increase of impurity charge

concentration fz , implying that the role of impurity ions
is stabilizing. The larger the q or ŝ or η, the faster the mode
growth rate decreases. It means that the larger q or ŝ or ηi

(and ηe), the stronger the stabilizing effect of the impurities on
the mode is, although the figure also shows that the instability
growth rate may be actually higher for larger q or s or ηi at
a certain fixed fz . This is because the presence of impurities
weakens the finite compression effect [23], thus contributing
to the stabilization of the KBM, and the increase of q or ηi

enhance this impurity effect.
The electron density gradient is one of the key factors that

determine the plasma pressure gradient. The dependence of
mode eigenvalue on the electron density gradient parameter is
shown in Fig. 4. It should be noted that here εn = Ln/R,
say, the value εn is inversely proportional to the electron
density gradient. Fig. 4(a) shows the dependence of the
mode growth rate on the electron density gradient parameter
(1/εn), and Fig. 4(c) shows the variation of the mode growth
rate in the pressure gradient (α) space, where the α value
changes with electron density gradient. Fig. 4(b) and (d)
shows the normalized real frequency against 1/εn and α,
respectively. Obviously, the strength and variation of KBM
instability are significantly dependent on electron density
gradient. At first, the normalized growth rate γ /ω∗e increases
rapidly from the lower density gradient threshold [1/εn]c1 ∼

1.5 − 2.5, and then reaches the peak growth rate at the
critical gradient [1/εn]c ∼ 5, then followed by a rapid declines
rapidly with the further increase of 1/εn , and finally vanishes
at the higher density threshold [1/εn]c2. The safety factor
q and ηi have impacts on these threshold values. The bigger
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Fig. 3. Impurity effect. Dependence of (a) normalized growth rate and (b) real frequency on fz for deferent values of q , ŝ and η(≡ηi = ηe). For other
parameters of each case, please refer to Table I.

Fig. 4. Dependence of the mode eigenvalue on (a) and (b) 1/εn and (c) and (d) α for different case of q , ŝ, and η. The other parameters are defined
in Table I for each case.

q or ηi is, the smaller [1/εn]c1 and [1/εn]c2 are. There are
[1/εn]c2 ∼ 12, 16, 17, and 22 (as estimated), respectively,
for the four cases shown in the figure. In the regimes of
smaller ([1/εn]c1 ≤ 1/εn ≤ [1/εn]c) and larger ([1/εn]c <

(1/εn) ≤ [1/εn]c2) electron density gradient regions, the
density gradient plays the roles of destabilizing and stabilizing,
respectively, while in the regime region of very small electron
density gradient ((1/εn) < [1/εn]c1) or very large electron

density region ((1/εn) > [1/εn]c2), the KBM is completely
stabilized. This is consistent with the judgment that the mode
has the first and second KBM stable regimes. If the case
that only electron density gradient causes the occurrence
of the KBM stable regimes is assumed, and the effect of
temperature gradient is ignored, then in the first stable region
((1/εn) < [1/εn]c1), the mode real frequency is very high,
and |ωr/ω∗e| ∼ O(10). In the second KBM stable region
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Fig. 5. Dependence of (a) normalized growth rate and (b) real frequency on 1/εn for different case of q, ŝ, and η, the other parameters are Lez = 1,
fz = 0.3, and C6+ impurity ions are considered. For other parameters of each case, please refer to Table I.

((1/εn) > [1/εn]c2), it has roughly ωr/ω∗e ∼ −2, as shown
in Fig. 4(b).

Comparing Figs. 2 and 4, it can be seen that the electron
density gradient (1/εn) is the crucial factor determining the
pressure gradient parameters, as is the β (βe). When 1/εn

and β (βe) increase from a value close to 0, respectively,
the mode growth rate increases accordingly till reaching the
critical value, and the growth rate turns to decrease rapidly
with 1/εn and β, respectively, until it turns to be 0, where
the second KBM stable regime achieves. Corresponding to
the critical electron density gradient, the corresponding critical
pressure gradient parameter is approximately αc2 ∼ 4 − 8 as
shown in Fig. 4(c), which is much lower than what corresponds
to the critical β (αc2 ∼ 20) (see Fig. 2). In Fig. 4, the extended
instability can also be seen in the regime of the higher α

(generally α > 3−4) that causes by the higher electron density
gradient, but its instability window is much narrower than that
of the extended instability caused by the higher β.

Plotted in Fig. 5 is the dependence of mode eigenvalues
on 1/εn in the presence of impurities. Comparing Figs. 5 with
4(a) and (b), it can be seen that the presence of impurity
reduces the maximum growth rate of each case by nearly
one half, and the mode has still a second KBM stable regime
of the higher electron density gradient, but its critical value
[1/εn]c2 is lower than that without impurity [see Fig. 4(a)].
That is to say, the presence of impurities can reduce the
threshold for the second stable regime and greatly reduce the
instability growth rate of the mode. This implies that it is easier
to reach the internal\ external transport barrier threshold by
increasing the electron density gradient in the plasma with
impurities.

Whether the magnetic shear effect plays a stabilizing or a
destabilizing role depends on the shear value ŝ related to the
safety factor q. Fig. 6(a) and (b) plots the dependences of
the mode normalized growth rate and real frequency on ŝ,
respectively. The dependence of the growth rate of each mode
on ŝ has a turning point, ŝc, where the peak growth rate

is located. Only when ŝ > ŝc, increasing shear is stabilizing.
The maximum growth rate appears at ŝc = q/2, except
for the case q = 4 and ηi = ηe = 1 (shown with the
green dashed line) where ŝc ≈ q/4. In addition, the presence
of impurities can slightly reduce the critical magnetic shear
value, as shown in black dashed-dotted line. In instability
studies or actual experiments, when q value is taken large,
the corresponding ŝ value should also be taken large. The
dependence of real frequency on ŝ is basically similar for
each other. In the range of the mode changing with ŝ, there
is roughly ωr/ω∗e ∼ (−6.5, −1). When ŝ > ŝc, the mode
real frequency increases monotonically and rapidly with the
increase of ŝ. The physical basis of the critical magnetic shear
for maximum growth rate of KBM is not yet clear. From the
present evidence, we know that the critical magnetic shear
mainly depends on q value, and ŝc ≈ q/2 holds for the normal
cases, while this equation can be modified due to other main
plasma parameters, such as ηi , βe and impurity species.

It is interesting that the stabilization (and destabilization)
effects of magnetic shear and safety factor on the mode are
opposite to each other. Here, it is worth noting that the q effect
cannot be inferred by comparing the growth rates between two
cases at a fixed ŝ in Fig. 6, since in addition to q, there are
other key parameters such as βe that differ between every two
cases. In order to accurately study the q effect under the same
parameter conditions, we had to insert a subplot in Fig. 6(a)
to display the q-dependence of growth rates of two cases
at ŝ = 1. Observing the figure, it is demonstrated evidently
when ŝ/q is gently less than 1/2 (ŝ/q < 1/4 is required in
some cases), the mode growth rate will increase with ŝ while
decreases with q , denoting that here the magnetic shear and
safety factor play the roles of destabilization and stabilization,
respectively. On the contrary, when ŝ/q > 1/2, the magnetic
shear and safety factor play the roles of stabilizing and
destabilizing, respectively. However, it is worthy to note that
the constraint q > ŝ is necessary [see the inserted subplot
in Fig. 6(a)] in tokamaks.
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Fig. 6. Dependence of (a) normalized growth rate and (b) real frequency on ŝ for different q and η. For comparison, the inserted graph in (a) shows the
dependence of the normalized growth rate on q for the cases of η = 1 and ŝ = 1, with or without C6+ impurity. The other parameters are described in Table I.

Fig. 7. Mode structures at normalized wavenumber kθρs = 0.3: (a) and (b) case q = 2 and ŝ = 0.5 (with βe = 0.0105), and ŝ = 1 (c) and (d) without and
(e) and (f) with impurity. Here ηi = ηe = 1. The other parameters of each case are the same as discussed in Table I.

The mode structure reflects one of the fundamental prop-
erties of micro-instability. Plotted in Fig. 7 are the mode
structures of KBMs at kθρs = 0.3 for the cases 2 with
ŝ = 0.5 and ŝ = 1 with or without impurity. Note that
here the mode structure is not plotted in the negative θ

region, where the φ̂ and Â|| are even and odd symmetric
about the origin point, respectively. It is shown that the
principal part of the mode for each case is in the lower θ

region, and the potential perturbation is largest at θ = 0.
It can be identified that the amplitude of change in mode
width is not significant when ŝ increases or impurities are
present although a small decrease indeed occurs. If care-
fully observing, we see that as ŝ = 0.5, the mode width

is ∼ 4π [see Fig. 7(a)]; and for the case ŝ = 1 without
impurity, the mode width is about ∼3π [see Fig. 7(c)]; and
as impurities are present [see Fig. 7(e)], the mode width
further decreases on a very small scale. On the other hand,
the magnetic perturbation remains essentially unchanged for
different shear, and the amplitude of the magnetic perturbation
increases slightly due to the presence of C6+ impurities
[see Fig. 7(f)].

IV. CONCLUSION AND DISCUSSION

Many subjects of controlled fusion research cannot be
separated from the analysis of the ballooning mode and its
stabilization. In this article, the multiple parameter effects
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on KBM and its stabilization in tokamaks were qualitatively
studied by means of gyrokinetic simulation. The gyrokinetic
equations are employed, with FLR, magnetic drift, Landau
resonance, and impurity effects being taken into account.
The simulation results showed that the ballooning mode has
obvious thresholds for the first and second KBM stable
region on the electron density gradient, and its thresholds
are [1/εn]c1 ∼ 1.5 − 2.5 for the first KBM stable regime and
[1/εn]c2 ∼ 12 − 22 for the second KBM stable regime for the
cases we discussed in the article. Due to the fact that the pres-
ence of impurity ions can weaken the compressibility effect,
it is observed for the first time that impurity effect is stabilizing
on KBMs when the impurity density profile peaks in the same
direction as those of the electron and main ion density profiles.
The impurity effect will greatly reduce the mode linear growth
rate and wavenumber spectrum width [25]. The peak value of
KBM growth rate appears at ŝc ∼= q/4−q/2, and this formula
can be modified due to other main plasma parameters, such
as ηi , βe and impurity species. Besides, the variation of ŝ is
shown to slightly change the mode structure width and modify
the strength of the effects of ηi and impurities on KBMs.

According to the nature of KBM, some favorable factors for
stabilizing the mode can be given. First of all, we can consider
making the necessary concentration of impurities appear in the
plasma, and the higher the q, ŝ or ηi (and ηe), the stronger
the stabilization effect of the impurities. The second one is
to make the pressure gradient reach or close to the second
stable regime, one of which is to make the electron density
gradient high enough, where the internal or edge transport
barrier (ITB/ETB) is anticipated to be formed. Third, one can
find the turning point of magnetic shear, ŝc, according to the
local parameters, and then try to make ŝ decrease or make q
increase in the regime of ŝ < ŝc, while in the regime ŝ > ŝc,
increasing the magnetic shear or decreasing the q value is
favorable to weaken the mode instability. Here, it is worth
noting that the constraint q > ŝ is necessary in tokamaks.
In our next work, the δB|| effect will be also included in the
integral eigenmode equations and the microscopic instability
with complete electromagnetic effects and its influence on
transport will be studied.

APPENDIX
DERIVATION OF THE EQUATIONS

The derivation of (13) and (14) is given as follows.
Considering impurity effects, the low-frequency electro-

magnetic perturbations in inhomogeneous plasmas can be
described by quasi-neutral conditions, and the parallel com-
ponent of Ampere’s law

ñi + Zñz = ñe (A1)

k2
⊥

Ã|| =
4π

c

∑
j

j̃ ||. (A2)

Here, j = e, i, z. The perturbation density is expressed
by ñ j =

∫
f j d3v, and

j̃ || = q j

∫
v|| f j d3v. (A3)

Here, f j = −(q j FM j φ̃)/T j + h j J0(δ j ), with FM j = n0 j

(πv2
t j )

−(3/2)exp(−v2/v2
t j ).

By using the gyro-kinetic equation with ballooning mode
representation and without considering the plasma shape
change, the nonadiabatic response of particles in a circular
flux axisymmetric geometric system is satisfied(

ω − ωDj + iωt
∂

∂θ

)
h j

=
(
ω − ω∗T j

)
J0
(
δ j
)
FM j

q j

T j

[
φ̃(θ) −

v||

c
Ã||(θ)

]
. (A4)

Solving (A4), the following results are obtained: if v|| > 0,
then

h j = −i FM j
noj q j

T j

∫ θ

−∞

q R∣∣v||

∣∣e−i
∫ θ ′

θ

ω−ωDj (θ
′′)

ωt
dθ ′′(

ω − ω∗T j
)

× J0
(
δ
(
θ ′
))[

φ̃
(
θ ′
)
−

∣∣v||

∣∣
c

Ã||

(
θ ′
)]

dθ ′ (A5)

else if v|| < 0, then

h j = −i FM j
noj q j

T j

∫
∞

θ

q R∣∣v||

∣∣e−i
∫ θ ′

θ

ω−ωDj (θ
′′)

ωt
dθ ′′(

ω − ω∗T j
)

× J0
(
δ
(
θ ′
))[

φ̃
(
θ ′
)
−

∣∣v||

∣∣
c

Ã||

(
θ ′
)]

dθ ′. (A6)

Substitute the nonadiabatic response term h j into the form
ñ j =

∫
f j d3v, it leads to

ñ j = −
n0 j Z j e

T j
φ̃ +

∫
J0
(
δ j
)
h j d3v. (A7)

And substitute (A7) into the quasi-neutrality condition
ñi + Zñz = ñe, we have

−

∫
d3v J0(δe)he +

∫
d3v J0(δi )hi + Z

∫
d3v J0(δz)hz

=
n0i e
Ti

φ̃ + Z
n0z Ze

Tz
φ̃ +

n0ee
Te

φ̃. (A8)

From the quasi-neutrality condition at the equilibrium
status

n0e = n0i + Zn0z

we get

Te

n0ee
×

[
−

∫
d3v J0(δe)he+

∫
d3v J0(δi )hi +Z

∫
d3v J0(δz)hz

]
=
[
1 + τi (1 − fz) + Z fzτz

]
φ̃ (A9)

thus,[
1 + τi (1 − fz) + Z fzτz

]
φ̃

= −

∫
d3v J0(δe)he +

∫
d3v J0(δi )hi +

∫
d3v J0(δz)hz

(A10)

that is,[
1 + τi (1 − fz) + Z fzτz

]
φ̃

=

∫
∞

−∞

[
dθ ′k j

11

(
θ, θ ′

)
φ̃
(
θ ′
)
+ k j

12

(
θ, θ ′

)
Ã||

(
θ ′
)]

(A11)

where

k j
ab

(
θ, θ ′

)
= −ke

ab

(
θ, θ ′

)
+ ki

ab

(
θ, θ ′

)
+ kz

ab

(
θ, θ ′

)
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with a, b = 1, 2. Among them

ku
11

(
θ, θ ′

)
= i

∫
∞

0
2πv⊥dv⊥

∫
∞

0
dv||
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)
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(
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)]
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δ
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))
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for u = i, z, and

β − β ′
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.

From the above formula, it gives
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(A13)

thus,
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where
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with 00 = I0(((bub′
u)

1/2)/λ )e−(1/2)((bu+b′
u)/λ ), 01 =

e−(1/2)((bu+b′
u)/λ )d/(dλ )I0(((bub′

u)
1/2)/λ ).

Perform the integral transformation on (A14) then the
following result is obtained:
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In addition, it gives the second item
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According to the same treatment method above, finally, we can
also get
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