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Abstract— Fog networks offer computing resources of varying
capacities at different distances from end users. A Fog Node (FN)
closer to the network edge may have less powerful computing
resources compared to the cloud, but the processing of com-
putational tasks in FN limits long-distance transmission. How
should the tasks be distributed between fog and cloud nodes?
We formulate a universal non-convex Mixed-Integer Nonlinear
Programming (MINLP) problem minimizing task transmission-
and processing-related energy with delay constraints to answer
this question. It is transformed with Successive Convex Approx-
imation (SCA) and decomposed using the primal and dual
decomposition techniques. Two practical algorithms called
Energy-EFFicient Resource Allocation (EEFFRA) and Low-
Complexity (LC)-EEFFRA are proposed and their effective-
ness is tested for various network and traffic scenarios. Using
EEFFRA/LC-EEFFRA can significantly decrease the number of
computational requests with unmet delay requirements when
compared with baseline solutions (from 48% to 24% for 10 MB
requests). Utilizing Dynamic Voltage and Frequency Scaling
(DVFS) minimizes energy consumption (by one-third) while
satisfying delay requirements.

Index Terms— Fog network, energy-efficiency, latency, cloud,
edge computing.

I. INTRODUCTION

THE number of Internet of Things (IoT) devices exceeds
14 billion worldwide and this number continues to

grow [1]. Such devices often have limited memory capacity
and computational power. However, processing requests of all
IoT devices at a remote cloud would require an unprecedented
amount of traffic traversing the Internet [2] and influencing
energy consumption as well as congestion of the Internet.
Moreover, some applications, such as video surveillance, aug-
mented reality, or vehicle-to-vehicle communication require
low delays that cannot be fulfilled by remote cloud Data
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Fig. 1. Example of fog computing network with task offloading scenario
(colors differentiate offloaded tasks).

Centers (DCs). Fog computing [3] addresses these problems
by introducing a fog tier (or multiple hierarchical fog tiers)
between the cloud and the end devices tiers (Fig. 1).1 It
is composed of Fog Nodes (FNs) with computational and
storage resources located near end users. Data transmission
between end devices and FNs is thus faster and poten-
tially less energy-consuming than alternative thing-to-cloud
communication.

This work considers task distribution between many FNs
and Cloud Nodes (CNs). We minimize network energy con-
sumption while meeting delay constraints specific for each
offloaded task. As shown in Fig. 1, an offloaded task can
be processed in the node to which it is originally sent (solid
blue arrows), in another FN (solid green arrows), or in the
cloud (hollow red arrows). A realistic network model is
proposed below encompassing the energy consumption as well
as the delay, related to both the necessary computations and
communication. Our model includes realistic network para-
meters reflecting the characteristics of real-world equipment.
Based on this model, we formulate an optimization problem
to minimize the total (task transmission- and computation-
related) energy consumption while fulfilling total delay con-
straints. The optimization considers not only the assignment
of tasks to the nodes but also the Central Processing Unit
(CPU) frequency at each utilized node. The problem is a
non-convex Mixed-Integer Nonlinear Programming (MINLP)
problem, so we apply the Successive Convex Approximation
(SCA) method which transforms it into a series of convex

1Fog computing is closely related to edge computing, but we distinguish the
fog from the edge by the mentioned multiple hierarchical layers of the fog
and flexibility of directing the computational tasks to suitable FNs introduced
by such architecture.
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MINLP problems, and provides the optimal solution by using
the primal and dual decomposition techniques as well as
the Hungarian algorithm. A sub-optimal, lower complexity
solution is also proposed. The main contributions of our
work include: 1. modeling energy consumption and delays
related to transmission, queuing, and computing of tasks in
the fog and cloud tiers, 2. proposing and solving a complex
optimization problem, 3. examining the efficiency of proposed
solutions for a vast scope of network and traffic parameters.
Our solutions are original in handling more complex network
models, more realistic parameters, and considering both task
processing- (computing-) and transmission-related energy and
delay, as opposed to the background works.

The paper is organized as follows. An overview of related
work is provided in Section II. A mathematical model of the
fog network is presented in Section III. Section IV defines
the optimization problem, and Section V presents its solution.
Simulation results for various scenarios are shown and dis-
cussed in Section VI. Section VII concludes the work.

II. RELATED WORK

In this Section, we review related work while focus-
ing on the following aspects: (i) energy consumption of
fog networks related to task implementation (computations)
and transmission of computational tasks, (ii) consideration
of latency caused by both computations and transmission,
(iii) fog scenarios, network and traffic models, (iv) optimiza-
tion of energy consumption. The aspects (i)–(iv) stress the
novelty of our work, where we jointly study communication
and computing in the fog in the context of offloading computa-
tional tasks. Works which focus on other potential applications
of fog computing (e.g., content distribution/caching [4], [5],
and [6]) are therefore not included in this overview as their
network and traffic scenarios are significantly different from
ours. Papers not taking energy consumption into account, e.g.,
[7], [8], and [9], and those that only look at power consumption
as a constraint, e.g., [10] are also intentionally omitted.

The authors of [11], [12], and [13] look at the energy
consumption of individual end devices. They aim to answer
the following question: is it more efficient for an end device
to process a task locally, or to offload it to the fog/cloud?
These works disregard the energy costs related to performing
computations and transmission in the fog or cloud tiers of
the network (our aspect (i)) and are therefore substantially
different from our work. Our work and those we survey further
below examine total energy consumption from the network
operator’s point of view, tackling the following question: given
a task has already been offloaded, where is it advantageous to
process it?

Sarkar et al. examine the energy consumption [14], power
consumption [15], and task delay [14], [15] in the fog-
computing network, depending on how much data is processed
in the fog tier and in the cloud tier. This data is transmitted
from terminal nodes. Their models include costs related to
transmission, processing, and storage of data. These works
show that both power/energy consumption and delay decrease
with a higher percentage of tasks being processed in FNs

rather than the cloud. Power/energy consumption and delay
also increase with the number of terminal nodes. However,
this increase is not monotonous. Moreover, a discussion
on application-specific fog computing utilization is included
in [14], while costs related to the carbon footprint of the
network are examined in [15].

There are multiple major differences between our work
and [14], [15]. First, there is no optimization (aspect (iv)) in
these works. While costs are modeled depending on where
offloaded requests are sent, no solution for their optimization
is proposed. Second, FNs in [14] and [15] work at a fixed
clock frequency, while in our work, DVFS is considered
(aspect (iii)). Furthermore, costs related to transmission within
the fog tier (aspects (i) and (ii)) are also not considered
in [14] and [15]. Finally, peculiar assumptions (indefinite
processing of data in cloud DCs [15], energy dissipation
rate defined as a sum of energy spent on computations over
time plus an average of energy spent on transmission over
time [14]) and mistakes (e.g., triangle inequality used incor-
rectly in Sec. 5.2.1 of [15]) make results of [14], [15] biased
towards showing that fog computing is significantly faster and
more energy-efficient than cloud computing regardless of the
offloading scenario.

In [16], offloaded requests can be served by one of the
FNs or the cloud servers. Similar to our work, the objective
of [16] is to minimize the power consumption of the network
while maintaining delay constraints. Delay related to queuing
and computing is calculated as an average response time of
queuing models (M/M/1 in FNs and M/M/n in DCs). The
cloud servers can adjust their clock frequency using DVFS.
The results show a clear trade-off between power consumption
and delay. The aspects (i), (iii), and (iv) distinguish [16] from
our work. The energy/power costs are not related to data
transmission in [16] (i). Also, rather than jointly optimiz-
ing energy costs related to task transmission and processing
(computations) in the fog and the cloud, Deng et al. [16]
heuristically split this optimization problem into three sub-
problems (iv). Offloaded traffic is not divided into a number
of requests, packets, or instances in [16] (iii) and is only
parameterized with a single number. As a consequence, only
the average delay can be calculated (and constraint satisfied),
rather than the individual delay of each offloaded request.
In this work, traffic offloaded from end devices consists of
multiple requests, where each request is defined by its size,
arithmetic intensity, and delay requirement.

Vakilian et al. [17], [18] jointly optimize delay and energy
consumption related to offloading in fog networks with multi-
ple FNs. FNs can cooperate by sending workload to each other
and the cloud. Similarly to [16], delay related to queuing and
computing is calculated as an average response time of the
queuing model (M/M/1 for workload processed in FNs) with
a constant value added for transmission delay between FNs.
While both works use similar objective functions (weighted
sum of energy consumption and delay), [18] includes fair-
ness coefficients that depend on resources available to FNs
while [17] does not. The authors conclude that the problem
in [17] is convex. For [18], they propose a population-based
algorithm, i.e., the cuckoo evolution algorithm. The results



KOPRAS et al.: TASK ALLOCATION FOR ENERGY OPTIMIZATION IN FOG COMPUTING NETWORKS 8231

of [17] show a clear trade-off between energy consumption
and delay in the network. The method proposed in [18]
decreases both delay and energy consumption compared with
a competing algorithm (proposed in [19]), while both works
highlight that cooperation between nodes leads to lowered
costs.

Vakilian et al. [17], [18] do not consider adjusting CPU
frequencies of nodes. Furthermore, offloaded traffic is not
divided into a number of requests, packets, or instances in [17]
and [18]. It is only parameterized with a single number (like
in [16]). Hence, [17], [18] differ from our work in aspect (iii).
Finally, joint energy and latency minimization is performed
in [17] and [18], while energy minimization under latency
constraints is performed in our work – aspect (iv).

Cai et al. [20] examine a network with a single task node
and multiple helper nodes which lack an external power
supply. The task node can process computational tasks itself
or offload these tasks to the helper nodes. To do so, it needs to
transfer both the task and energy required for computations to
the helper node. The authors of [20] optimize cost defined as a
weighted sum of delay and energy consumed by the task node
for computations, energy transmission, and task transmission.
The constraints include a maximum task execution delay
that cannot be exceeded and transferring enough energy for
computations in helper nodes. Optimization algorithms are
proposed for scenarios with and without the possibility of
queuing tasks.

There are multiple differences between [20] and our work.
In terms of energy consumption (i), our work minimizes
the energy consumed by all computing nodes, while [20]
minimizes the energy spent only by the task node, energy
consumption of helper nodes is examined but only as a
constraint. There are significant differences in network and
traffic models (iii). The authors of [20] examine an energy
harvesting scheme where helping nodes are gated by the
amount of energy they receive. In [20] tasks originate from
one task node while in our work they arrive from end devices
at any of our FNs. In contrast to our work, all nodes in [20]
work at fixed clock frequencies without any connection to the
cloud.

Power consumption and delay in fog and cloud tiers of
fog computing networks are studied in [21]. The results are
shown for various traffic and network parameters. A trade-
off between power consumption and delay is shown both in
the number of FNs and their clock frequency (more FNs and
higher frequencies mean higher power consumption and lower
delay). However, in [21], similarly to [14] and [15], power
consumption and delay in the fog computing network are only
examined – there is no energy-cost optimization (aspect (iv)).
Also, while delay and energy costs related to transmission
between fog and cloud tiers are considered in [21], the cost
related to transmission within the fog tier is not considered
(aspects (i) and (ii)).

To summarize, we minimize the energy consumed by both
networking and computing equipment in the fog computing
network. To the best of our knowledge, no prior work tackles
the problem of jointly minimizing energy spent on both
transmission and computation by distributing tasks between

the fog and the cloud, while satisfying latency constraints
and dynamically choosing optimal CPU clock frequencies.
Finally, we take the energy- and latency-costs of inter-FN
communication into account in our optimization algorithms,
while they are ignored or assumed to be negligible in the
surveyed papers.

III. NETWORK MODEL

We introduce the network model in this section. Notation is
presented in Table I. Letters in superscript are used throughout
this work as upper indices, not exponents, e.g., Lr does not
denote L to the power of r.

In the bottom tier of the network, there are end devices
(e.g., smartphones, sensors) with specific computational tasks.
We assume that serving these tasks requires offloading them,
i.e., they either cannot be processed in the end device or the
end device chooses to offload them rather than to process them
locally. Then, they can be processed either in the fog tier,
consisting of set F of FNs, or in the cloud tier (set C of
DCs). A set of all computing nodes in the network is denoted
as N = F ∪ C.

Unlike works that focus on end devices [11], [12], and [13],
we examine energy consumption from the point of view of the
fog network. Modeling and optimizing wireless transmission
is a key part of these works, e.g., allocating sub-channels to
mobile devices in [12] or interference affecting transmission
rates in [13]. Our system model is agnostic about the model
of the end device-FN link. However, depending on the chosen
technology, the number of devices accessing the medium,
and data volume, the communication delay can vary. This
is considered in the presented model, as it can influence the
feasibility of a given task allocation strategy. Meanwhile, the
energy spent on wireless transmission between an end device
and FN is independent from the task allocation strategy used
by the fog network. Therefore, we do not include it in the
optimization problem. We focus on the efficient distribution
of offloaded tasks between fog and cloud nodes.

A. Computational Requests

Let T be a numbered set {T1, T2, . . . , T|T |} of all time
instances at which computational requests arrive at FNs, and
have to be allocated computing resources. Let Rk be a set
of all requests arriving in the network at time Tk. Each
computational request r ∈ Rk is described by the following
parameters: (i) size Lr in bits, (ii) arithmetic intensity θr in
FLOP/bit (used in FLOP/byte in [22] and [23]), (iii) ratio
or of the size of the result to the size of the offloaded
task (most related works do not consider the transmission
of the results [14], [15] or assume that its contribution is
negligible [16], [20]; or equal to 1 implies the output has
the same size as the input; in case of electrocardiography
signals or � 0.07 [24]), (iv) FN gr ∈ F to which the request
is originally sent (before allocation), (v) maximum tolerated
delay Dr

max, (vi) time of request creation in the end device
torginr , (vii) delay introduced by task offloading from the end
device to an edge node τr

req where torginr + τr
req = Tk, and

(viii) delay introduced by transmitting response (results) from
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TABLE I

NOTATION FOR MODELING FOG COMPUTING NETWORK AND DEFINING
OPTIMIZATION PROBLEM

FN gr to the end device τr
res. Let us define a binary variable

ar
n that shows where the request is computed, i.e., ar

n equals 1
if r ∈ Rk is computed at node n ∈ N , and 0 otherwise.

B. Energy Consumption

The energy consumption model consists of two parts: com-
munication (transmission of data) and computation (process-
ing of data). Energy Er

cp spent on processing request

r ∈ Rk equals:

Er
cp =

∑
n∈N

ar
nEr

cp,n =
∑
n∈N

ar
n

Lrθr

βn
, (1)

where Er
cp,n is the energy spent on processing request r ∈ Rk

at node n ∈ N . βn characterizes the computational efficiency
of node n ∈ N given in Floating Point Operations (FLOPs)
per second per watt [25]. For cloud DCs, we assume constant
CPU clock frequency fn and efficiency βn. For FNs, βn

depends on CPU clock frequency fn of node n ∈ F , its power
consumption Pn, and number sn of FLOPs performed within
a single clock cycle of this node [26]:

βn =
fnsn

Pn
=

fnsn∑Q
q=0 pn,qf

q
n

. (2)

We model Pn as a Q-th degree polynomial of fn using
parameters pn,q based on [27]. This allows the model to cover
various CPUs. Moreover, clock frequency fn must be within
the range of minimum and maximum frequencies of the CPU
installed in node n ∈ F , i.e., fmin,n ≤ fn ≤ fmax,n.

The energy spent on the transmission of request r ∈ Rk

equals:

Er
comm =

∑
n∈N

ar
nEr

comm,n =
∑
n∈N

ar
nLr(1 + or)γr

n, (3)

where Er
comm,n is the energy required to transmit (commu-

nicate) request r ∈ Rk between FN gr and node n ∈ N
while γr

n is the energy-per-bit cost of transmitting data request
r ∈ Rk between node n and node gr. The energy required for
communication between the network edge and the end device
does not influence the task allocation result and is therefore
omitted.

Lror is the size (in bits) of results transmitted back to FN
gr. Thus, the total energy spent on offloading request r ∈ Rk

is given by

Er
tot =

∑
n∈N

ar
nEr

tot,n =
∑
n∈N

ar
n

(
Er

cp,n + Er
comm,n

)
, (4)

where Er
tot,n is the energy cost of offloading request r ∈ Rk

when it is computed at node n ∈ N .

C. Delay

The delay model is divided into four parts which are
discussed in the following subsections.

1) Device-to-Fog Communication: The delay on the link
between the end device and FN can use various technologies
and be more or less prone to delay variations based on, e.g.,
interference. However, as the delay τr

req is observed before the
task allocation decision happens at Tk, its value is perfectly
known. Moreover, it has the same influence on any possible
allocation option. The response time τr

res is more difficult to
model. While the response time can be a random variable, it is
reasonable to use, e.g., the 98th percentile of possible delay
for τr

res. Such a solution (assuming a near worst-case scenario)
assures that the results of computations arrive at the end node
within the tolerated delay.
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2) Fog-to-Fog and Fog-to-Cloud Communication: There are
significant differences between models of delay for requests
processed in the fog tier and the cloud tier of the network.
It stems from the fact that clouds are assumed to have huge
(practically infinite) computational resources with parallel-
computing capabilities, and there is no need for queuing
multiple requests served by the cloud DC n ∈ C. They can be
processed simultaneously. Meanwhile, if multiple requests are
sent to the same FN n ∈ F for processing in a short time span,
additional delays may occur due to the congestion of com-
putational requests (an arriving request cannot be processed
until processing of all previous requests has been completed).
On the other hand, it is assumed that cloud DCs are located far
away from the rest of the network (hundreds or even thousands
of kilometers away) which introduces additional, transmission-
related delays. Delay caused by transmitting request r ∈ Rk

between (to and from) FN gr ∈ F and cloud node n ∈ C is
equal:

Dr
comm,n =

Lr(1 + or)
bback

+ 2dn · χ, (5)

where bback is the link bitrate in the backhaul and backbone
network, while dn is the fiberline distance to cloud DC n ∈ C.
Parameter χ indicates the rate at which the delay increases
with distance dn [28].

For describing delays related to transmission between FNs
let us split it into the uplink (sending a request to be processed)
and downlink (sending calculated results back to the origin
of said request) parts denoted Dr

commUL,n and Dr
commDL,n

respectively. For transmission between FNs, we assume the
delay caused by the distance between them (2dn ·χ in Eq. (5))
to be negligible – well below 1 ms as we use the value of
7.5μs/km for parameter χ [28] – and therefore we ignore it.
The total delay caused by communication between FN gr ∈ F
and n ∈ F for request r ∈ Rk equals:

Dr
comm,n = Dr

commUL,n + Dr
commDL,n =

Lr

bn
r

+
Lror

bn
r

, (6)

where bn
r is the link bitrate between FN gr and n.

3) Queuing: As discussed earlier, when a request is sent to
FN n ∈ F and there is another request being processed at this
node, the request is put in a queue and waits to be processed.
Let us define a scheduling variable tn,k ∈ R

+ which indicates
when the processing of the last request scheduled at FN n ∈ F
is completed. The queuing delay of request r ∈ Rk at node
n ∈ F is calculated as follows:

Dr
queue,n = max(0, tn,k − Tk −Dr

commUL,n). (7)

Dr
queue,n has positive values when tn,k > Tk +Dr

commUL,n, i.e.,
when request r arrives at node n at time Tk+Dr

commUL,n and it
is queued until the processing of other request(s) is completed
at time tn,k. For each node n ∈ C (cloud DCs), Dr

queue,n is
always equal to zero, i.e., each request arriving at the cloud
can immediately be processed regardless of the number of
requests already being processed due to parallel processing.

4) Computations: Delay Dr
cp caused by computing request

r ∈ Rk equals:

Dr
cp =

∑
n∈N

ar
nDr

cp,n =
∑
n∈N

ar
n

Lrθr

fnsn
, (8)

where Dr
cp,n is the time required to compute request r ∈ Rk

at node n ∈ N .
Thus, total delay Dr

tot of processing request r ∈ Rk

is the sum of delays related to transmission, queuing, and
computation:

Dr
tot =

∑
n∈N

ar
nDr

tot,n

=
∑
n∈N

ar
n

(
τr
req + Dr

comm,n + Dr
queue,n + Dr

cp,n + τr
res

)
,

(9)

where Dr
tot,n is the total delay of processing request r ∈ Rk

when it is computed at node n ∈ N .

D. Updating Scheduling Variables in the Fog

Let us now explain how the values of scheduling variables
tn,k are assigned to become parameters of an optimization
instance. As no requests are processed at the beginning of
the simulation, we set tn,k = 0, ∀n ∈ F . For each Tk ∈ T ,
after allocations ar

n are determined, times tn,k+1 are calculated
according to when computations of requests offloaded to FNs
are scheduled to finish:

tn,k+1 := max(tn,k, Tk

+
∑

r∈Rk

ar
n(Dr

commUL,n+Dr
queue,n+Dr

cp,n)), ∀n∈F .

(10)

By using (10), each new instance of the optimization prob-
lem (when new requests arrive at Tk+1) depends on results
(allocations) of previous instances.

IV. OPTIMIZATION PROBLEM

The objective of our formulated problem is to minimize the
total energy spent on offloading all requests arriving at the
network edge at time Tk, that is to find:

(a�, f�) = arg min
a,f

∑
r∈Rk

Er
tot, (11)

subject to:∑
n∈N

ar
n = 1 ∀r ∈ Rk, (12)

∑
r∈Rk

ar
n ≤ 1, ∀n ∈ F , (13)

Dr
tot ≤ Dr

max, ∀r ∈ Rk, (14)

fmin,n ≤ fn ≤ fmax,n ∀n ∈ F , (15)

ar
n ∈ {0, 1}, ∀r ∈ Rk, ∀n ∈ N , (16)

where a� = {ar
n

�} and f� = {f�
n} are optimal values of the

optimization variables: allocation variables ar
n and CPU clock

frequencies fn, respectively. Sets of constraints (12) and (13)
restrict that each request must be processed at one and only
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one FN or cloud DC and that each FN can process at most
a single request at a time, respectively. The set of constraints
(14) guarantee that the total delay Dr

tot must not be greater
than the maximum acceptable one Dr

max. Moreover, according
to the set of constraints (15), the CPU frequency is limited
by lower and upper bounds, while decision variables ar

n take
only binary values, according to the set of constraints (16).

The optimization problem cannot be solved for some sets
of requests Rk, where it is impossible to satisfy all the
constraints (e.g., there is no feasible allocation of requests,
so that each request is processed (12) while fulfilling its
delay requirement (14)). In this case, rather than terminating
the optimization without any solution (which would translate
to rejecting all requests Rk), we choose to reject requests
for which (14) cannot be fulfilled. The optimization is then
performed over the set of remaining requests Rk \R′

k, where
R′

k denotes the set of rejected requests.

V. PROPOSED SOLUTION

The optimization problem defined in Section IV is a MINLP
problem due to binary values of allocation variables and
continuous values of CPU clock frequencies. Nonlinearity
results from the power consumption model of the CPU and
the set of constraints (14). Our problem as a MINLP problem
is NP-hard [29]. However, as all its variables are bounded,
it is computable, i.e., there exists a Turing machine that can
compute it [29]. Note that after substituting (2) into (1), the
energy spent on processing of request r ∈ Rk at node n ∈ F
is the sum of polynomial and rational functions:

Er
cp,n =

Lrθr

sn

[
pn,0

fn
+

Q∑
q=1

pn,qf
q−1

]
. (17)

As such, for fn ∈ R
+, the convexity of (17) in fn depends

on parameters pn,q (except pn,1 and pn,2 which have no
influence on convexity, since their second derivatives are zero).
If {pn,0, pn,3, . . . , pn,Q} are positive, the objective function is
convex. If all these parameters are negative the function is
concave. In these cases, standard optimization methods can
be used to solve it [30]. However, if some of these parameters
are negative, others being positive, we deal with a difference
of convex functions which is non-convex, requiring special
optimization techniques. Therefore, in this section, the solution
to the optimization problem, in the case of any possible
values of CPU power consumption parameters is presented
as follows.

Let us rewrite the objective function (11) with Er
cp,n being

a difference of convex functions:

(a�, f�)

= arg min
a,f

∑
r∈Rk

∑
n∈F

ar
n

⎛
⎜⎜⎝Er+

cp,n − Er−
cp,n︸ ︷︷ ︸

Er
cp,n

+Er
comm,n

⎞
⎟⎟⎠ , (18)

where Er+
cp,n denotes the components of sum Er

cp,n with
positive parameters pn,q and Er−

cp,n is the negative of the
components of sum Er

cp,n with negative parameters pn,q. We
apply the SCA method [31], [32], and [33] to approximate

the possibly non-convex function by a series of convex ones.
Since the objective function (18) is composed of differences of
convex functions, the subtrahend Er−

cp,n can be approximated
with a linear function using the first-order Taylor series
expansion at f̄ =

{
f̄n

}
:

Er−
cp,n (fn) ≤ Er−

cp,n

(
f̄n

)
+

∂Er−
cp,n (fn)
∂fn

∣∣∣∣∣
fn=f̄n

(
fn − f̄n

)
� Ẽr−

cp,n. (19)

After substituting Er−
cp,n with Ẽr−

cp,n in (18), the objective
function becomes:

(a�, f�)

= arg min
a,f

∑
r∈Rk

∑
n∈F

ar
n

⎛
⎜⎜⎝Er+

cp,n − Ẽr−
cp,n︸ ︷︷ ︸

Ẽr
cp,n

+Er
comm,n

⎞
⎟⎟⎠. (20)

This transformed optimization problem is convex for fixed
allocation variables, thus it can be solved by employing primal
and dual decomposition methods [30], [34]. Primal decom-
position can be applied when the problem has a coupling
variable such that, when fixed to some value, the rest of
the optimization problem decouples into several subproblems.
Thus, let us decompose our objective problem to:

(a�, f�) = argmin
a

argmin
f

∑
r∈Rk

∑
n∈F

ar
n

(
Ẽr

cp,n + Er
comm,n

)
(21)

subject to (12) – (16). Now, according to (21), the solution to
the optimization problem comes down to solving a two-step
minimization problem. In the first step, the optimal CPU
frequencies f� are determined for fixed allocation variables.
First, let us define the auxiliary variables f r

n determining the
CPU frequencies of node n where request r is allocated. The
relation between f r

n and fn is given by: fn =
∑

r∈Rk
ar

nf r
n

while satisfying constraints (12) and (13). The optimal values
of allocation variables a� are obtained in the second step based
on the previously determined f� and sets of constraints (12) –
(13). Thus, we can now define the Lagrangian function of the
subproblem for determining f�:

L (a, f , µ,Φ,Ψ)

=
∑

r∈Rk

∑
n∈F

ar
n

(
Ẽr

cp,n + Er
comm,n

)
−
∑
n∈F

Φn (fmin,n − f r
n)−

∑
n∈F

Ψn (f r
n − fmax,n)

−
∑

r∈Rk

μr (Dr
tot −Dr

max) , (22)

and the Lagrange dual problem:

(a�, f�, µ�,Φ�,Ψ�)
= arg min

µ,Φ,Ψ≥0
arg min

a
arg min

f
L (a, f , µ,Φ,Ψ) (23)

subject to (12), (13), where µ = {μr}, ∀r ∈ Rk, μr ∈ R
+,

Φ = {Φn}, ∀n ∈ F , Φn ∈ R
+ and Ψ = {Ψn}, ∀n ∈ F ,

Ψn ∈ R
+ are the Lagrangian multipliers responsible for



KOPRAS et al.: TASK ALLOCATION FOR ENERGY OPTIMIZATION IN FOG COMPUTING NETWORKS 8235

fulfilling sets of constraints (14) and (15), respectively. The
dual problem (23) can be decomposed into a master prob-
lem and subproblems, and thus solved iteratively. Allocation
variables a and CPU frequencies f are obtained by solving
subproblems and then the Lagrange multipliers µ,Φ,Ψ are
updated by solving the master problem for the obtained
frequencies. This process continues until convergence while
satisfying constraints.

A. Solving the Subproblems

The primal problem is solved in two steps. First, the optimal
values of the CPU frequencies f� for each request r ∈ Rk and
node n ∈ F are obtained. Then, in the second step, the optimal
values of the allocation variables a� are determined based on
f�. Thus, we can find the optimal CPU frequencies with
Karush–Kuhn–Tucker (KKT) conditions for fixed allocation
variables a by taking the partial derivative of (22) with respect
to f r

n and setting the gradient to 0:

∂L
∂f r

n

= 0 ∀n ∈ F , ∀r ∈ Rk. (24)

Due to the polynomial form of the objective function and the
set of constraints (14), there is no closed-form solution for
the above equation. Therefore, a numerical method, e.g., the
Newton method with the maximum number of iterations Inum

has to be applied to solve it.
Vector a� can be obtained based on the optimal values of the

CPU clock frequency determined in the first step by solving
the following optimization problem.

a� = argmax
a

∑
r∈Rk

∑
n∈F

ar
n

(
Ẽr

cp,n
� + Er

comm,n

)
−
∑
n∈F

Φn

(
fmin,n−f r�

n

)
−
∑
n∈F

Ψn

(
f r�

n −fmax,n

)
−

∑
r∈Rk

μr (Dr
tot

� −Dr
max) , (25)

subject to (12), (13), where Ẽr
cp,n

� = Ẽr
cp,n

(
f r�

n

)
and Dr

tot
� =

Dr
tot

(
f r�

n

)
. The optimization problem defined in (25) is a

linear assignment problem and can be solved by the Hungarian
algorithm [35]. Let us define matrix Θ =

{
Er

tot,n
�
}

, ∀r ∈ Rk

and ∀n ∈ C with |Rk| rows and |C| columns, and matrix

Λ =
{
Ẽr

tot,n
�
}

, ∀r ∈ Rk and ∀n ∈ F with the same number

of rows and |F| columns, where Ẽr
tot,n

� = Ẽr
cp,n

� + Er
comm,n.

To reflect unlimited computational resources at each CN,
we introduce matrix Ω =

[
Λ Θ⊗ 11×|Rk|

]
, where ⊗ is the

Kronecker tensor product, while 11×|Rk| is a vector of ones
with one row and |Rk| columns. It means that the columns
of Θ are replicated |Rk| times and matrix Ω has |Rk| rows
and |Rk| · |C|+ |F| columns. E.g., , in the case of three tasks
|Rk| = 3, two fog nodes F = {1, 2} and one cloud C = {3},
matrix Ω is defined as follows:

Ω =

⎡
⎢⎢⎢⎣
Ẽ1

tot,1
�

Ẽ1
tot,2

�
E1

tot,3
�

E1
tot,3

�
E1

tot,3
�

Ẽ2
tot,1

�
Ẽ2

tot,2
�

E2
tot,3

�
E2

tot,3
�

E2
tot,3

�

︸ ︷︷ ︸
Er

tot,n
� ∀n ∈ F

Ẽ3
tot,1

�
Ẽ3

tot,2
� ︸ ︷︷ ︸

Er
tot,n

� ∀n ∈ C

E3
tot,3

�
E3

tot,3
�

E3
tot,3

�

⎤
⎥⎥⎥⎦ (26)

Next, applying the Hungarian algorithm for matrix Ω, the
matrix with binary values is determined, e.g., :

H (Ω) =

⎡
⎣0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤
⎦ (27)

The example above shows that the first task is computed in
the second fog node while the second and the third tasks are
computed in the CN. Thus, the optimal values of ar

n
� can be

determined by:

ar�

n =

{
H (Ω (r, n)) for n ≤ |F |∑|F|+|Rk||C|+1

j=|F |+1 H (Ω (r, j)) for n > |F | .
(28)

B. Solving the Master Problem

We can fulfill sets of constraints (14) and (15) by deter-
mining the search range of the optimal solution. Let f r

delay,n

denote the minimum value of fn which satisfies constraint
(14) for request r ∈ Rk processed at node n ∈ F . These can
be obtained by solving the following equation:

Dr
tot,n −Dr

max = 0, ∀n ∈ F , ∀r ∈ Rk. (29)

Inserting Dr
tot,n from Eq. (9) (together with Dr

cp,n taken from
Eq. (8)) into Eq. (29) we get:

f r
delay,n =

Lrθr

sn

(
Dr

max−τr
req−Dr

comm,n−Dr
queue,n−τr

res

) . (30)

If f r
delay,n > fmax,n, task r cannot be processed in FN

n within the delay constraint. If f r
delay,n ≤ fmin,n, the

minimum CPU clock frequency is kept at fmin,n. Thus,
if the obtained optimal clock frequency is in the range fn ∈
〈max

{
fmin,n, f r

delay,n

}
, fmax,n〉, the Lagrange multipliers in

(22) and (25) are simplified by setting Φn = 0, Ψn = 0,
∀n ∈ F and μr = 0, ∀r ∈ Rk.

Finally, we propose an algorithm called EEFFRA (Alg. 1)
to finding the solution (CPU clock frequencies and request
allocation over the nodes) for total energy minimization with
delay constraints, as discussed above. The computational com-
plexity of the proposed algorithm results from the complexity
of the Hungarian algorithm (line 8) and the iterative frequency
finding procedure (lines 3-7). The complexity of the Hungarian
algorithm is proportional to a cube of a greater number: the
number of tasks or the number of agents. In our model,
the requests (tasks) can be assigned to the fog nodes or the
cloud (agents). Moreover, the cloud can process more than
one request simultaneously. Therefore, in our model, we have
|Rk| tasks that can be assigned to |F|+ |Rk||C| nodes, where
|Rk||C| represents the cloud nodes that can process more than
one request.

Thus, in our solution the complexity of the Hungarian
algorithm equals O

(
(|F|+ |Rk||C|)3

)
. The second part of

the computational complexity of EEFFRA results from CPU
frequency calculation. Let us observe that CPU frequency
has to be calculated for each node and each request i.e.,
|Rk| |N | frequencies have to be determined. The main step
of the proposed algorithm (line 5) determines the optimal
CPU frequencies for a given approximation of the objective
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Algorithm 1 EEFFRA in fog computing networks.
1: Inputs: Lr, θr, or, Dr

max for r ∈ Rk,
{pn,0, pn,3, . . . , pn,Q}, fmin,n, fmax,n, sn, dn for n ∈ F ,
γr

n, bn
r for r ∈ Rk and n ∈ F and bback, χ, maximum

number of iterations Inum, Isca, iteration index isca,
maximum error ε and initial values of optimization
variables f�

2: Outputs: Er
tot,n for r ∈ Rk and n ∈ F , f�, a�

3: repeat
4: f̄ ← f�

5: calculate f� by solving (24) in the range
fn ∈ 〈max

{
fmin,n, f r

delay,n

}
, fmax,n〉 for Φn = 0,

Ψn = 0, ∀n ∈ F and μr = 0, ∀r ∈ Rk using numerical
method with max. Inum iterations

6: isca ← isca + 1
7: until

∣∣f� − f̄
∣∣ ≤ ε or isca = Isca

8: calculate a� using the Hungarian method for matrix Ω and
(28)

9: Er
tot,n ← Ẽr

tot,n for r ∈ Rk and n ∈ F

function which are then updated in the loop (line 5). This
procedure is repeated until the termination conditions are
met (line 7). Thus, the complexity of the CPU frequency
calculation is equal to O (|Rk| |N | inumisca), where inum and
isca are the numbers of iterations of the numerical method
applied to solve (24) and the SCA method, respectively.
The complexity of the entire algorithm is therefore equal to
O
(
(|F|+ |Rk||C|)3 + |Rk| |N | inumisca

)
.

C. Low-Complexity EEFFRA (LC-EEFFRA)

We remove the Hungarian algorithm from EEFFRA in the
following approach to our optimization problem leading to
reduced computational complexity O (|Rk| |N | inumisca). The
optimal values of frequency f� are determined in the same way
as in Alg. 1, while the values of a� are obtained in a heuristic
manner. In this heuristic approach, only a single request r ∈
Rk is considered at a time. It is allocated to node n� where
the energy consumption for processing r is the lowest, i.e., we
find:

n� = arg min
n

Ẽr
tot,n

� ∀r ∈ Rk. (31)

Values tn,k are updated after the allocation of each request
to prevent multiple collisions of two or more requests at the
same FN. The examination order of requests arriving at the
same time is random to emulate a decentralized approach.

VI. RESULTS

Results obtained from computer simulations are presented
in this section. Parameterization and simulation setup are
described in Section VI-A. Section VI-B shows a discussion
on convergence and optimality of EEFFRA. Simulation results
are presented in Sections VI-C through VI-F.

TABLE II

SIMULATION PARAMETERS

Fig. 2. Power consumption and energy efficiency of Intel Core i5-2500K
vs. CPU frequency.

A. Parameterization and Simulation Setup

Let us consider a network with |F| = 10 FNs and
|C| = 1 cloud DC. Simulation parameters are summarized
in Table II. The process of generating requests for simulations
is as follows. At time Tk ∈ T there appear between 5 and 10
(uniform distribution) new computational requests. Value Tk

is generated at a random delay after previous time instance
Tk−1. The difference Tk − Tk−1 is chosen to be a random
variable of exponential distribution with an average value of
40 ms (intensity 20 s−1). The requests have randomly (with
uniform distribution) assigned values of their parameters (size,
arithmetic intensity, delay requirement) in ranges shown in
Table II.

It is assumed that each FN uses a single Intel Core i5-2500K
as its CPU. Data relating the frequency, voltage, and power
consumption of i5-2500K is taken from [36] and fit into
Eq. (2) adapted from [27]. The resulting power consumption
and energy efficiency are plotted in Fig. 2. These figures
show that power consumption increases faster-than-linearly
with operating frequency and that the frequency with the
highest energy efficiency is at 2.6063 GHz. The cloud CPUs
are parameterized according to the Intel Xeon Phi family
commonly used in computer clusters [25], [37] characterized
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by s = 32 FLOP/cycle [26], and run at a constant frequency of
1.5 GHz. Fog-to-fog and fog-to-cloud transmission parameters
are analogous to those used in [21].

We assume IEEE 802.11ac [38] for parameterizing End
User-to-Access Point delay. In our scenario, requests are
wirelessly transmitted to FNs co-located with Access Points
(APs). We assume that the transmission uses the Request
To Send/Clear To Send (RTS/CTS) mechanism and Aggre-
gate Medium Access Control (MAC) Protocol Data Unit
(A-MPDU) frames [38], [39]. In such a case, the MAC delay
is modeled as a quasi-exponential distribution according to
the procedure shown in [40]. We modify it by including PHY
layer delay [38], [41] and by parameterizing it with values
characterizing 802.11ac [38], [39]. The model takes the num-
ber of devices connected to a given AP as an input parameter
since these devices compete with each other for a channel
and can potentially interfere with each other increasing the
transmission delay. Moreover, the transmission rate depends on
the chosen Modulation Coding Scheme (MCS), the number of
spatial streams, and the channel bandwidth. These parameters
directly impact the NNDBPS parameter of transmission – the
number of useful (i.e., not used on control and coding) data
bits per symbol. A higher NNDBPS translates to a higher data
rate. On the other hand, the ability to adjust these parameters
can be limited. E.g., not every device supports Multiple-Input
Multiple-Output (MIMO) transmission required to transmit
multiple spatial streams and the chosen MCS must reflect
the quality of the link – only lower MCSs can be used
when the quality of the link is poor. The quality of the
link (which can be expressed using, e.g., Signal-to-Noise
Ratio (SNR)) can be influenced by a multitude of factors.
The key component is the path loss between the transmitter
and the receiver which can vary in time due to phenomena
such as shadowing (large-scale fading caused by obstacles)
or multipath fading. Other components include the Doppler
shift, in-band and out-of-band interference. In practice, MCS
selection algorithms switch between MCSs depending on the
number of lost frames/packets [42]. An example of empirical
results examining the selection of MCSs based on SNR is
shown in [42].

Let us show the delay profile of transmission derived from
these models in Figs. 3a and 3b. The results are plotted
for various MCSs, numbers of spatial streams, and numbers
of users communicating with the same AP (these numbers
represent the total number of users utilizing a given AP, not
just those offloading computational tasks, as the same AP can
be used by different users for various reasons e.g., browsing
the web, streaming, uploading and downloading files). A long
(800 ns) guard interval is used in all examples as the support
for a short (400 ns) guard interval is only optional for Very
High Throughput (VHT) MCSs.

Fig. 3a shows the complementary Cumulative Distribution
Function (CDF) of the delay for a single transmitted A-MPDU
frame aggregating 25 MAC Protocol Data Units (MPDUs).
The transmission delay of a single frame follows a quasi-
exponential (slightly shifted and scaled) distribution. The rate
depends both on the number of users and the NNDBPS para-
meter of transmission. Fig. 3b shows the Probability Density

Fig. 3. Wireless transmission delay for an 80 MHz channel. Examined MCS
are: 16-QAM with coding rate R=1/3 and 1 spatial stream, NNDBPS = 468;
64-QAM with R=2/3 and 2 spatial streams, NNDBPS = 1872; 256-QAM with
R=3/4 and 4 spatial streams, NNDBPS = 5616.

Function (PDF) of the delay of a 1 MB request calculated as
a sum of 20 A-MPDU delays, each A-MPDU aggregating 25
MPDUs. These probabilities (in accordance with the Central
Limit Theorem) resemble normal distributions. Both plots
show that the delay increases significantly with an increasing
number of users sharing a channel as a result of contention
and potential collisions. More efficient MCS reduces both the
mean value and the variance of the transmission delay.

If not stated differently, simulations for each data point are
obtained over 5050 time instances Tk. Results from the first
50 instances are discarded. Random number generator seeds
are kept the same for each value of swept parameters for a
fair comparison of results.

Our solutions, i.e., EEFFRA and LC-EEFFRA, are com-
pared with three reference methods. The first method, called
Cloud Only, processes all requests in the cloud. The second
method, called Fog Only, processes all requests in the FNs.
The FNs’ CPU frequencies and requests-to-nodes assignments
are determined with LC-EEFFRA. Finally, the third method,
called Fog Simple, processes requests in the same FN that
these requests arrived at. Still, it uses optimal FNs’ CPU
frequencies determined using LC-EEFFRA. Simulations are
performed using MATLAB.

B. Convergence of Algorithms and Optimality of Solution

EEFFRA utilizes SCA for finding optimal operating fre-
quencies and the Hungarian algorithm for assigning requests



8238 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 12, DECEMBER 2022

Fig. 4. Convergence of solutions found by EEFFRA to optimum with the
number of iterations.

to nodes. The Hungarian algorithm is guaranteed to find the
optimum in polynomial time [35]. SCA is guaranteed to
converge [45]. To show the SCA convergence rate, we plot
normalized energy costs resulting from offloading requests
depending on the maximum number of algorithm iterations
in Fig. 4. Apart from SCA iterations Isca, we also vary the
maximum number of iterations Inum used to find the optimum
CPU frequencies in Alg. 1. For clarity of convergence analysis,
we assume that there is no cloud, i.e., |C| = 0. The operat-
ing frequency of the cloud is not adjusted (not a variable)
and therefore does not influence the analysis. Normalization
is obtained by plotting the relative difference between the
cost achieved by EEFFRA and the optimal cost found by
solving the original problem without SCA. Since the degree
of the polynomial which models CPU power consumption
in these simulations equals 3, the optimal frequencies f r�

n

can be found analytically for each request r ∈ Rk and
node n ∈ F which result in the lowest cost Er

cp,n while
fulfilling (14). Since the first derivative of Er

cp,n over fn

from (17) is continuous everywhere except at singularity at
fn = 0, and has at most 3 real roots, the optimal frequency
fn ∈ 〈max

{
fmin,n, f r

delay,n

}
, fmax,n〉 is either obtained for

the endpoint of this interval or for one of the roots of
d

dfn
Er

cp,n(fn). The lowest value Er
cp,n for these frequencies

determines the optimal frequency f r�

n . The solution is con-
tinued as described in Section V-A from Eq. (25) onwards –
the linear assignment problem is solved using the Hungarian
algorithm. It is visible in Fig. 4 that increasing the maximum
number of iterations Isca and Inum moves EEFFRA in the
direction of the optimal solution. EEFFRA converges both
quickly and to values close to the optimum ( the relative
difference to the optimum is lower than 10−7 with Inum =
3 after just 3 SCA iterations, and it drops below 10−12 after
7 iterations). Meanwhile, IEEE 754 double-precision numbers
(which our simulations are based on) have a precision of
2−53 ≈ 10−16.

C. Impact of Computational Energy Efficiency of the Cloud

First, we vary the values of computational efficiency of
the cloud DC in the range [0.5, 5.0] GFLOP/(s·W) (the
median value for 500 of the most powerful commercially

Fig. 5. Influence of cloud energy efficiency on average energy cost for chosen
policies.

available computer clusters equals 2.962 GFLOP/(s·W) [25]).
The average energy costs per successfully processed request
are shown in Fig. 5. At low computational efficiency of the
cloud, policies utilizing only nodes in the fog tier (Fog Simple,
Fog Only) perform similarly to those utilizing both the fog and
the cloud. The Cloud Only approach has the highest energy
consumption at low efficiency of the cloud (up to around
1.3 GFLOP/(s·W)). This threshold is relatively low (compared
with efficiency values found in [25]) as the examined CPUs
working in FNs are not the most efficient ones as for 2022.
Above that level Cloud Only is characterized by lower energy
consumption than Fog Simple and Fog Only and similar to
EEFFRA and LC-EEFFRA as under these parameters it is
the most efficient to process most requests in the cloud.
EEFFRA is slightly more efficient than LC-EEFFRA at higher
cloud efficiency values. The percentage of requests which
were unable to be processed using each of the offloading
policies is the following: The Fog Simple solution where
FNs cannot “share” computational requests between them-
selves has the highest ratio of rejected requests (8.1%), while
3.7%-4.5% requests (percentage varies depending on cloud
efficiency – lower for higher efficiency) are rejected by both
proposed solutions utilizing both fog and cloud (EEFFRA and
LC-EEFFRA). Fog Only and Cloud Only have rejection rates
of 4.5% and 6.5% respectively. Requests which are rejected
tend to have larger sizes and higher arithmetic intensities (as
shown later in Figs 6b and 9). It “artificially” decreases the
average-per-request cost of methods with higher rejection rates
in Fig. 5, e.g., causing Fog Simple to show a lower average
cost than Fog Only.

Let us examine more closely where EEFFRA chooses to
offload computational requests and what parameters impact
these decisions. Fig. 6 shows histograms of parameters char-
acterizing offloaded requests obtained after running simula-
tions for 50000 Tk instances. Fig. 6a and Fig. 6b show the
probabilities of requests being processed in the fog tier of the
network and those rejected due to too low delay requirement
at cloud efficiency 1.3 GFLOP/(s·W). A similar histogram for
requests processed in the cloud would be superfluous, as the
probabilities for results processed in the fog, in the cloud,
and those rejected sum up to 1. Unsurprisingly, Fig. 6b shows
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Fig. 6. Histograms of requests at 1.3 GFLOP/(s·W) cloud efficiency. Results
of EEFFRA.

that results with strict latency requirements are less likely to
be successfully processed in time. In Fig. 6a one can see a
“threshold” between 45 and 50 FLOP/bit below which all
requests are chosen by EEFFRA to be served by the FNs rather
than the cloud. Similar histograms plotted for other values of
cloud efficiencies show that this threshold increases with a
less efficient cloud and decreases with a more efficient cloud.
In particular, for efficiencies below 1.0 GFLOP/(s·W), all
requests are processed in the fog. These thresholds are “blurry”
– the rate of requests processed in the fog tier does not jump to
0 for requests above 50 FLOP/bit in Fig. 6a. For requests in the
range from 45 to 65 FLOP/bit, the optimal offloading decisions
depend on other factors, such as the state of the network
(potential queues in the FNs), and the size of the requests.
On the other hand, even for infinitely high efficiencies of the
cloud, around 20% of tasks remain processed in the fog tier
(low-intensity ones for which the cost of transmission to the
cloud outweighs computational costs in the fog and those with
both large size and strict delay requirements). In Fig. 6a up to
11% of tasks with arithmetical intensity above 70 FLOPS/bit
and with delay requirements below 1550 ms are processed in
the fog tier as a result of the cloud being unable to fulfill these
requirements.

To better illustrate the differences in request allocation
policies, we plot the CDF of energy cost spent on a single
request. Energy spent on rejected requests is assumed to be
infinite for the purpose of CDF plots. Such results can be seen
in Fig. 7. First, it is visible that the utilization of both fog and

Fig. 7. CDFs of request processing energy cost at cloud efficiency of
1.3 GFLOP/(s·W). Comparison of different policies.

cloud tiers of the network yields significantly better results
than utilizing nodes in only one tier. The proposed EEFFRA
and LC-EEFFRA provide the lowest required energy cost for
each percentile of the CDFs. All methods do not reach 1 on the
y-axis, i.e., some requests cannot be processed within a given
maximum tolerated delay. Our methods achieve the lowest
rejection rate as shown in the inset of Fig. 7.

D. Impact of Delay Requirements and Size of Requests on
the Offloading Decisions

Let us see how the energy consumption and the percentage
of rejected requests change with the size and the delay
requirement of computation requests. The energy efficiency
of the cloud is set to 1.3 GFLOP/(s·W) and parameter sweeps
for other parameters are performed. All other parameters are
taken from Table II.

Fig. 8 plots CDFs of energy consumption costs of process-
ing single requests with delay requirements: 1000 ms (Fig. 8a)
and 2500 ms (Fig. 8b). At the required delay of 1000 ms,
all methods have high rejection rates, with Cloud Only being
clearly the worst-suited for low-latency applications. The
differences between the rest of the methods are minor – the
requests with such low delay requirements either can or cannot
be solved in time at the receiving FN and the ability of nodes
to transmit tasks between themselves does not significantly
improve performance. With a required delay of 2500 ms,
the differences between approaches become more profound.
Utilizing both fog and cloud (EEFFRA, LC-EEFFRA) gives
the lowest rejection rates and energy costs. While Cloud
Only achieves similar energy costs for requests above the
90th percentile, it has the worst performance below the 60th
percentile. It stems from the fact that for requests with low
arithmetic intensity, the high efficiency of the cloud is not
enough to offset the costs caused by long-range transmission.

Fig. 9 plots CDFs of energy consumption costs of process-
ing single requests with sizes 5 MB, (Fig. 9a) and 10 MB
(Fig. 9b). Fig. 9 shows that EEFFRA and LC-EEFFRA achieve
the lowest energy costs and rejection rates for both 5 MB
and 10 MB requests. For 10 MB requests, rejection rates
achieved by EEFFRA are 21 and 22.8 percentage points
lower than those of Fog Only and Fog Simple respectively.
LC-EEFFRA achieves the same performance as EEFFRA. It is
worth observing that for both request sizes Cloud Only has the
highest energy costs up to at least the 20th percentile (caused
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Fig. 8. CDFs of request processing energy cost – influence of delay
requirement of requests.

by energy spent for transmission), but for higher percentiles
(influenced by requests with higher arithmetical intensities) its
costs are lower than that of either Fog Only or Fog Simple.

E. Impact of CPU Frequency of Fog Nodes

In the previous sections, it is assumed that FNs can dynam-
ically adjust their operating frequency (and voltage) to mini-
mize energy consumption while satisfying delay requirements.
Let us assume that all FNs utilize the same, fixed CPU fre-
quency. Fig. 10 shows the average energy cost and percentage
of rejected requests plotted as a function of this fixed fre-
quency (swept between 1.6 and 4.2 GHz with a 0.1 GHz step).
The results for Cloud Only are constant, as no requests are
processed in FNs. Fog Simple and Fog Only methods have high
rejection rates at low frequencies. Meanwhile, EEFFRA and
LC-EEFFRA have the lowest rejection rates while also having
the lowest (considering the rejected requests are not taken into
account by this metric) energy costs. As the frequency of FNs
increases, the rejection rates decline and average energy cost
increases for all methods utilizing FNs. However, this effect is
considerably weaker for EEFFRA and LC-EEFFRA (utilizing
resources in both fog and cloud tiers) than for Fog Simple and
Fog Only.

Let us compare the efficiency of the network employing
EEFFRA with and without DVFS. As shown in Fig. 10 the
possibility to send requests to the cloud diminishes the impact
of FNs’ operating frequency on energy costs and rejection

Fig. 9. CDFs of request processing energy cost – influence of request size.

Fig. 10. Influence of fixed CPU frequency of FNs.

rate. Therefore, to focus on the differences, Fig. 11 shows
the results of simulations for a network with 10 FNs and no
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Fig. 11. CDFs of request processing energy cost – comparison of FNs
working at fixed frequencies and utilizing DVFS.

connection to the cloud. We compare CDFs of energy costs
per request achieved utilizing DVFS with the following fixed
frequencies of FNs: 1.6 GHz (minimal), 2.6063 GHz (optimal
frequency for maximizing energy efficiency as seen in Fig. 2,
later referred to as 2.6 GHz), 4.2 GHz (maximal), and 3.5 GHz
(halfway between optimal and maximal). The mean time
between sets of requests is increased (Tk − Tk−1 = 500 ms),
while in Fig. 11b, the range of possible arithmetic intensities of
requests is increased to [1, 500] to make the requests highly
variable in terms of required computations speed. Fig. 11b
shows both significantly higher costs of processing requests
and clearer differences between results generated for chosen
frequencies. In both plots, rejection rates are increasing with
decreasing fixed FN frequency. On the other hand, 4.2 GHz
has the highest energy cost. EEFFRA utilizing DVFS manages
to maintain the lowest energy cost for every percentile. In
Fig. 11a the 75th percentile of EEFFRA cost is lower than
that of 1.6 GHz, 2.6 GHz, 3.5 GHz, and 4.2 GHz by 6.8%,
0.3%, 13.2%, and 34.4%, respectively. In Fig. 11b these values
change to: 24.7%, 3.6%, 13.4%, and 33.7%, respectively.

F. Impact of Wireless Access Delay

Let us examine how changing wireless transmission para-
meters impacts the processing of requests. More users com-
municating in Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA) system increases the likelihood of
collisions, resulting in increased transmission delays. This
impact can be seen in Fig. 12. The red line shows how

Fig. 12. Influence of number of users on wireless transmission delay and
percentage of rejected requests (EEFFRA).

Fig. 13. CDFs of request processing energy cost – influence of varied wireless
transmission parameters – modulation and coding.

the average wireless transmission delay of a request changes
with the increasing number of users communicating with AP.
It grows slightly faster than linearly. Black circles represent the
percentage of requests which fail to meet their delay require-
ments under EEFFRA policy. The value for 5 users (3.8%)
corresponds to the results shown in Fig. 7. The rejection rate
increases rapidly with each additional user after 5 and breaks
50% for 13 users.

As shown earlier in Fig. 3, the used MCS has an impact on
transmission delays. Fig. 13 shows CDFs of offloaded requests
energy costs for two MCSs: 16-QAM with the coding rate of
1/2, and 256-QAM with 3/4 rate. These results can be directly
compared to Fig. 7 where 64-QAM with 2/3 rate is used. In
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Fig. 13a rejection rates increase for all examined policies.
While differences between the results of policies become
less profound, EEFFRA still outperforms other schemes. In
Fig. 13b rejection rates are lower – the policies are able
to successfully offload large requests with high arithmetic
intensity. Interestingly, Cloud Only has lower rejection rates
than both Fog Simple and Fog Only in Fig. 13b, and higher in
Fig. 13a. Altogether, the shapes of CDFs in Fig. 13 correspond
to those seen in Fig. 8. An increase in wireless transmission
delay causes stricter delay requirements for wired transmission
and computations. From Fig. 8a to Fig. 8b the level of tolerated
delay is increased directly. Meanwhile, increasing rate of
transmission from Fig. 13a to Fig. 13b indirectly has the same
impact.

VII. CONCLUSION

We have formulated the optimization problem of mini-
mizing the energy consumption in the fog computing net-
work while maintaining the latency constraints. This energy
consumption is assumed to result from both transmission
and processing of offloaded computational tasks (computa-
tion requests originating from end-users). The latency and
energy consumption models and their parameters are based
on real-life computing and networking equipment product data
sheets, and measurements.

The proposed EEFFRA algorithm solves the proposed opti-
mization problem using its successive approximations for
adjusting clock frequencies of CPUs in fog nodes. A sub-
optimal, lower complexity solution LC-EEFFRA, which does
not require coordinated decision making, is also examined.
Our algorithms allow for the flexibility needed to direct
a task to the most favorable node and can lower request
rejection rates by over 20 percentage points for large (10 MB)
requests compared with baseline solutions. Additionally, utiliz-
ing DVFS can noticeably decrease computation-related energy
consumption (by over 33% when compared with computing
at the maximal frequency) while fulfilling delay requirements,
even compared to fog nodes working at optimal but fixed
frequencies (by 3.6% for computationally intensive requests).
The proposed algorithms can be seen as promising solutions
for managing fog computing networks.
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