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Abstract— While finite-difference time-domain methods have
long been the foundational basis for particle-in-cell (PIC) codes,
there has been increasing momentum in developing a suite of
finite element-based PIC methods. The beauty of finite difference-
based methods is that it is easily cast within the correct
mathematical framework to represent fields, fluxes, currents, and
charges. However, more importantly, these methods are cost-
effective. In the intervening years, since finite difference methods
were developed, the state of the art of field modeling has shifted
rather dramatically. Indeed, the most popular and trusted field
simulators are based on the finite element method (FEM), thanks,
in large part, to the discovery of the correct function spaces
for quantities of interest for Maxwell’s equations, but also the
flexibility that it brings to modeling geometry with the ability
to refine in space and numerical order to better capture the
underlying physics. Together with time-stepping schemes that are
unconditionally stable, these methods provide the framework nec-
essary to correctly capture the nuance of the physical evolution
with high fidelity. The intent of this article is to review advances
in electromagnetic finite element PIC (EM-FEMPIC). We will
address the progress made in fundamental challenges in such
a method for charge conservation to more programmatic ones,
such as computational complexity.

Index Terms— Coulomb gauge, finite element method (FEM),
Gauss’ laws, implicit time stepping, particle-in-cell (PIC), quasi-
Helmholtz decomposition, unconditionally stable.

I. INTRODUCTION

The electromagnetic particle-in-cell (EM-PIC) method is
widely used as a solution technique to model the physics
of moving charged particles. Primarily, these schemes have
a number of advantages over other fluid-based simulation
techniques, including a fundamentally simple solution algo-
rithm, the ability to model physics over a wide range of
frequency and energy regimes, and being robust and accurate
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in the modeling of complex devices. As a result, EM-PIC
finds widespread use in modeling devices, such as particle
accelerators and high-power microwave devices, and plasma
processing applications, such as high-precision etching and
sterilization of medical implements [1], [2], [3]. Given the
demand for high-fidelity simulation tools, as the geometry
becomes more complex, significant effort has been expended
into the analysis and optimization of PIC methods over the last
few decades. An easy way to see the advance is to compare our
discussion to a review in the context of high-power microwave
devices from 2001 [4]: Note that the easy scalability of the
solution algorithm has meant that PIC methods have gone
from simulating a few hundred particles over a 1-D grid to
a parallel implementation capable of evolving well over ten
million particles to one billion particles in fully resolved 3-D.

The goals of this review are to provide a rigorous overview
of the advances made in the analysis and development made
in implicit electromagnetic finite element PIC (EM-FEMPIC)
solvers in recent years. Specifically, this review will address
the following.

1) A brief overview of the various methods and formula-
tions that exist in the PIC literature.

2) The current state of the art as it pertains to EM-FEMPIC
and where the field stands at this moment in time.

3) Provide a brief outline of the mathematical formalism
involved with EM-FEMPIC methods, particularly in
relation to basis function choices and their effects on
charge conservation.

4) Highlight areas for future development and advances in
the field.

The field of EM-FEMPIC is extensive, and as such, we note
that this review will not delve into interesting topics within
this field, including the following.

1) The history and evolution of PIC schemes and develop-
ment.

2) PIC methods that do not make use of full-wave EM
solvers, i.e., electrostatic simulation [5].

3) Other conformal solution schemes, including those
based on finite-difference time domain (FDTD), discrete
exterior calculus, and so on. A good overview of these
is provided here [6].

The remainder of this article will be structured as follows.
Sections II and IV will introduce a general problem setup and
briefly review the state of the art of various PIC methods.
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Fig. 1. General schematic of the simulation domain.

Section III will then go over the basic formalism associ-
ated with building a finite element-based solution scheme.
Section V-A will then review the spatial discretization used
within a typical EM finite element solver and how they
contribute to charge conservation. After this, Section V-B will
analyze various choices of basis functions and the impact
that they have on charge conservation. In particular, we will
go over a rigorous analysis that demonstrates the conditions
under which satisfaction of Gauss’ electric law is achieved
by default in explicit time-evolution schemes and how it is
typically not satisfied in an implicit method. We will then go
over the reformulation of Ampere’s law suggested in [7] and
demonstrate how this change preserves charge. Section V-D
will then detail the formulation of the quasi-Helmholtz scheme
that explicitly enforces the Coulomb gauge, and thereby, both
satisfy charge conservation and mitigate the spurious null
space excitations that are endemic in implicit EM solvers.

II. PROBLEM STATEMENT

Consider a region � ∈ R3 bounded by a surface ∂�

containing a single charged species as shown in Fig. 1. This
region is subjected to an external field due to which the
charged species accelerate and, in turn, produce spatially
and temporally varying electric and magnetic fields denoted
by E(r, t) and B(r, t), respectively, with r ∈ � and t ∈

[0, ∞). The dynamics of the particles in phase space can be
represented by a distribution function [phase space distribution
function (PSDF)] f (t, r, v) that follows the Vlasov equation:

∂t f (t, r, v) + v · ∇ f (t, r, v)

+
q
m

[E(r, t) + v × B(r, t)] · ∇v f (t, r, v) = 0. (1)

In what follows, we assume that the background media in
� is free space. As a result, we denote the permittivity and
permeability of free space by ϵ0 and µ0, respectively, and
the speed of light by c. Finally, we will also assume that the
system is quiescent for t ≤ 0.

III. FUNDAMENTAL EQUATIONS AND PARTICLE-IN-CELL
APPROXIMATION

As is traditionally done in PIC schemes, we elect to not
solve (1) directly, but, rather, we represent the charge and cur-
rent distributions in � using the moments of the PSDF through
ρ(r, t) = q

∫
�

f (t, r, v)dv and J(r, t) = q
∫
�

v f (t, r, v)dv.
Representing these moments using Np macroparticles, one can

evolve their positions and velocity together with Maxwell’s
equations. Assuming a shape function S(r), we obtain

ρ(r, t) = q
Np∑

p=1

S(r − rp(t)) (2a)

J(r, t) = q
Np∑

p=1

vp(t)S(r − rp(t)) (2b)

where rp(t) and vp(t) refer to the positions and velocities as
functions of time of the pth macroparticle. The evolution of
the fields E(r, t) and B(r, t) over space and time within �

follows Maxwell’s equations, given by

∇ × E(r, t) = −∂t B(r, t) (3a)

∇ × µ−1
0 B(r, t) = Ji (r, t) + J(r, t) + ϵ0∂t E(r, t) (3b)

where Ji (r, t) describes impressed currents within �. Further-
more, the solutions to the curl equations in (3) also need to
satisfy Gauss’ laws

∇ · ϵ0E(r, t) = ρi (r, t) + ρ(r, t) (4a)
∇ · B(r, t) = 0 (4b)

where ρi (r, t) are impressed charges. In what follows, we will
assume that both the impressed current and the corresponding
charge densities are zero. If they are not, it is trivial to include
them in the analysis framework rubric described in Section IV.

As usual, boundary conditions need to be imposed on
E(r, t) and B(r, t) on sections of the outer boundary ∂�

to ensure unique solutions. These are assumed to be either
Dirichlet, Neumann, or impedance boundary conditions on
nonoverlapping surfaces ∂�D , ∂�N , and ∂�I , with ∂� =

∂�D + ∂�N + ∂�I , and are defined as follows:

n̂ × E(r, t) = 9D(r, t) on �D (5a)

n̂ × µ−1B(r, t) = 9N (r, t) on �N (5b)

n̂ × µ−1B(r, t) − Y n̂ × n̂ × E(r, t) = 9I (r, t) on �I (5c)

where the functions 9D(r, t), 9N (r, t), and 9I (r, t) refer to
the imposed Dirichlet, Neumann, and impedance boundary
conditions, respectively.

The evolution of the macroparticles in space and time is
determined by solving for the relativistic equations of motion
with the acceleration determined by the Lorentz force. This
yields the following coupled system of equations for ordinary
differential equations (ODEs) for vp(t) and rp(t):

dγpvp(t)
dt

=
q
m

[
E(rp(t), t) + vp(t) × B(rp(t), t)

]
(6a)

drp(t)
dt

= vp(t). (6b)

IV. CONTEMPORARY SOLUTION METHODS FOR
PARTICLE-IN-CELL

In EM-PIC, the solution cycle typically consists of two
parts: a full-wave electromagnetic field solver to update fields
within the simulation domain as a function of space and time
used in conjunction with a Newton solver that evolves the
particle trajectories in response to these fields. These two
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steps need to be done self-consistently in order to simulate
the physics of the moving charges.

Due to the simplicity of this scheme and its ability to
generate accurate solutions, many different combinations of
field and particle solvers have been developed. The remainder
of this section will provide a brief overview of these methods.

A. Finite-Difference Time Domain

The oldest and by far the most well-analyzed EM-PIC
method involves using an FDTD stencil to update the fields
along with a modified leapfrog stencil developed by Boris [8]
to evolve the particles. The simplest FDTD methods work
primarily by breaking up the simulation domain into a Yee
grid [9] and placing electric and magnetic field quantities
on the primal and dual meshes, respectively. The history of
FDTD-based PIC methods is vast and well-studied; we refer
the reader to these reviews—and the references therein—for a
deeper explanation of the method [10], [11], [12].

One of the fundamental bottlenecks with using an FDTD-
based method is the relative difficulty involved with repre-
senting curved surfaces, leading to well-known “staircasing”
errors, as documented in [13], [14], [15], [16], and [17].
To mitigate this, several “conformal” methods have been pro-
posed and analyzed. While the earliest implementations were
limited to straight-edged domains [18], [19], [20], [21], these
were quickly extended to curved/curvilinear boundaries [22],
[23], [24] with several updates proposed to resolve problems
with stability [25] and better incorporation of dielectric near
a curved interface [26], [27].

Currently, popular implementations of conformal FDTD
include methods that modify boundary cells with an appro-
priate polygon and enforce the correct boundary condition
on the fields. The best exponent of this is the Dey–Mittra
scheme [28], [29], [30], [31], [32], with subsequent contri-
butions resolving issues with the maximum allowable step
size [33], [34], [35], [36], allowing the method to be used
without a prohibitively small stability constraint. Likewise,
irregular interfaces separating dielectrics have also been ana-
lyzed using various weighting tricks and constraints [26].
Furthermore, symplectic, simple conformal PIC (SC-SPIC)
method formulations have been developed and shown to
efficiently handle curvilinear boundaries [37]. We note, at this
point, that this is only a small sampling of the methods that
exist to deal with applying FDTD to systems with curved
interfaces. We refer the reader to this review for a deeper
explanation [6].

B. Finite Volume Methods

Similar to FDTD, finite-volume time-domain (FVTD) meth-
ods have also been used extensively to solve general elec-
tromagnetic problems, with the earliest implementations as
in [38], [39], and [40]. Improvements in higher order repre-
sentation and extension to higher order grids [41] and stencils
that exactly preserve charge [42], [43] and energy [44] were
achieved in recent years. FVTD-based solvers have been
implemented in conjunction with particle pushers in a PIC
scheme, notably including charge-conserving schemes with

higher order particle evolution in time [45], [46] and drift
diffusion-based methods for simulating glow discharges [47],
along with a number of updates for charge correction [48],
[49], [50] and modeling stochastic collisions [51], [52], [53].

C. Discontinuous Galerkin Methods

In a similar manner, there exists a significant body of
work on using discontinuous Galerkin time-domain (DGTD)
methods for PIC [54], [55], [56], [57]. DGTD-PIC methods
have been used with success to simulate a number of particle
systems [58], [59], [60] in addition to Vlasov–Poisson [61],
[62], [63] and Vlasov–Ampere systems [64], [65].

V. FINITE ELEMENT METHODS

While the aforementioned methods have been widely used,
we note that, over the past two plus decades, the state of
the art of finite element methods (FEMs) in electromagnetics
has grown by leaps and bounds [66]. Today, it is at a state
where it has become the de facto modeling algorithm used
by commercial software companies. With this background,
it follows that FEM could potentially be a robust tool for PIC,
and an examination of the bottlenecks and methods developed
to overcome them constitutes the rest of this article. The
viability of finite element field solver was proven through
a series of seminal papers [67], [68], [69], [70], which
demonstrated both the constraints on charge mapping and
basis function representation that enabled an FEM solver to
be integrated with a PIC scheme without breaking important
conservation properties. These results in totality are often
denoted as structure-preserving methods. These results have
been augmented with the development of symplectic formu-
lation methods to better conserve charge and energy [71],
[72]. By and large, the methods developed rely on the explicit
field and particle updates, as these naturally conserve charge.
Unfortunately, explicit methods are conditionally stable, and
the stability criterion is related to the finest feature in the
mesh. In other words, the time step size that can be used is
governed by the smallest mesh element. This implies that the
analysis of geometrically complex systems requires significant
computational resources. Indeed, this feature is shared by all
other methods discussed thus far. An obvious remedy is an
implicit scheme that is unconditionally stable. Such schemes
for FEM are well known [73]. The main question is how
can one adapt such methods to satisfy the conservation of
quantities necessary for a PIC scheme. These were addressed
in a collection of recent papers [7], [74], [75], wherein a
collection of fundamental rules were prescribed. These need
to be satisfied by the EM solver and particle evolution scheme
for the charge to be innately conserved without needing
expensive postprocessing measures, such as divergence clean-
ing. The framework established through the aforementioned
papers has been expanded further to more efficiently solve
systems with narrowband field responses by implementing a
time-marching scheme built around envelope tracking [76],
higher order basis sets [77], domain decomposition to glean
efficiency [78], and relativistic motion [79]. Fundamentally,
Crawford et al. [74] and Ramachandran et al. [76] identified
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Fig. 2. Overview of the de-Rham complex and the discrete operations needed
to map functions in one function space to another.

the failure to conserve charge as being the result of inconsistent
choices of representation and testing functions (in space and
time) in the discretization of Ampere’s and Gauss’ laws. This
understanding led to the proposal of a slight modification
to the current term in Ampere’s law, which was shown to
ensure charge conservation to machine precision [7]. However,
implicit time-stepping schemes come with their own challenge;
they admit null spaces that correspond to a dc field (in the
case of Maxwell solvers) or a time-growing dc field (in the
case of wave equation field solvers). The existence of these is
clearly evident in [75]. Overcoming this bottleneck involved a
fundamental change in spatial representation and through the
use of a quasi-Helmholtz decomposition [75].

In what follows, we will review each of these aspects of
an EM-FEMPIC scheme. These methods have been applied to
a variety of problems, and results can be found in [7], [67],
[68], [75], [76], [80], and [81].

A. Discretization in Space

FEM discretization of (3) requires choosing appropriate
spatial basis functions that respect the unique continuity
conditions demanded by Maxwell’s equations, namely, the
tangential continuity of E(r, t) and the normal continuity
of B(r, t). Traditionally, these conditions have been met by
choosing Whitney edge and face basis functions that live on
and appropriately transform following the de-Rham complex
(as depicted in Fig. 2). Assuming a tetrahedral discretization
of � with Ne and N f faces, E(r, t) and B(r, t) are interpolated
in space as

E(r, t) =

Ne∑
i=1

ei (t)W1
i (r)

B(r, t) =

N f∑
i=1

bi (t)W2
i (r) (7)

where W1
i (r) ∈ H(curl; �) and W2

i (r) ∈ H(div; �) represent
the Whitney edge function defined on the i th edge and
Whitney face function defined on the t th face, respectively.
The function spaces H(curl; �) and H(div; �) are defined as

H(curl; �) =
{
u ∈ L2(�); ∇ × u ∈ L2(�)

}
H(div; �) =

{
u ∈ L2(�); ∇ · u ∈ L2(�)

}
(8)

where L2(�) refers to the space of square integrable func-
tions on �. Further details on mixed finite elements can be
found [82], [83], [84], [85], [86], and references therein. One
can obtain a discrete system of equations by Galerkin testing,
resulting in the following matrix ODE to solve for the vector
of field coefficients B̄(t) and Ē(t) at a given instance of time:[

¯̄S
]
·

[
B̄(t)
Ē(t)

]
+

[
¯̄M
]
·

[
∂t B̄(t)
∂t Ē(t)

]
=

¯̄F (9)

where the various matrix definitions are given as follows:[
¯̄S
]

=

[
0 [∇×]

−[∇×]
T 0

]
[

¯̄M
]

=

[[
⋆µ−1

]
0

0 [⋆ϵ]

]
¯̄F = −

 0
J̄ (t)
ϵ0

. (10)

Furthermore, B̄(t) = [b1(t), . . . , bN f (t) ]
T , Ē(t) =

[e1(t), . . . , eNe(t)]
T , and J̄ (t) = [ j1(t), . . . , jNe(t)]

T , where
j j (t) = ⟨W(1)

j , J̃(rs, t)⟩. One can likewise trivially formulate
a wave-equation solver for just the electric or magnetic fields,
as done in [7]. The matrices in (10) are defined in the
Appendix.

B. Charge Conservation and Temporal Discretization

To convert (9) into a discrete update stencil in time, one
has to choose representation and testing functions in time as
done in the spatial setup. In general, the vector of coefficients
B̄(t) and Ē(t) can be interpolated by a set of temporal basis
functions Nn(t). We exploit an abuse of notation to represent
discrete samples of the electric field and the magnetic flux
density at timestep tn as Ē(tn) and B̄(tn), respectively. Thus,
at any given time t(

B̄(t)
Ē(t)

)
=

Nt∑
n=0

Nn(t)
(

B̄(tn)
Ē(tn)

)
. (11a)

We can obtain a discrete marching scheme by testing (9)
by an appropriate function Wn(t). Both Nn(t) and Wn(t) are
assumed to have compact support. Our goal, in this section,
is to examine the consequences of charge-conserving PIC of
choosing various forms of time representation and testing.
In the continuous world, solutions to Faraday’s/Ampere’s laws
will automatically satisfy Gauss’ electric and magnetic laws.
Failure to conserve charge in a discrete PIC scheme is an
entirely numerical phenomenon arising from the fact that the
solution predicted by the discretized version of Ampere’s law
does not satisfy the discrete form of Gauss’ law.

To set the stage for analysis, let us first consider the form of
discrete Gauss’ law, with the charge density defined as ρ̄i (t) =

[ρi (t), . . . , ρNn (t)]
T

ϵ0[∇]T [⋆ϵ]Ē(t) = ρ̄(t). (12)

To simplify the notation, we now define φ̄(t) =

ϵ0[∇]
T
[⋆ϵ]Ē(t) to obtain

φ̄(t) = ρ̄(t). (13)

For the discrete solution to be consistent between Ampere’s
and Gauss’ laws—and thereby conserve charge, we need the
discrete divergence of Ampere’s law to produce solutions that
satisfy (12). A discrete divergence of Ampere’s law gives us

ϵ0[∇]T [⋆ϵ]∂t Ē(t) = −[∇]T J̄ (t). (14)
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Simplifying the notation with −[∇]
T J̄ (t) = η̄(t), the diver-

gence of discrete Ampere’s law ends up as follows:

∂t φ̄(t) = η̄(t). (15)

Thus, for a given time-marching stencil to be innately charge
conserving, the solutions produced by the discrete stencil
obtained from (15) should satisfy the stencil used for (13).

1) Explicit Time Updates: EM-FEMPIC formulations
described in the literature overwhelmingly adopt a leapfrog
update for evolving the curl equations in time [12]. This is
done for a very good reason since choosing this update scheme
results in perfect compatibility between Ampere’s and Gauss’
laws. Applying a center-differenced leapfrog scheme at tn+1/2
on (15) gives us

φ̄n+1
− φ̄n

1t
= η̄n+1/2. (16)

Conventionally, satisfaction of (13) is usually measured point-
wise at each timestep. This operation is tantamount to choos-
ing Wn(t) = δ(t − tn). As a result, the discrete form of Gauss’
law becomes

⟨δ(t − tn), φ̄(t) = ρ̄(t)⟩

H⇒ φ̄n
= ρ̄n. (17)

Applying the same center-difference stencil to the discrete
continuity equation, we obtain

η̄(t) = ∂t ρ̄(t)

H⇒ ηn+1/2
=

ρn
− ρn−1

1t
. (18)

From inspection, one can see that (18) applied to (16) results
exactly in (17) so long as the initial fields in the domain satisfy
Gauss’ law. As a result, explicit leapfrog-based EM-FEMPIC
schemes innately conserve charge.

2) Implicit Time Updates: Implicit methods, as we will
shortly see, do not enforce the correspondence between the
solutions obtained from Ampere’s and Gauss’ laws. To demon-
strate this, consider (15) solved through a Newmark-β integra-
tor [73] with γ = 0.5 and β = 0.25. In effect, the choice of γ
and β fixes the representation and testing function to a set of
interpolating quadratic polynomials and an average accelera-
tion testing function. This choice of testing is consistent with
choosing Wn(t) as follows:

Wn(t) =


tn − t
1t

, t ∈
[
tn−1, tn

]
t − tn
1t

, t ∈
[
tn, tn+1

]
0, otherwise.

(19)

Applying this to (14) results in

φ̄n+1
− φ̄n−1

2
=

η̄n+1
+ 2η̄n

+ η̄n+1

4
(20)

where η̄n
= [∇]

T J̄ n . To map η̄ to ρ̄, we need once again to
use an integrator. As an illustration, assume that this is done
using a backward Euler stencil though this analysis can be
repeated with more complex stencils. Thus, applying

ρ̄n+1
= ρ̄n

+ 1t
¯ηn+1 (21)

to (20), we get

φ̄n+1
− φ̄n−1

=
1
4

(
ρ̄n+1

+ ρ̄n
− ρ̄n−1

− ρ̄n−2). (22)

As before, the discrete representation of (13) yields (17),
which is inconsistent with (22), leading to charge not being
innately conserved. We also note that, choosing a different
measurement function for Gauss’ law, say, the natural New-
mark testing function used in Ampere’s law still does not
resolve the issue as

φ̄n+1
+ 2φ̄n

+ φ̄n−1

4
−

ρ̄n+1
+ 2ρ̄n

+ ρ̄n−1

4
= 0 (23)

is still fundamentally incompatible with the discrete Gauss’
law with different representation and measurement functions.

Getting around this problem requires a slight reformulation
of Ampere’s law, as demonstrated in [7]. First, consider the
function G(r, t), which denotes the time integral of the current

G(r, t) =

t∫
0

J(r, τ )dτ = q
Np∑

p=1

t∫
0

vp(τ )δ(r − rp(τ ))dτ

= q
Np∑

p=1

rp(t)∫
rp(0)

d r̃δ(r − r̃). (24)

Applying (24) to Ampere’s law gives us

∇ × µ−1
0 B(r, t) = ∂t G(r, t) + ϵ0∂t E(r, t). (25)

Applying the spatial discretization described in V-A and
applying our notational simplifications give us

⟨Wn(t), ∂t φ̄(t) = ∂t η̄(t) = ∂t ρ̄(t)⟩

φ̄n+1
− φ̄n−1

2
=

ρ̄n+1
− ρ̄n−1

2
(26)

with Gauss’ law as defined in (23). This time, we see that,
as long as the first two initial conditions satisfy Gauss’ laws
pointwise, i.e., φ̄0

= ρ̄0 and φ̄1
= ρ̄1, (26) and (17) are

exactly consistent with each other. This result holds even when
replacing the testing measure with Gauss’ laws with Wa(t),
thus enabling an implicit EM solver to be used within an
FEMPIC scheme while perfectly conserving charge.

The above analysis can be trivially extended for the wave
equation as done in [75].

Finally, we note that the examples shown in this section
are related mainly to polynomial representations of the fields
and currents. There are situations, wherein the use of other
basis sets, particularly those built around complex exponential
functions, is advantageous. In these situations, replacing J̄ (t)
with its time integral is not sufficient to create a scheme
that perfectly conserves charge. A thorough analysis of this
situation is presented in [76].

C. Havoc Due to Null Spaces in Implicit EM-FEMPIC

Null spaces always exist in implicit EM-FEMPIC. Because
of this, taking a discrete divergence, as was done in
Section V-B, leads to corruption of charge conservation. This
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Fig. 3. Example of a 2-D mesh (bounded by nonconducting walls) with
the nonsolenoidal edges (found along the minimum spanning tree) for the
electric field marked in red. The remaining black edges represent the cotree
unknowns.

Fig. 4. Example of a mesh with the face-centered minimum spanning tree
highlighted in red for the magnetic field unknowns.

corruption is of the form ∇φ(r) in an implicit mixed EM-
FEMPIC solver and of the form t∇φ(r) in an implicit wave
equation EM-FEMPIC. This problem can be mitigated to some
extent by solving for the fields at very high tolerance, with
the level of spurious excitation dependent upon the tolerance
used for computation. Significantly, for EM-FEMPIC, the null
spaces will corrupt the satisfaction of Gauss’ laws despite
using the testing methods described in Section V-B. Tech-
niques to overcome this problem are discussed next.

D. Quasi-Helmholtz or Coulomb Gauge

A robust means to satisfy Gauss’ law with implicit EM-
FEMPIC solvers was presented in [75]. We note that fields
E(r, t) and B(r, t) can be decomposed into solenoidal and
nonsolenoidal components. As a primer on notation, Ēns(t)
refers to the nonsolenoidal coefficients of the electric field.
Similarly, Ē s(t) and B̄s(t) refer to the solenoidal coefficients
of the electric field and magnetic flux density, respectively.
All relevant submatrices involved are defined entirely in
Section VIII-A.

E. Projectors

Projectors to separate the nonsolenoidal components from
the Whitney basis functions used in a traditional FEM solve
are defined as

[P̄]
6
e = 6

(
6T 6

)†
6T (27a)

[P̄]
3
e = I − [P̄]

6
e (27b)[

P̄
]3

b = I − 6m
(
6T

m6m
)†

6T
m (27c)

where † represents a Moore–Penrose pseudoinverse, [6] =

ϵ0[M̄g] and [6]m = [∇·]T . Numerically, this is done by
separating the field unknowns using a minimum spanning
tree (see Fig. 3) and its associated cotree (see Fig. 4) [66].

Applying these projectors to the field coefficients will have
the effect of separating the solenoidal components as

D̄n
= 6 Ēn

ns +
[
P̄

]3

e D̄n (28)

for the electric field and

B̄n
s =

[
P̄

]3

b B̄n (29)

for the magnetic flux density. By definition, the discrete diver-
gence of the projectors is zero, and as a result, the magnetic
flux density B̄n will have an identically zero divergence. Note
that the use of these projectors is tantamount to the imposition
of the discrete Coulomb gauge. Therefore, by design, these
will satisfy both Gauss’ laws.

F. Discrete System

To construct a stencil from these projectors, one can apply
a discrete divergence operator to (28) to obtain[

Ce
z

]T [∇]T [⋆e][∇]
[
Ce

z

]
Ēns(t) = −

[
Ce

z

]T [∇]T Ḡ(t). (30)

Therefore, the nonsolenoidal components of the electric field
can be related exactly to the charge density. The operation of
(30) is the numerical analog of strongly enforcing the Coulomb
gauge.

Upon using a mapping to find only the “cotree” unknowns
in the mesh (which houses the solenoidal) components, these
can be solved through[

Z̄
]

11∂t B̄s(t) +
[
Z̄
]

12 Ē s(t) = −
[
Z̄
]

13 Ēns(t)[
Z̄
]

21∂t Ē s(t) −
[
Z̄
]

22 B̄s(t) = Ḡ(t) −
[
Z̄
]

23∂t Ēns(t). (31)

The time derivatives can be evaluated by using an implicit
Newmark-β operator. Note that the solutions to Ē s(t) and
B̄s(t) will still contain null space excitations. However, when
used to obtain the fields through (28) and (29), these excita-
tions will have no influence on charge conservation.

VI. PARTICLE PUSH

To evolve the particles continuously in space and time,
we further need to define a particle integration or “push”
scheme. Specifically, the particle motion can be obtained by
solving

∂γ[vp]vp(t)
∂t

= ap(t) =
q
m

(
E(rp, t) + vp × B(rp, t)

)
(32a)

∂rp(t)
∂t

= vp(t) (32b)

where vp(t) and rp(t) are each vector in R3 and refer to
a given particle’s velocity and position, respectively, at time
t . Furthermore, γ[v] = (1 − |v|

2/c2) is the relativistic time
dilation functional. Many different particle integration schemes
have been proposed in conjunction with EM-FEMPIC. These
range from explicit or semiexplicit particle updates like the
standard Boris update [8] as used in [71], or higher order
Adams integrators [7], to the use of so-called kinetic enslave-
ment schemes, where a combined monolithic EM-particle sys-
tem is solved for self-consistently [87], [88] to, most recently,
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Fig. 5. Snapshot of the expanding plasma beam at t = 5 ns. We note that the
distribution predicted by EM-FEMPIC using a fourth-order Adams integrator
closely agrees with equivalent results from XOOPIC.

Fig. 6. Satisfaction of Gauss’ law for the expanding particle beam. We note
that the error is at machine precision over the course of the run.

TABLE I
PARAMETERS FOR THE EXPANDING BEAM RUN

the possibility of using predictor-corrector schemes [79]. Fun-
damentally, for implicit EM-FEMPIC schemes, the charge-
conserving framework described for the EM system is compat-
ible with any particle update scheme (be it explicit or predictor
corrector), so long as the quantity G(r, t) is appropriately
mapped from the particle quantities through (24).

VII. NUMERICAL EXAMPLES

A. Expanding Particle Beam

To demonstrate the accuracy and function of the implicit
EM-FEMPIC scheme, consider a conducting cylindrical cavity
of 10 cm length and 2 cm radius oriented such that the
axis of rotation was aligned along ẑ. The walls of the cavity
were assumed to be perfectly conducting, and a particle beam
composed of electrons was initialized at z = 0. The parameters

Fig. 7. Particle distribution within a cylindrical klystron at t = 7.6 ns.
We note that the EM-FEMPIC using an energy-preserving predictor-corrector
particle integrator agrees with a leapfrog-based method and exhibits particle
bunching at z∼20 mm.

Fig. 8. Satisfaction of Gauss’ law for the klystron. We note that the error is
at machine precision over the course of the run.

of the simulation are given in Table I. The EM-FEMPIC
simulation was formulated, as described in Section V-A-VI,
and coupled with the particle push scheme described in [75].
The tetrahedral mesh used to discretize the system comprised
of 3229 tetrahedra had an average edge length of 2.3 mm.
A snapshot of the z–r phase space distribution particle beam
at 5 ns—compared with an equivalent simulation setup on
XOOPIC [89]—is reported in Fig. 5, and the satisfaction of
Gauss’ law over the course of the entire run is shown in Fig. 6.
As is evident, the implicit method shows very good agreement
with the reference method while satisfying Gauss’ law to
machine precision, due to the use of the quasi-Helmholtz setup
described in Section V-D.

B. Particle Beam in a Klystron

Next, we considered the performance of the implicit EM-
FEMPIC method to an FEMPIC method built using leapfrog
by analyzing the behavior of a particle beam accelerated
into a cylindrical klystron. The geometry of the device is
shown in Fig. 7, with all walls assumed to be perfectly
conducting. At the neck of the device (r = 4 mm and
z = 14−16 mm), we placed a current source with a frequency
of 3.9 GHz, oriented along the ẑ-direction. Once again, the
system was discretized by a tetrahedral mesh comprised of
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Fig. 9. Particle and field energy predicted by the implicit EM-FEMPIC case
for the klystron.

TABLE II
PARAMETERS FOR THE KLYSTRON RUN

3229 tetrahedra, this time with an average edge length of
2.63 mm. The solver was run with a step size of 11.6 ps and
compared to a leapfrog-based EM-FEMPIC method running
at 1 ps. The parameters of the beam are reported in Table II.
Once again, we note very good agreement between the implicit
and explicit EM-FEMPIC implementations in Fig. 7, despite
the former running at approximately 11 times the step size.
Likewise, we note machine precision satisfaction of Gauss’
law in Fig. 8 and good energy conservation in Fig. 9.

VIII. CONCLUSION

A thorough review of the methods and techniques used
to construct EM-FEMPIC methods is discussed. Rigorous
mathematical details and arguments are presented both in the
construction/nuances in choosing the appropriate representa-
tion sets and in their consequences for charge conservation.
We provide a detailed analysis of the challenges associated
with Gauss’ law satisfaction in both explicit and implicit
methods and provide a description of solutions used in the
current state of the art. In the course of this discussion,
differences between the various solution methods were high-
lighted. Finally, several areas of current and future work are
highlighted—these included the work on improving the accu-
racy and scalability of EM-FEMPIC solvers through the use of
higher order representation and domain decomposition solvers,
and the use of more complex particle evolution schemes and
their effect on energy conservation.

APPENDIX

A. Matrix Definitions in the Quasi-Helmholtz Decomposition

To begin, the sets N , E , F , and T are defined as the set of
nodes, edges, faces, and tests, respectively, having Nn , N f , Ne,

and Nt elements. The various submatrices used in describing
the quasi-Helmholtz framework in Section V-D are given as
follows:

[⋆ϵ]i, j = ⟨W(1)
i (r), ε · W(1)

j (r)⟩; i, j ∈ E (33a)[
⋆µ−1

]
i, j = ⟨W(2)

i (r), µ−1
· W(2)

j (r)⟩; i, j ∈ F (33b)

[⋆ρ]i, j = ⟨W (3)
i (r), W (3)

j (r)⟩; i, j ∈ T (33c)

where W(1)
i , W(2)

i , and W (3)
i are the Whitney edge, face, and

volume basis functions, respectively. Furthermore, we define
the following matrices:

[Mg]i, j = ⟨W(1)
i (r), ∇W (0)

j (r)⟩; i ∈ E, j ∈ N (34a)

[Mc]i, j = ⟨W(2)
i (r), [∇×]W(1)

j (r)⟩; i ∈ F, j ∈ E (34b)

[Md ]i, j = ⟨W (3)
i (r), [∇·]W(2)

j (r)⟩; i ∈ T , j ∈ F (34c)

[∇] = ε[⋆ϵ]
−1

[Mg] (34d)

[∇×] = µ−1[⋆µ−1

]−1
[Mc] (34e)

[∇·] = [⋆ρ]
−1

[Md ]. (34f)

Likewise, the submatrices involved in (31) are given as
follows, where the various submatrices involved in (31) are
defined as:

[Z]11 =
[
Cb

c

]T
[P]

3
b

[
Cb

c

]
(35a)

[Z]12 =
[
Cb

c

]T
[∇×][⋆ε]

−1
[P]

3
e [⋆ε]

[
Ce

c

]
(35b)

[Z]13 =
[
Cb

c

]T
[∇×][⋆ε]

−16
[
Ce

z

]
(35c)

[Z]21 =
[
Ce

c

]T
[P]

3
e [⋆ε]

[
Ce

c

]
(35d)

[Z]22 =
[
Ce

c

]T
[∇×]

T
[⋆µ−1 ][P]

3
b

[
Cb

c

]
(35e)

[Z]23 =
[
Ce

c

]T
6

[
Ce

z

]
(35f)

where the [C]b matrices are mappings that identify unknowns
that reside on the cotree. Constructing this mapping is trivial
for simply connected structures but is trickier for multiply
connected geometries.
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