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Abstract— We consider a resource-constrained IoT net-
work, where multiple users make on-demand requests to a
cache-enabled edge node to send status updates about various
random processes, each monitored by an energy harvesting
sensor. The edge node serves users’ requests by deciding whether
to command the corresponding sensor to send a fresh status
update or retrieve the most recently received measurement from
the cache. Our objective is to find the best actions of the edge node
to minimize the average age of information (AoI) of the received
measurements upon request, i.e., average on-demand AoI, subject
to per-slot transmission and energy constraints. First, we derive
a Markov decision process model and propose an iterative
algorithm that obtains an optimal policy. Then, we develop an
asymptotically optimal low-complexity algorithm – termed relax-
then-truncate – and prove that it is optimal as the number of sen-
sors goes to infinity. Simulation results illustrate that the proposed
relax-then-truncate approach significantly reduces the average
on-demand AoI compared to a request-aware greedy policy and
a weighted AoI policy, and also depict that it performs close to
the optimal solution even for moderate numbers of sensors.

Index Terms— Age of information (AoI), energy harvesting
(EH), constrained Markov decision process (CMDP).

I. INTRODUCTION

INTERNET of Things (IoT) is a key technology in provid-
ing ubiquitous, intelligent networking solutions to create
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a smart society. In IoT sensing networks, sensors measure
physical quantities (e.g., speed or pressure) and send the mea-
surements to a destination for further processing. IoT networks
are subject to stringent energy limitations, due to battery-
powered sensors. This energy scarcity is often counteracted by
the energy harvesting (EH) technology, relying on, e.g., solar
or RF ambient sources. Moreover, reliable control actions in
emerging time-critical IoT applications (e.g., drone control and
industrial monitoring) require high freshness of information
received by the destination. Such destination-centric informa-
tion freshness can be quantified by the age of information
(AoI) [2], [3]. These call for designing effective AoI-aware
status updating procedures for IoT networks to provide the end
users with timely status of remotely observed processes while
accounting for the limited energy resources of EH sensors.

We consider a resource-constrained IoT sensing network
consisting of multiple EH sensors, a cache-enabled edge node,
and multiple users. Users are interested in timely status infor-
mation about the random processes associated with physical
quantities (e.g., speed or temperature), each measured by a
sensor. We consider request-based status updating where the
users demand for the status of physical quantities from the
edge node which acts as a gateway. between the users and
the sensors. The edge node is equipped with a cache that
stores the most recently received status update packet from
each sensor. Upon receiving request(s) for the status of a
physical quantity, the edge node has two options to serve the
requesting user(s): either command the corresponding sensor
to send a fresh status update or use the aged measurement
from the cache. The former enables serving a user with fresh
measurement, yet consuming energy from the sensor’s battery.
The latter prevents the activation of the sensors for every
request so that the sensors can utilize the sleep mode to save
a considerable amount of energy [4], but the data received
by the users becomes stale. Due to this intrinsic AoI-energy
trade-off, the edge node must decide, in a farsighted fashion,
when to provide the users with fresh status updates at the cost
of sensors’ energy expenditure and when to resort to use the
cached (stale) measurements to save the sensors’ batteries for
the future requests.

In particular, the considered status updating network is
subject to the following energy and transmission constraints.
First, since the sensors rely only on the energy harvested from
the environment, the sensors’ batteries may be empty and
thus they cannot send an update for each request. This energy
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causality induces an inherent per-slot energy constraint. Sec-
ond, motivated by the limited amount of radio resources (e.g.,
bandwidth, time-frequency resource blocks), only a limited
number of sensors can send fresh status updates to the edge
node at each time slot, imposing a per-slot transmission
constraint.

The objective of our network design is to keep the freshness
of information at the users as small as possible, subject to the
constraints in the system. To this end, we use the concept of
on-demand AoI [5] that quantifies the freshness of information
at the users restricted to the users’ request instants. We aim to
find an optimal policy, i.e., the best action of the edge node at
each time slot that minimizes the average on-demand AoI over
all the sensors and the users subject to the per-slot transmission
and energy constraints.

We first cast the problem as an average-cost Markov deci-
sion process (MDP) for which the RVIA [6, Section 8.5.5] is
used to obtain an optimal policy. Then, since the complexity
of finding an optimal policy increases exponentially in the
number of sensors, we propose an asymptotically optimal
low-complexity algorithm – termed relax-then-truncate – and
show that it performs close to the optimal solution.

A. Contributions

The main contributions of our paper are as follows:
• We consider on-demand AoI minimization problem in

a multi-user multi-sensor IoT EH network subject to
per-slot transmission and energy constraints. The problem
is formulated as an average-cost MDP for which the
RVIA is used to obtain an optimum policy.

• To deal with massive IoT scenarios, we propose a
sub-optimal low-complexity algorithm whose complexity
increases linearly in the number of sensors. In particular,
we relax the per-slot transmission constraint into a time
average constraint, model the relaxed problem as a con-
strained MDP (CMDP), obtain an optimal relaxed policy,
and propose an online truncation procedure to ensure that
the transmission constraint is satisfied at each time slot.

• We analytically find an upper bound for the difference
between the average cost obtained by the proposed relax-
then-truncate approach and the average cost obtained
by an optimal policy. Then, we show that the relax-
then-truncate approach is asymptotically optimal as the
number of sensors goes to infinity.

• Numerical experiments are conducted to analyze the per-
formance of the proposed relax-then-truncate approach
and show that it significantly reduces the average
on-demand AoI as compared to a request-aware greedy
policy and a weighted AoI policy. Interestingly, the
proposed algorithm performs close to the optimal solution
for moderate numbers of sensors.

Our model is representative in IoT networks and highly
relevant to resource-constrained IoT scenarios with a mas-
sive number of devices, a setup of paramount importance
in practice, because the number of IoT sensors can grow
to large numbers in emerging IoT applications. To the best

of our knowledge, this work is the first one that proposes
an asymptotically optimal low-complexity algorithm for min-
imizing on-demand AoI in an IoT network with multiple EH
sensors.

B. Related Work

AoI-optimal scheduling has attracted considerable research
interest over the last few years [5], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38]. Particularly, a popular approach is
to model the problem as an MDP and find an optimal policy
by using model-based reinforcement learning (RL) methods
[5], [7], [11], [12], [13], [14], [22], [23], [25], [26], [27], [29],
[31], [37], [38], e.g., relative value iteration algorithm (RVIA),
and/or model-free RL methods [5], [11], [12], [15], [16], [20],
[28], [29], [30], [31], [33], e.g., (deep) Q-learning.

In [7], the authors proposed AoI-optimal scheduling algo-
rithms for a broadcast network where a base station is
updating the users on random information arrivals under a
transmission capacity constraint. In [8], the authors developed
low-complexity scheduling algorithms, including a Whittle’s
index policy, and derived performance guarantees for a broad-
cast network. In [9] and [10], the optimality of the Whittle’s
index policy has been investigated for the AoI minimization
problem where a central entity schedules a number of users
among the total available users for transmission over unreliable
channels. In [11], the authors studied AoI-optimal scheduling
under a constraint on the average number of transmissions
where the source sends status updates to a destination (user)
over an error-prone channel. The authors in [12] extended [11]
to a multi-user setting, where the source has to decide not
only when to transmit but also to which user. In [13], the
authors proposed an asymptotically optimal algorithm for
the AoI-optimal scheduling problem under both bandwidth
and average power constraints in a wireless network with
time-varying channel states. In [14], the authors studied AoI
minimization problem in a multi-source relaying system under
per-slot transmission and average resource constraints. In [15],
the authors used a deep RL framework to minimize the
weighted average AoI plus energy cost for online cache
updating in IoT networks under dynamic content popularity.
In [16], the authors developed a multi-agent RL framework for
cache updating in IoT sensing networks where the objective
is to minimize the weighted average AoI plus energy cost and
fronthaul traffic loads.

Different from [7], [8], [9], [10], [11], [12], [13], [14],
another line of research [17], [20], [22], [23], [24], [25], [26],
[27], [30] focused on the class of problems where the sources
are powered by energy harvested from the environment, i.e.,
investigating AoI-optimal scheduling policies subject to the
energy causality constraint at the source(s). The works [17],
[20], [22], [23], [24], [25], [26], [27] studied AoI-optimal
scheduling in single-sensor EH networks where the sensor
sends time-sensitive information to the user(s). In [17], the
authors obtained an AoI-optimal policy for the sensor’s sam-
pling instants by assuming known EH statistics. In [18], the
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authors derived age-optimal online policies for an EH sensor
having a unit-sized battery or infinite battery using renewal
theory. In [19], the authors derived age-optimal policies for
an EH sensor with a finite-sized battery. The authors of [20]
studied AoI-optimal policies under an erasure channel with
retransmissions in a system where the EH and channel sta-
tistics are either unknown or known. In [21], the authors
studied online status updating under updating erasures for
the cases where no feedback or perfect feedback is available
to the source. In [22], AoI-optimal scheduling was studied
in a system where the sensor uses multiple transmission
modes. The work [23] investigated age-optimal scheduling for
a cognitive radio EH system. The authors of [24] studied AoI-
optimal scheduling under stability constraints in a multiple
access channel with two heterogeneous nodes (including an
EH node) transmitting to a common destination. In [25], the
sensor monitors a stochastic process and tracks its evolu-
tion and thereby, a modified definition of AoI is proposed
to account for the discrepancy in the remote destination.
In [26], the monitoring node (sensor) collects status updates
from multiple heterogeneous information sources. In [27], the
authors studied AoI-optimal scheduling for a wireless powered
communication system under the costs of generating status
updates at the sensor nodes. In [28], the authors utilized
the Q-learning algorithm to obtain an age-optimal policy
for a scenario where the EH source samples and forwards
the measurements to a monitoring center over a millimeter-
wave channel. In [29], the authors studied age-optimal status
updating over a time-varying wireless link. In [30], the authors
developed a deep RL algorithm for minimizing the average
age of correlated information in an IoT network with multiple
correlated EH sensors. In [31], deep RL was used to minimize
AoI in a multi-node monitoring system, in which the sensors
are powered through wireless energy transfer by the destina-
tion. In [32], the authors proposed several harvesting-aware
energy management policies for solar-powered IoT devices
that asynchronously send status updates to a gateway device.

The majority of the literature that considers AoI min-
imization, including all the above ones, assume that the
time-sensitive information of the source(s) is needed at the des-
tination at all time moments. However, in many applications,
a user demands for fresh status updates only when it needs
such timely information. To account for such information
freshness driven by users’ requests, we introduced the concept
of on-demand AoI in [5], [33]. In these works and a follow-up
work [34], the main focus was on-demand AoI minimization
in an IoT network with multiple decoupled EH sensors. On the
contrary, the main distinctive feature of this paper is to study
optimal scheduling under per-slot transmission constraints.
Only a few works have investigated a concept similar to the
on-demand AoI, yet in different frameworks. The work [35]
introduced effective AoI under a generic request-response
model where a server provides time-sensitive data to the users.
An information update system with a user that pulls informa-
tion from servers was investigated in [36]. However, contrary
to our paper, [35], [36] do not consider energy limitations
at the source nodes and the frameworks are fundamentally
different. In [37] and [38], the authors introduced the AoI at

Fig. 1. A multi-user multi-sensor IoT sensing network consisting of K EH
sensors, an edge node, and N users. The end users are interested in timely
status update information of the physical processes measured by the sensors.

query (QAoI) and developed an MDP-based policy iteration
method to find an optimal policy that minimizes the average
QAoI considering an energy-constrained sensor that is queried
to send updates to an edge node under limited transmission
opportunities. The main difference between our paper and [37],
[38] is that we consider IoT networks with multiple EH
sensors. Moreover, the on-demand AoI metric is not the same
as QAoI in [37] and [38].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a multi-user multi-sensor IoT sensing net-
work that consists of a set K = {1, . . . , K} of K energy
harvesting (EH) sensors, an edge node (a gateway), and a set
N = {1, . . . , N} of N users, as depicted in Fig. 1. Users are
interested in timely status information about random processes
associated with physical quantities fk, e.g., speed or temper-
ature, each of which is independently measured by sensor
k ∈ K. We assume that the sensors measure different physical
quantities. We consider request-based status updating, where
the users send requests on demand for obtaining status of
quantities fk, k ∈ K. When a request for the physical quantity
fk is generated at the user side, the associated sensor k may
send a status update packet that contains the measured value
of the monitored process and a time stamp of the generated
sample. We assume that there is no direct link between the
users and the sensors, i.e., the users receive the status updates
only via the edge node. The edge node provides an interface
for the users to communicate with IoT sensors.1

We consider a time-slotted system with slots indexed by
t ∈ N. At the beginning of slot t, users send requests for
the status of physical quantities fk to the edge node. Let
rk,n(t) ∈ {0, 1}, t = 1, 2, . . . , denote the random process

1Particularly, our system model can represent a scenario where the (low-
power) energy harvesting sensors are located in a remote area for which the
users are out of the sensors’ communication range. Furthermore, considering
a control node (e.g., gateway) between data generators (e.g., sensors) and
devices requesting data (e.g., users) is common in IoTs (see e.g., [4], [15]).
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of requesting the status of fk by user n; rk,n(t) = 1 if
the status of fk is requested by user n ∈ N at slot t and
rk,n(t) = 0 otherwise. The requests are independent across
the users, sensors, and time slots. Let pk,n be the probability
that the status of fk is requested by user n at each slot, i.e.,
Pr{rk,n(t) = 1} = pk,n. Note that a user might request
for multiple physical quantities at each time slot. Moreover,
there can be multiple users requesting for fk at each slot;
rk(t) =

�N
n=1 rk,n(t) ∈ {0, 1, . . . , N} indicates the number

of requests for fk at slot t. We assume that all requests that
arrive at the beginning of slot t are handled by the edge node
during the same slot t. Note that while the communications
between the edge node and the users are assumed to be error-
free,2 the transmissions from the sensors to the edge node are
prone to errors, as detailed in Section II-C.

The edge node is equipped with a cache of size K that
stores the most recently received status update packet from
each sensor. Upon receiving a request for the status of fk at
slot t, the edge node has two options to serve the request:
1) command sensor k to send a fresh status update, or 2)
use the previous measurement from the cache. We denote the
command action of the edge node at slot t by ak(t) ∈ {0, 1};
ak(t) = 1 if the edge node commands sensor k to send an
update and ak(t) = 0 otherwise.

We consider that, due to limited amount of radio resources
(e.g., time-frequency resource blocks), no more than M ≤ K
sensors can transmit status updates to the edge node within
each slot. This transmission constraint imposes a limitation to
the number of commands as

K�
k=1

ak(t) ≤M, ∀t. (1)

We refer to M as the transmission budget hereinafter.

B. Energy Harvesting Sensors

We assume that the sensors harvest energy from the envi-
ronment for sustainable operation. We model the energy
arrivals at the sensors as independent Bernoulli processes3

with intensities λk, k ∈ K. This characterizes the discrete
nature of the energy arrivals in a slotted-time system, i.e.,
at each slot, a sensor either harvests one unit of energy or
not (see, e.g., [17], [25], [40]). We denote the energy arrival
process of sensor k by ek(t) ∈ {0, 1}, t = 1, 2, . . . . Therefore,
during each time slot, sensor k harvests one unit of energy
with probability λk ,4 i.e., Pr{ek(t) = 1} = λk, ∀t. For sensor
k, the harvested energy is stored in a battery with a finite

2This assumption is invoked by the fact that the edge node has access to
power (e.g., a base station connected to a fixed power grid), whereas the
sensors rely only on the energy harvested from the environment. Moreover,
in some applications, the edge node may be connected to the users via a wired
or fiber connection or via internet.

3The i.i.d. energy arrivals are commonly considered in the literature; see
e.g., [4], [25], [26], [30]. Alternatively, one can consider temporally correlated
energy arrivals, such as discrete-Markovian modeling [39], which are beyond
the scope of this work.

4The scenario where the sensors access to adequate power (e.g., connected
to a fixed power grid) so that they can send a status update at every slot is
a special case of our system model, i.e., a unit energy arrival at every slot,
λk = 1.

capacity Bk. We denote the battery level of sensor k at the
beginning of slot t by bk(t), where bk(t) ∈ {0, . . . , Bk}.

We assume that measuring and transmitting a status update
from each sensor to the edge node consumes one unit of
energy, i.e., the energy unit is normalized so that each status
update requires one unit of energy (see, e.g., [5], [18], [21],
[25], [30], [40], [41]). Once sensor k receives a command
from the edge node (i.e., ak(t) = 1), the sensor sends a
status update if its battery is non-empty (i.e., bk(t) ≥ 1). We
denote the action of sensor k at slot t by dk(t) ∈ {0, 1};
dk(t) = 1 if sensor k sends a status update to the edge
node and dk(t) = 0 otherwise. Hence, the sensor’s action,
the edge node’s action, and the battery level of the sensor are
interrelated as

dk(t) = ak(t)1{bk(t)≥1}, (2)

where 1{·} is the indicator function. Note that dk(t) in (2)
determines the energy expenditure of sensor k at slot t. It is
also worth noting that by (2), we have dk(t) ≤ ak(t), and
consequently, (1) implies that

�K
k=1 dk(t) ≤ M for all slots;

hence, the name transmission constraint for (1).
Finally, using bk(t), dk(t), and ek(t), the evolution of the

battery level of sensor k is given by

bk(t + 1) = min {bk(t) + ek(t)− dk(t), Bk}. (3)

C. Communication Between the Edge Node and the Sensors

We consider an error-free binary/single-bit command link
from the edge node to each sensor (see e.g., [42], [43]), and
an error-prone wireless communication link from each sensor
to the edge node. If a sensor sends a status update packet
to the edge node, the transmission through the wireless link
can be either successful or failed. Let wk(t) = 1 denote the
event that a status update from sensor k has been successfully
received by the edge node at slot t. Otherwise, wk(t) =
0 which accounts for both the cases that either 1) sensor k
sends a status update but the transmission is failed, or 2)
the sensor does not send a status update. Let μk be the
conditional probability that given that sensor k transmits a
status update, it is successfully received by the edge node, i.e.,
Pr{wk(t) = 1 | dk(t) = 1} = μk , k ∈ K, t = 1, 2, . . .. Thus,
μk represents the transmit success probability of the link from
sensor k to the edge node.

D. On-Demand Age of Information

To measure the freshness of information seen by the users
in our request-based status updating system, we use the notion
of age of information (AoI) [2] and define on-demand AoI [5].
In contrast to AoI that measures the freshness of information
at every slot, on-demand AoI quantifies the freshness of
information at the users’ request instants (only).

Let Δk(t) be the AoI about the physical quantity fk

at the edge node at the beginning of slot t, i.e., the
number of slots elapsed since the generation of the most
recently received status update packet from sensor k. Let
uk(t) denote the most recent slot in which the edge
node received a status update packet from sensor k, i.e.,
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uk(t) = max{t�|t� < t, wk(t�) = 1}. Thus, the AoI about fk

is given by the random process Δk(t) � t− uk(t).
We make a common assumption (see e.g., [5], [9], [11],

[12], [14], [20], [22], [23], [25], [26], [27], [30], [33]) that
Δk(t) is upper-bounded by a finite value Δmax, i.e., Δk(t) ∈
{1, 2, . . . , Δmax}. Besides tractability, this accounts for the
fact that once the available measurement about fk becomes
excessively stale, further counting would be irrelevant. At each
slot, the AoI about fk drops to one if the edge node receives
a status update from sensor k; otherwise, it increases by one.
Therefore, Δk(t) evolves as

Δk(t + 1) =

�
1, if wk(t) = 1,

min{Δk(t) + 1, Δmax}, if wk(t) = 0.

(4)

The compact form of (4) is written as Δk(t+1) = min{(1−
wk(t))Δk(t) + 1, Δmax}.

We define on-demand AoI for a sensor-user pair (k, n) at
slot t as the sampled version of (4) where the sampling is
controlled by the request process rk,n(t), i.e.,

ΔOD
k,n(t) � rk,n(t)Δk(t + 1)

= rk,n(t)min{(1−dk(t))Δk(t)+1, Δmax}. (5)

In (5), since the requests come at the beginning of slot t and
the edge node sends measurements to the users at the end of
the same slot, Δk(t+1) is the AoI about fk seen by the users.

E. State Space, Action Space, Policy, and Cost Function

1) State: Let sk(t) ∈ Sk denote the state associated
with sensor k at slot t, which is defined as sk(t) =
(rk(t), bk(t), Δk(t)), where rk(t) ∈ {0, 1, . . . , N} indicates
the number of requests for fk, bk(t) ∈ {0, 1, . . . , Bk} is the
battery level,5 and Δk(t) ∈ {1, 2, . . . , Δmax} is the AoI about
fk at the edge node; Sk is the per-sensor state space with
dimension |Sk| = (N + 1)(Bk + 1)Δmax. The state of the
system at slot t is expressed as s(t) = (s1(t), . . . , sK(t)) ∈ S,
S = S1 × · · · × SK ; the state space S has a finite dimension
|S| =

�K
k=1(N + 1)(Bk + 1)Δmax.

2) Action: As discussed in Section II-A, the edge node
decides at each slot whether to command sensor k to send
a fresh status update (and update the cache) or not, i.e.,
ak(t) ∈ Ak = {0, 1}, where Ak is the per-sensor action
space. The action of the edge node at slot t is given by a
K-tuple a(t) =

�
a1(t), . . . , aK(t)

�
∈ A with action space

A =
�
(a1, . . . , aK) | ak ∈ Ak,

�K
k=1 ak ≤M

	
. The action

space dimension is |A| =
�M

m=0

�
K
m

�
. It is worth stressing

that the action space A considers the transmission constraint
(1) in its definition. Additionally, we define the relaxed action
space that does not consider the transmission constraint (1) as
AR = A1 × · · · × AK = {0, 1}K, which has the dimension
|AR| = 2K .

5We assume that there are low-cost (“1-bit”) control channels between the
sensors and the edge node so that a sensor updates the edge node whenever
its battery level changes (increases) due to the harvested energy.

3) Policy: A policy π determines an action at a given state.
A randomized policy is a mapping from state s ∈ S to a proba-
bility distribution π(a|s) : S ×A → [0, 1],

�
a∈A π(a|s) = 1,

of choosing each possible action a ∈ A. A deterministic policy
is a special case where, in each state s, π(a|s) = 1 for some
a; with a slight abuse of notation, we use π(s) to denote the
action taken in state s by a deterministic policy π. In addition,
we define a (relaxed) policy as πR : S × AR → [0, 1] and a
per-sensor policy as πk : Sk ×Ak → [0, 1].

4) Cost Function: We consider a cost function that incurs
a penalty with respect to the staleness of a status update
requested and received by a user. Accordingly, we define the
cost associated with user n and sensor k at slot t as the
on-demand AoI for the sensor-user pair (k, n), i.e., ΔOD

k,n(t)
defined in (5). Then, the per-sensor cost at slot t is expressed as

ck(t) =
N�

n=1

ΔOD
k,n(t) =

N�
n=1

rk,n(t)Δk(t + 1)

= rk(t)Δk(t + 1). (6)

Remark 1: Note that, due to the multiplicative factor rk(t),
(6) accounts for the number of requests for each physical
quantity at each slot, i.e., the more the requests for fk,
the more important the corresponding freshness becomes.
Particularly, when the status of fk is not requested by any
user at slot t, i.e., rk(t) = 0, the immediate cost becomes
ck(t) = 0.

F. Problem Formulation

For the considered system, the energy and transmission
constraints pose limitations on when and how often a new
status update can be generated at each sensor, which in
turn affect the on-demand AoI. Our objective is to keep the
on-demand AoI as small as possible, subject to the constraints
in the system. Formally, for a given policy π, we define the
average cost as the average on-demand AoI over all sensors
and users, i.e.,

C̄π � lim
T→∞

1
NKT

T�
t=1

K�
k=1

Eπ [ck(t) | s(0)], (7)

where Eπ[·] is the (conditional) expectation when the policy
π is applied to the system and s(0) =

�
s1(0), . . . , sK(0)

�
is

the initial state.6 We aim to find an optimal policy π� that
achieves the minimum average cost, i.e.,

(P1) π� ∈ arg min
π

C̄π. (8)

III. MDP MODELING AND OPTIMAL POLICY

In this section, we model the problem (P1) as an MDP
and propose a value iteration algorithm that finds an optimal
policy π�.

6As shown in Proposition 2, the minimum average cost is independent of
the initial state, thus, we omit the initial state henceforth.
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A. MDP Modeling

The MDP is defined by the tuple�
S,A, Pr(s(t + 1)|s(t),a(t)), c(s(t),a(t))

�
. The state space

S and the action space A were defined in Section II-E.
The cost function c(s(t),a(t)) represents the cost of
taking action a(t) in state s(t), which is given by
c(s(t),a(t)) = 1

NK

�K
k=1 ck(sk(t), ak(t)), where the

per-sensor cost ck(sk(t), ak(t)) is calculated using (6), i.e.,

ck(sk(t), ak(t))
= rk(t)



μk min

��
1− ak(t)1{bk(t)≥1}

�
Δk(t) + 1, Δmax}+ (1− μk)min {Δk(t) + 1, Δmax}

�
.

(9)

The state transition probability Pr(s(t + 1)|s(t), a(t))
maps a state-action pair at slot t onto a distribution
of states at slot t + 1. The probability of transition
from current state s(t) = (s1(t), . . . , sK(t)) to next
state s(t + 1) = (s1(t + 1), . . . , sK(t + 1)) under action
a(t) = (a1(t), . . . , aK(t)) factorizes as

Pr (s(t + 1) | s(t),a(t))
(a)
=

K�
k=1

Pr (sk(t + 1) | sk(t), ak(t)),

where (a) follows from the fact that given action a, the state
associated with each sensor (i.e., the per-sensor state) evolves
independently from the other sensors. Above, the per-sensor
state transition probability Pr (sk(t + 1) | sk(t), ak(t)) gives
the probability of transition from per-sensor state sk(t) =
(rk, bk, Δk) to next per-sensor state sk(t + 1) = (r�k, b�k, Δ�

k)
under action ak(t) = ak, and it is expressed as

Pr (sk(t + 1) | sk(t), ak(t))
� Pr (r�k, b�k, Δ�

k | rk, bk, Δk, ak)
(a)
= Pr (r�k | rk, bk, Δk, ak)
 �� �

(b)
=Pr(r�

k)

Pr (b�k | rk, bk, Δk, ak, r�k)
 �� �
(c)
=Pr(b�k|bk,ak)

× Pr (Δ�
k | rk, bk, Δk, ak, r�k, b�k)
 �� �
(d)
= Pr(Δ�

k|bk,Δk,ak)
= Pr(r�k) Pr (b�k | bk, ak) Pr (Δ�

k | bk, Δk, ak), (10)

where (a) follows from the chain rule, (b) follows from
the independence between the request process and the other
random variables, (c) follows because, given current battery
level bk and action ak, next battery level b�k is independent of
the requests and the current AoI, and (d) follows since given
bk, Δk, and ak, the next value of AoI Δ�

k can be obtained (see
(4)). The probabilities in (10) are calculated in the following.

The random variable r�k =
�

n r�k,n is a sum of independent
Bernoulli trials that are not necessarily identically distributed.
Therefore, it has a Poisson binomial distribution [44] as

Pr(r�k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�N

n=1
(1− pk,n), r�k = 0,�N

n=1
pk,n

�
m �=n

(1− pk,m), r�k = 1,

. . . . . .�N

n=1
pk,n, r�k = N.

(11)

At each slot, sensor k consumes one unit of energy for sending
a status update (i.e., when ak(t) = 1 and bk(t) ≥ 1) and
harvests one unit of energy with probability λk, thus, we have

Pr(b�k | bk < Bk, ak = 0) =

⎧⎪⎨
⎪⎩

λk, b�k = bk + 1,

1− λk, b�k = bk,

0, otherwise.
(12a)

Pr(b�k | bk = 0, ak = 1) =

⎧⎪⎨
⎪⎩

λk, b�k = 1,

1− λk, b�k = 0,

0, otherwise.

(12b)

Pr(b�k | bk = Bk, ak = 0) = 1{b�k=Bk}, (12c)

Pr(b�k | bk ≥ 1, ak = 1) =

⎧⎪⎨
⎪⎩

λk, b�k = bk,

1− λk, b�k = bk − 1,

0, otherwise.

(12d)

According to (4) and (2), given current battery level bk, AoI
Δk, and action ak, the next value of AoI Δ�

k can be obtained.
Thus, we have

Pr(Δ�
k | bk, Δk, ak = 0) = 1{Δ�

k=min{Δk+1,Δmax}},

(13a)

Pr(Δ�
k | bk ≥ 1, Δk, ak = 1)

=

⎧⎪⎨
⎪⎩

ζk, Δ�
k = 1,

1− ζk, Δ�
k = min {Δk(t) + 1, Δmax} ,

0, otherwise.

(13b)

Pr(Δ�
k | bk = 0, Δk, ak = 1) = 1{Δ�

k=min{Δk+1,Δmax}}.

(13c)

B. Optimal Policy

We propose an iterative algorithm that obtains an opti-
mal policy π� for (P1). we first define the accessibil-
ity condition for an MDP and prove that our MDP
modeling in Section III-A satisfies this condition. Then,
we present a proposition that characterizes an optimal policy
π� for (P1).

Definition 1: An MDP is weakly communicating (or weakly
accessible) if the set of states can be partitioned into
two subsets St and Sc such that: (i) all states in St

are transient under every stationary policy and (ii) every
two states in Sc can be reached from each other under
some stationary policy [45, Definition 4.2.2]. In particular,
an MDP is communicating (or accessible) if every two
states can be reached from each other under some stationary
policy.

Proposition 1: The MDP defined in Section III-A is weakly
communicating.

Proof: The proof is presented in Appendix VII-A. �
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Algorithm 1 RVIA That Obtains Optimal Policy π�

1: Initialize V (s)←0, h(s)←0, ∀s ∈ S, choose a reference
state sref ∈ S and a small θ > 0

2: repeat
3: for s ∈ S do
4: Vtmp(s)←mina∈A[c(s,a) +

�
s�∈S Pr(s� |s, a)h(s�)]

5: end for
6: δ←maxs∈S(Vtmp(s)−V (s))−mins∈S(Vtmp(s)−V (s))
7: V (s)← Vtmp(s), for all s ∈ S
8: h(s)← V (s)− V (sref), for all s ∈ S.
9: until δ < θ

10: π�(s) = argmina∈A[c(s,a) +
�

s�∈S Pr(s� | s, a)h(s�)],
for all s ∈ S

Proposition 2: The optimal average cost achieved by an
optimal policy π�, denoted by C̄� (i.e., C̄� = C̄π� ), is inde-
pendent of the initial state s(0) and satisfies the Bellman’s
equation, i.e., there exists h(s), s ∈ S, such that

C̄� + h(s) = min
a∈A

�
c(s,a) +

�
s�∈S

Pr(s�|s,a)h(s�)

�
, s ∈ S.

(14)

Further, an optimal action taken in state s is given by

π�(s) ∈ argmin
a∈A

�
c(s,a) +

�
s�∈S

Pr(s�|s,a)h(s�)

�
, s ∈ S.

(15)

Proof: By Proposition 1, the weak accessibility condition
holds, thus, by [45, Prop. 4.2.6], there exists an optimal
stationary (possibly randomized) policy, and by [45, Prop.
4.2.3], the optimal average cost C̄� is independent of the initial
state. Furthermore, by [45, Prop. 4.2.1], if we can find such
C̄� and h(s) that satisfy (15), then (16) expresses an optimal
policy for the problem. �

An optimal policy π� can be found by turning the Bellman’s
optimality equation (14) into an iterative procedure, called
relative value iteration algorithm (RVIA) [6, Section 8.5.5].
Particularly, at each iteration i = 0, 1, . . ., we have

V (i+1)(s) = min
a∈A

�
c(s,a) +

�
s�∈S

Pr(s� | s,a)h(i)(s�)

�
,

(16)

h(i+1)(s) = V (i+1)(s)− V (i+1)(sref), (17)

where sref ∈ S is an arbitrary reference state. For any
initialization V (0)(s), the sequences {h(i)(s)}i=1,2,...

and {V (i)(s)}i=1,2,... converge [6, Section 8.5.5], i.e.,
limi→∞ h(i)(s) = h(s) and limi→∞ V (i)(s) = V (s), ∀s ∈ S.
Thus, h(s) = V (s)−V (sref) satisfies (14) and C̄� = V (sref).
Functions V and h are (sometimes) called value function and
relative value function, respectively. It is worth noting that any
function h satisfying (14) is unique up to an additive factor,
i.e., if h satisfies (14), so does h+α, where α is any constant.
The proposed RVIA is presented in Algorithm 1, where θ is
a small constant for the RVIA termination criterion.

It is important to point out that the state space S and action
space A grow exponentially in the number of sensors K , and
thus, the complexity of the RVIA presented in Algorithm 1
grows exponentially in K . This is because the computational
complexity for each iteration of the value iteration algorithm
is O(|S|2|A|), where |S| is the number of states and |A| is
the number of actions. Namely, finding an optimal policy is
PSPACE-hard [46, Chap. 6]. Accordingly, finding an optimal
policy π� is practical only for small numbers of sensors.
To this end, we next propose a low-complexity sub-optimal
algorithm whose complexity increases only linearly in K .

IV. LOW-COMPLEXITY ALGORITHM DESIGN:
RELAX-THEN-TRUNCATE APPROACH

In this section, to handle massive IoT scenarios, we pro-
pose a low-complexity algorithm that provides a sub-optimal
solution to problem (P1). The key observation is that the per-
slot constraint (1) couples the actions ak(t), k ∈ K, which
results in the exponential complexity of finding an optimal
policy for (P1), as explained in Section III. Therefore, we start
by relaxing the per-slot constraint (1) into a time average
constraint and subsequently model the relaxed problem as
a constrained MDP (CMDP). The CMDP problem is then
transformed into an unconstrained MDP problem through
the Lagrangian approach [47]. The MDP problem decouples
along the sensors and, therefore, for a fixed value of the
Lagrange multiplier, we can find a per-sensor optimal policy.
The optimal value of the Lagrange multiplier is found via
bisection. This provides an optimal policy for the relaxed
problem, called optimal relaxed policy hereinafter. Finally,
we propose an online truncation procedure to ensure that
the constraint (1) is satisfied at each slot. We remark that
our optimality analysis in Section V shows that the proposed
relax-then-truncate approach is asymptotically optimal as the
number of sensors goes to infinity.

A. CMDP Formulation

We relax the constraint (1) and formulate the relaxed
problem as a CMDP. To this end, we define the average
number of command actions under a policy πR as

J̄πR � lim
T→∞

1
KT

T�
t=1

K�
k=1

EπR [ak(t)], (18)

and express the relaxed problem as

(P2) π�
R ∈ arg min

πR

C̄πR (19a)

subject to J̄πR ≤ Γ (19b)

where Γ � M
K is the normalized transmission budget.

We model (P2) as a CMDP defined by the tuple�
S,AR, Pr(s(t + 1)|s(t), a(t)), c(s(t), a(t))

�
, where the state

space S and the relaxed action space AR were defined in
Section II-E, and Pr(s(t+1)|s(t), a(t)) and c(s(t),a(t)) were
defined in Section III-A. Note that the only difference between
the CMDP tuple and the MDP tuple in Section III-A is in the
action space (AR vs A).
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It is worth noting that any policy π that satisfies the
per-slot transmission constraint (1) satisfies the time average
transmission constraint (19b) in (P2). Thus, the average cost
obtained by following policy π�

R is a lower bound on the
average cost obtained under policy π�, i.e.,

C̄π�
R
≤ C̄π� . (20)

To solve the CMDP problem (P2), we introduce a Lagrange
multiplier μ and define the Lagrangian associated with prob-
lem (P2) as

L(πR, μ)� lim
T→∞

1
NKT

T�
t=1

K�
k=1

EπR [ck(t) + μak(t)]−μ
Γ
N

.

(21)

For a given μ ≥ 0, we define the Lagrange dual function
L�(μ) = minπR L(πR, μ). A policy that achieves L�(μ) is
called μ-optimal, denoted by π�

R,μ, and it is a solution of the
following (unconstrained) MDP problem

(P3) π�
R,μ ∈ argmin

πR

L(πR, μ). (22)

Since the dimension of the state space S is finite, the
growth condition [47, Eq. 11.21] is satisfied. Moreover, the
immediate cost function is bounded below, i.e., c(s, a) ≥ 0,
∀a, s. Having these conditions satisfied, the optimal value of
the CMDP problem (P2), C̄π�

R
, and the optimal value of the

MDP problem (P3), L�(μ), ensures the following relation [47,
Corollary 12.2]

C̄π�
R

= sup
μ≥0
L�(μ). (23)

Therefore, an optimal policy for (P2) is found by a two-stage
iterative algorithm: 1) for a given μ, we find a μ-optimal
policy, and 2) we update μ in a direction that obtains
C̄π�

R
according to (23). These two steps are detailed in

Sections IV-A.1 and IV-A.2, respectively.
1) An Optimal Policy for a Fixed Lagrange Multiplier:

For a given μ, the problem of finding an optimal policy
π�

R,μ in (P3) is separable across sensors k ∈ K. Thus, (P3)
can be decoupled into K per-sensor problems as follows.
We express the Lagrangian in (21) equivalently as L(πR, μ) =

1
NK

�K
k=1 Lk(πk, μ)−μ Γ

N , where Lk(πk, μ) is defined as

Lk(πk, μ) � lim
T→∞

1
T

T�
t=1

Eπk
[ck(t) + μak(t)],

k = 1, . . . , K, (24)

where the per-sensor policy πk was defined in Section II-E.3.
Thus, finding an optimal policy π�

R,μ reduces to finding K
per-sensor optimal policies, denoted by π�

R,μ,k, k = 1, . . . , K ,
as

(P4) π�
R,μ,k ∈ arg min

πk

Lk(πk, μ), k = 1, . . . , K. (25)

Each sub-problem (P4), for a particular k, can be modeled
as an (unconstrained) MDP problem. Particularly, we define
the MDP model associated with sensor k as the tuple
(Sk,Ak, Pr(sk(t+1)|sk(t), ak(t)), ck(sk(t), ak(t))+μak(t)),
where the per-sensor state space Sk and the per-sensor

action space Ak were defined in Section II-E, the per-sensor
state transition probabilities Pr(sk(t + 1)|sk(t), ak(t)) are
calculated as in (10), and the cost of taking action ak(t) in
state sk(t) is ck(sk(t), ak(t))+μak(t), where ck(sk(t), ak(t))
is defined in Section III-A.

Proposition 3: The per-sensor MDP formulated for (P4) is
communicating, i.e., for every pair of states s, s� ∈ Sk, there
exists a stationary policy under which s� is accessible from s.

Proof: The proof is presented in Appendix VII-B. �
By Proposition 3 and Proposition 2, and rewriting the Bell-

man’s equation in (14) for the per-sensor MDP formulation,
we have

L�
k(μ) + hR,μ,k(s)

= min
a∈Ak

�
ck(s, a) + μa +

�
s�∈Sk

Pr(s�|s, a)hR,μ,k(s�)

�
,

s ∈ Sk, (26)

where L�
k(μ) � minπk

Lk(πk, μ). In addition, an optimal
policy in state s ∈ Sk is given by

π�
R,μ,k(s) ∈ argmin

a∈Ak

�
ck(s, a) + μa

+
�

s�∈Sk

Pr(s�|s, a)hR,μ,k(s�)

�
, s ∈ Sk. (27)

By turning (26) into an iterative procedure, hR,μ,k(s) and
consequently π�

R,μ,k(s), s ∈ Sk, are obtained iteratively.
Particularly, at each iteration i = 0, 1, . . . , we have

V
(i+1)
R,μ,k (s) = min

a∈Ak

[ck(s, a) + μa

+
�

s�∈Sk

Pr(s�|s, a)h(i)
R,μ,k(s�)], (28)

h
(i+1)
R,μ,k(s) = V

(i+1)
R,μ,k (s)− V

(i+1)
R,μ,k (sref), (29)

where sref ∈ Sk is an arbitrary reference state.
For any initialization V

(0)
R,μ,k(s), the sequences

{h(i)
R,μ,k(s)}i=1,2,... and {V (i)

R,μ,k(s)}i=1,2,...

converge, i.e., limi→∞ h
(i)
R,μ,k(s) = hR,μ,k(s)

limi→∞ V
(i)
R,μ,k(s) = VR,μ,k(s), ∀s ∈ Sk. Thus,

hR,μ,k(s) = VR,μ,k(s) − VR,μ,k(sref) satisfies (26) and
L�

k(μ) = VR,μ,k(sref). The proposed RVIA is presented in
Algorithm 2 (Lines 17–35).

Next, we give insight to optimal policies by studying
the structure of π�

R,μ,k obtained by the proposed RVIA.
Besides, this inherent structure may be exploited to design
structural-aware RVIA that further reduces the computational
complexity of the RVIA (see e.g., [7], [48]). We first prove
that VR,μ,k(s) has monotonic properties and then exploit them
to prove that a per-sensor optimal policy has a threshold-based
structure with respect to the AoI.

Lemma 1: Function VR,μ,k is non-decreasing with respect
to the AoI, i.e., for any two states s = (r, b, Δ) ∈ Sk and
s = (r, b, Δ) ∈ Sk with Δ ≥ Δ, we have V (s) ≥ V (s).

Proof: The proof is presented in Appendix VII-C. �
Theorem 1: For the case where the link from sensor k to the

edge node is perfect (i.e., μk = 1), a per-sensor optimal policy
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π�
R,μ,k obtained by RVIA has a threshold-based structure with

respect to the AoI, i.e., if π�
R,μ,k(s) = 1 in state s = (r, b, Δ),

then for all states s = (r, b, Δ), Δ ≥ Δ, an optimal action is
also π�

R,μ,k(s) = 1.
Proof: The proof is presented in Appendix VII-D. �

2) Determination of the Optimal Lagrange Multiplier:
Recall that the cost function associated with the per-sensor
MDP formulation (established for (P4)) is defined as
ck(sk(t), ak(t)) + μak(t). Hence, by increasing μ, the cost
of taking action ak(t) = 1 increases, and thus, the edge
node tends to use the command action less. More precisely,
C̄π�

R,μ
and L(π�

R,μ, μ) are increasing in μ, whereas J̄π�
R,μ

is
decreasing in μ [49, Lemma 3.1]. Therefore, we are interested
in the smallest value of the Lagrange multiplier such that
policy π�

R,μ satisfies the time average transmission constraint
(19b). Formally, we define the optimal Lagrange multiplier
as [49]

μ∗ � inf
�
μ ≥ 0 | J̄π�

R,μ
≤ Γ

�
, (30)

where J̄π�
R,μ

is the average number of command actions under
policy π�

R,μ, which is calculated using (18). From (18) and the
fact that (P3) is decoupled into K per-sensor problems (P4),
J̄π�

R,μ
is calculated as J̄π�

R,μ
= 1

K

�K
k=1 J̄π�

R,μ,k
, where J̄π�

R,μ,k

denotes the per-sensor time average number of command
actions under the per-sensor policy π�

R,μ,k, which is defined
as

J̄π�
R,μ,k

� lim
T→∞

1
T

T�
t=1

Eπ�
R,μ,k

[ak(t)]. (31)

Thus, (30) is rewritten as

μ∗ = inf

�
μ ≥ 0 :

K�
k=1

J̄π�
R,μ,k

≤ KΓ

�
. (32)

We now characterize an optimal relaxed policy π�
R for (P2).

If the average number of command actions obtained by π�
R,μ∗,k

satisfies 1
K

�K
k=1 J̄π�

R,μ∗,k
= Γ, then, π�

R,μ∗,k, k ∈ K, form an
optimal policy for (P2), i.e., π�

R = π�
R,μ∗ . Otherwise, π�

R is
a mixture of two deterministic policies π�

R,μ∗− and π�
R,μ∗+ ,

which are defined by [49, Theorem 4.4]

π�
R,μ∗− � lim

μ→μ∗−
π�

R,μ and π�
R,μ∗+ � lim

μ→μ∗+
π�

R,μ, (33)

and is written symbolically as π�
R � ηπ�

R,μ∗− +(1−η)π�
R,μ∗+ ,

where η is the mixing factor. This mixed policy is a station-
ary randomized policy where the action at each state s is
π�

R,μ∗−(s) with probability η and π�
R,μ∗+(s) with probability

1− η, where η is obtained7 such that J̄π�
R

= Γ.
To search for μ∗ as defined in (30), we apply the bisection

method that exploits the monotonicity of J̄π�
R,μ

with respect

to μ. Particularly, if 1
K

�K
k=1 J̄π�

R,μ,k
≤ Γ for μ = 0, then the

constraint (19b) is inactive, and an optimal policy for (P2) is
π�

R,0. Otherwise, we apply an iterative update procedure until

|μ+−μ−| < 
 and 1
K

�K
k=1 J̄π�

R,μ,k
≤ Γ are satisfied. Details

7There is no closed-form expression for η [50]. Therefore, we can numeri-
cally search for such η ∈ [0, 1].

Algorithm 2 Policy Design for the CMDP Problem (P2) via
RVIA and Bisection Search
1: Initialize Set μ ← 0, μ− ← 0, μ+ as a large positive

number, and determine a small 
 > 0
2: RVIA(μ) � run function RVIA for input μ = 0
3: if J̄π�

R,μ
≤ Γ then

4: π�
R = π�

R,μ

5: else
6: while |μ+ − μ−| > 
 do
7: RVIA( μ++μ−

2 ) � run function RVIA for μ= μ++μ−
2

8: if J̄π�
R,μ
≥ Γ then μ− ← μ else μ+ ← μ

9: end while
10: μ∗ ← 1/2(μ− + μ+), μ∗− ← μ−, and μ∗+ ← μ+

11: if J̄π�
R,μ

= Γ then
12: π�

R = π�
R,μ∗

13: else
14: π�

R = ηπ�
R,μ∗− + (1 − η)π�

R,μ∗+

15: end if
16: end if

17: function RVIA(μ) � find optimal policies π�
R,μ,k using

RVIA for fixed μ
18: Initialize VR,μ,k(s)← 0, hR,μ,k(s)← 0, ∀k, ∀s,
19: determine sref ∈ Sk and a small θ > 0
20: for k = 1, . . . , K do
21: repeat
22: for s ∈ Sk do
23: Vtmp(s)← min

a∈Ak

[ck(s, a) + μa

24: +
�

s�∈Sk
Pr(s� | s, a)hR,μ,k(s�)]

25: end for
26: δ ← maxs∈Sk

(Vtmp(s)− VR,μ,k(s))−
27: mins∈Sk

(Vtmp(s)− VR,μ,k(s)), for all s ∈ Sk

28: VR,μ,k(s)← Vtmp(s), for all s ∈ Sk

29: hR,μ,k(s)←VR,μ,k(s)− VR,μ,k(sref), for all s ∈ Sk

30: until δ < θ
31: π�

R,μ,k(s) = arg mina∈Ak
[ck(s, a) + μa+

32:
�

s�∈Sk
Pr (s� | s, a)hR,μ,k(s�)], for all s ∈ Sk

33: end for
34: Output: per-sensor optimal policies π�

R,μ,k, k ∈ K
35: end function

are expressed in Algorithm 2, where 
 is a small constant for
the bisection termination criterion.

Remark 2: It is worth noting that the complexity of finding
an optimal relaxed policy π�

R increases linearly in the number
of sensors K , whereas the complexity of finding an optimal
policy π� grows exponentially in K . Consider a scenario with
K = 100 sensors, N = 7 users, Δmax = 64, and Bk = 15.
The size of the state space S is |S| = (8× 16× 64)100 =
21300 ≈ 10400. However, the per-sensor state space size
is |Sk| = 8× 16× 64 = 213 ≈ 106.

B. Truncation Procedure

Recall that there is no guarantee that the per-slot constraint
(1) is satisfied under an optimal relaxed policy π�

R. Here,
we propose the following truncation procedure to satisfy
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Algorithm 3 Truncation Procedure
Input Optimal relaxed policy π�

R

1: for each slot t = 1, 2, 3, . . . do
2: Construct the set X (t) based on π�

R

3: if |X (t)| ≤M then
4: ak(t) = 1, for all k ∈ X (t)
5: else
6: Select M sensors from X (t) randomly (uniform)
7: and command them
8: end if
9: end for

the constraint (1) at each slot. For slot t, we define a set
X (t) � {k | ak(t) = 1, k ∈ K} ⊆ K that represents the set
of sensors that are commanded under π�

R. The truncation
procedure divides into two cases: 1) if |X (t)| ≤M , the edge
node commands all the sensors in X (t), and 2) otherwise,
the edge node selects M sensors from the set X (t) randomly
according to the discrete uniform distribution and commands
them to send status updates. The online truncation procedure
is presented in Algorithm 3.

V. ASYMPTOTIC OPTIMALITY OF THE PROPOSED

RELAX-THEN-TRUNCATE APPROACH

In this section, we analyze the optimality of the proposed
relax-then-truncate policy – denoted by π̃ hereinafter – devel-
oped in Section IV. We first find an upper bound for the
difference between the average cost obtained by the policy
π̃ and the average cost obtained by an optimal policy π�.
Then, we present two lemmas that are used to show that the
relax-then-truncate approach is asymptotically optimal as the
number of sensors goes to infinity.

Theorem 2: The difference between the average cost
obtained by the relax-then-truncate policy π̃ and the average
cost obtained by an optimal policy π� is upper bounded as

C̄π̃−C̄π�≤Δmax

M
lim

T→∞

1
T

T�
t=1

Eπ�
R


��|X (t)|−Eπ�
R
[|X (t)|]

���
 �� �
�MAD(|X (t)|)

,

(34)

where MAD(·) denotes the Mean Absolute Deviation.
Proof: The proof is presented in Appendix VII-E. �

We next present two lemmas that will subsequently be used
in Theorem 3 to prove the asymptotic optimality of the relax-
then-truncate approach.

Lemma 2: For a random variable X that follows a normal
distribution with mean ν and variance σ2, i.e., X ∼ N (ν, σ2),
the mean absolute deviation is given as MAD(X) =

�
2
π σ.

Proof: The proof is presented in Appendix VII-F. �
Lemma 3: When K → ∞, by following the policy π�

R, we

have MAD
�

|X (t)|√
K

�
≤ 1.

Proof: The proof is presented in Appendix VII-G. �
Theorem 3: For a fixed Γ = M/K , the relax-then-truncate

policy π̃ is asymptotically optimal with respect to the number
of sensors, i.e., limK→∞(C̄π̃ − C̄π�) = 0.

Proof: The proof is presented in Appendix VII-H. �

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of the low-complexity relax-then-truncate
approach developed in Section IV and illustrate the struc-
ture of per-sensor optimal policies attained by the RVIA in
Algorithm 2.

A. Performance of the Proposed Low-Complexity
Relax-Then-Truncate Approach

We consider an IoT network with N = 3 users, where
in each slot, user n requests a status of fk with probability
pk,n = 0.6. The battery capacity of each sensor is set to
Bk = 7 units of energy, the transmit success probability is set
to μk = 0.8, and the AoI upper-bound is set to Δmax = 64.
Each sensor is assigned an energy harvesting rate λk from
the set {0.01, 0.02, . . . , 0.1} in the following sequential order:
sensors 1, 11, 21, . . . are assigned the energy harvesting rate
0.01, sensors 2, 12, 22, . . . are assigned the energy harvesting
rate 0.02 etc.

We compare the performance of the proposed relax-then-
truncate policy with a (request-aware) greedy policy, a
weighted AoI policy, and a lower bound. In the greedy policy,
the edge node commands at most M sensors with the largest
AoI from the set W(t) � {k | rk(t) ≥ 1, k ∈ K}, i.e., the set
of sensors whose measurements are requested by at least one
user. In the weighted AoI policy, the edge node commands M
sensors with the highest value of rk(t)Δk(t); randomization is
used in case of a tie. The lower bound is obtained by following
π�

R (see (20)).
Fig. 2 depicts the performance of the relax-then-truncate

algorithm over time for different numbers of sensors K with
a fixed normalized transmission budget Γ = 0.025. As shown,
the proposed algorithm reduces the average cost by approxi-
mately 37.5% compared to the greedy policy. Furthermore,
the gap between the proposed policy and the lower bound is
in general small and decreases as K increases. The proposed
policy approaches the lower bound for large K , which vali-
dates the asymptotic optimality of the proposed algorithm as
proved in Theorem 3.

Fig. 3 depicts the performance of the relax-then-truncate
algorithm with respect to the number of sensors K for different
values of Γ. The results are obtained by averaging each algo-
rithm over 10 episodes where each episode takes 5×106 slots.
Due to asymptotic optimality of the proposed method, the gap
between the proposed policy and the lower bound diminishes
for large values of K . Furthermore, the proposed policy
performs near-optimally for moderate numbers of sensors,
which is important for practical use cases. Figs. 3(a)–(d) show
that, as Γ increases, the proposed policy converges to the
optimal performance faster. This is because, by increasing Γ,
the proportion of the sensors that can be commanded at each
slot increases, and consequently, the proportion of truncated
sensors (i.e., the sensors that are not commanded under π̃
compared to π�

R) decreases. Besides, the weighted AoI policy
outperforms the greedy policy because, in addition to the
AoI, the exact number of requests are considered in its action
selection.
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Fig. 2. Performance of the proposed relax-then-truncate algorithm in terms of average cost (i.e., average on-demand AoI over all the sensors and users) over
time for different values of the number of sensors K with a fixed normalized transmission budget Γ = 0.025.

Fig. 3. Performance of the proposed relax-then-truncate approach in terms of average cost with respect to the number of sensors K for different values of Γ.

Fig. 4 and Fig. 5 illustrate the average cost and the average
number of command actions, respectively, with respect to Γ.
The performance of an optimal policy for the case without
any transmission constraint (i.e., M = K) is depicted as a
benchmark [34]. As shown in Fig. 4, the average cost for the

proposed algorithm decreases as Γ increases. This is because,
for fixed K , the transmission budget M increases by increas-
ing Γ, and thus, more sensors can be commanded at each slot
so that the users are served with fresh measurements more
often. Interestingly, from a certain point onward, increasing
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Fig. 4. Performance of the proposed algorithm in terms of average cost with respect to Γ.

Fig. 5. Average number of command actions with respect to Γ.

Γ does not decrease the average cost. This is because the
average number of command actions stops increasing as shown
in Fig. 5, i.e., the constraint (19b) becomes inactive as the
edge node has more transmission budget than needed. In these
cases, the limited availability of energy at the EH sensors
becomes a dominant factor in restraining the transmission of
fresh status updates. To exemplify, for the case where K =
1000, the network reaches its maximum performance when
M = 60, and therefore, increasing the transmission budget
(e.g., bandwidth) further is not effective. Such observation
is important for practical applications because increasing M
would incur additional cost in the networks.

Fig. 6 shows the average cost with respect to the transmit
success probability μ (μk = μ, ∀k) for different values of
Γ, where K = 1000. As shown in Fig. 6, the average cost
decreases as μ increases. This is because, by increasing μ, the
communication link from the sensor to the edge node becomes

more reliable, thus increasing the probability that the edge
node successfully receives fresh status update packets from
the sensors.

B. Structural Properties of Per-Sensor Deterministic Policies
for the Relaxed Problem

Here, we consider a setup with K = 400 identical sensors
with battery capacity Bk = 15 units of energy. We analyze the
structural properties of a per-sensor policy obtained by Algo-
rithm 2 for a particular sensor k, i.e., π�

R,μ∗,k, and investigate
the effect of the transmission budget M , energy harvesting rate
λk, and request probability pk,n. Fig. 7 illustrates the structure
of π�

R,μ∗,k, where each point represents a potential per-sensor
state as a three-tuple s = (r, b, Δ). For each such state, a blue
point indicates that the optimal action is to command the
sensor (i.e., π�

R,μ∗,k(s) = 1), whereas a red point means not
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Fig. 6. Performance of the proposed algorithm in terms of average cost with respect to ξ.

Fig. 7. Structure of an optimal policy for sensor k (i.e., π�
R,μ∗,k) for each state s = {r, b, Δ}, where M = 10, λk = 0.06, ξk = 1, and pk,n = 0.2.

Red: no command; blue: command.

Fig. 8. Structure of an optimal policy for sensor k (i.e., π�
R,μ∗,k) in states s = {1, b,Δ} for different numbers of transmission budget M , where λk = 0.06,

ξk = 1, and pk,n = 0.2.

to command (i.e., π�
R,μ∗,k(s) = 0). The set of the blue points

is referred to as the command region hereinafter.
Fig. 7 shows that π�

R,μ∗,k has threshold-based structure with
respect to the number of requests r, battery level b, and AoI Δ.
Consider a state s = (1, 5, 50) in which π�

R,μ∗,k(s) = 1;
then, by the threshold-based structure, π�

R,μ∗,k(s) = 1 for all
states s = (r, b, Δ), r ≥ 1, b ≥ 5, Δ ≥ 50. Furthermore,
Fig. 7 manifests the impact of considering the on-demand AoI
(instead of conventional AoI) as the objective cost. Namely,
since the cost function (6) is (linearly) increasing with rk(t),
the edge node has more incentive to command a sensor that
is associated with a large number of requests. As expected,
if there are no requests for fk (i.e., rk = 0), the optimal
action is not to command the sensor, regardless of the battery

level and AoI, i.e., π�
R,μ∗,k(0, b, Δ) = 0. This way the sensor

conserves (and possibly recharges) its battery to be able to
respond to upcoming users’ requests.

Fig. 8, Fig. 9, and Fig. 10 depict the action under π�
R,μ∗,k in

each state s = {1, b, Δ} for different values of the transmission
budget M , energy harvesting rate λk, and request probability
pk,n, respectively. It is inferred from Figs. 8(a)–(d) that the
command region enlarges as M increases, because the edge
node can command more sensors at each slot. Further, from
a certain point onward (M ≥ 25), the command region does
not expand anymore, because the sensors’ energy limitation
restrains the number of commands for new status updates.
A comparison in Figs. 9(a)–(d) shows that the command
region is enlarged by increasing λk; This is because when
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Fig. 9. Structure of an optimal policy for sensor k (i.e., π�
R,μ∗,k) in states s = {1, b,Δ} for different values of energy harvesting rate λk , where M = 30,

ξk = 1 and pk,n = 0.4.

Fig. 10. Structure of an optimal policy for sensor k (i.e., π�
R,μ∗,k) in states s = {1, b,Δ} for different values of request probability pk,n, where M = 15,

λk = 0.06, and ξk = 1.

a sensor harvests energy more often, it can send updates more
often. Finally, as shown in Figs. 10(a)–(d), when the sensors
are requested more often (i.e., pk,n increases), the command
region shrinks; the edge node commands the sensor less to
save its energy for the future requests.

VII. CONCLUSION

We investigated on-demand AoI minimization problem in a
resource-constrained IoT network, where multiple users make
on-demand requests to a cache-enabled edge node to send
status updates about various random processes, each monitored
by an EH sensor. We first modeled the problem as an MDP and
proposed an iterative algorithm that obtains an optimal policy.
Since the complexity of finding an optimal policy increases
exponentially in the number of sensors, we developed a low-
complexity relax-then-truncate algorithm and then analytically
showed that it is asymptotically optimal as the number of
sensors goes to infinity. Numerical results illustrated that the
relax-then-truncate algorithm significantly reduces the average
cost (i.e., average on-demand AoI over all sensors and users)
compared to a request-aware greedy policy and a weighted
AoI policy, and performs close to the optimal solution for
moderate numbers of sensors.

APPENDIX

A. Proof of Proposition 1

Proof: For any state s = (s1, . . . , sK), where sk =
(rk, bk, Δk), k = 1, . . . , K , we define the request vector
r = (r1, . . . , rK), the battery vector b = (b1, . . . , bK), and
the age vector Δ = (Δ1, . . . , ΔK). Recall that at most M
sensors can send a fresh status update at each slot. Thus,
any state whose age vector has more than M identical entries
with values strictly less than Δmax is a transient state. We
consider two non-transient states s, s� ∈ Sc and show that

s� � (r�,b�,Δ�) is accessible from s � (r,b,Δ) under
a stationary randomized policy π in which, at each state s,
the edge node randomly selects an action a ∈ A according
to the discrete uniform distribution, i.e., π(a|s) = 1

|A| . Let
δ denote the largest element of the age vector Δ� (i.e.,
maxk Δ�

k = δ). Let ei denote a unit vector of length K
having a single 1 at the ith entry and all other entries 0.
Let e0 denote a zero vector (i.e., all entries are 0) of length
K . We define a vector ai = (ai,1, . . . , ai,K) with elements
ai,k = 1{Δ�

k
=i, Δ�

k
<Δmax}. First, since the requests processes

are independent from other variables in the system (e.g.,
actions), a state with a request vector r� is accessible from any
other state. Second, realizing the actions e1 for (b1−b�1)

+ slots,
e2 for (b2−b�2)

+ slots, . . . , eK for (bK−b�K)+ slots, and e0 for
τ = maxk |b�k− bk|−

�
k(bk− b�k)+ slots, the system reaches

a state whose battery vector is b� with a positive probability
(w.p.p.). Note that, regardless of the actions happening next,
the system reaches a state whose battery vector is still b�

w.p.p. Third, realizing the consecutive actions aδ , aδ−1, . . .,
a1 leads the system reach a state whose age vector is Δ�

w.p.p. In summary, the system reaches a state with request
vector r�, age vector Δ�, and battery vector b� w.p.p.. Thus,
s� is accessible from s. �

B. Proof of Proposition 3

Proof: We consider two arbitrary states s, s� ∈ Sk and
show that s� = (r�, b�, Δ�) is accessible from s = (r, b, Δ)
under a (per-sensor) stationary randomized policy πk in which,
at each state s, the edge node randomly selects an action a ∈
Ak = {0, 1} according to the discrete uniform distribution,
i.e., πk(0|s) = πk(1|s) = 1/2. For the case where b� ≥ b,
realizing the action a = 0 for τ = b�− b +1 consecutive slots
leads to state (r�, b� + 1, min{Δ + τ, Δmax}) w.p.p.; then the
action a = 1 leads to state (r�, b�, 1) w.p.p., and subsequently
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action a = 0 for Δ� − 1 consecutive slots leads to state s� =
(r�, b�, Δ�) w.p.p. Similarly, for the case where b� < b, the
action a = 1 for τ = b − b� consecutive slots leads to state
(r�, b�, 1) w.p.p., and subsequently a = 0 for Δ�−1 consecutive
slots leads to state s� = (r�, b�, Δ�) w.p.p. �

C. Proof of Lemma 1

Proof: For brevity, we drop the unnecessary subscripts,
e.g., VR,μ,k is simply shown by V . We consider s = (r, b, Δ)
and s = (r, b, Δ) with Δ ≥ Δ and prove that V (s) ≤ V (s).
Since the sequence {V (i)(s)}i=1,2,... converges to V (s) for
any initialization, it suffices to prove that V (i)(s) ≥ V (i)(s),
∀i, which is shown using mathematical induction. The
initial values are selected arbitrarily, e.g., V (0)(s) = 0 and
V (0)(s) = 0, hence, V (i)(s) ≥ V (i)(s) holds for
i = 0. Assume that V (i)(s) ≥ V (i)(s) for some i;
we need to prove that V (i+1)(s) ≥ V (i+1)(s). We define
Q(i+1)(s, a) � ck(s, a) + μa +

�
s�∈Sk

Pr(s�|s, a)h(i)(s�),
s ∈ Sk, a ∈ Ak. Thus, V (i+1)(s) = mina∈Ak

Q(i+1)(s, a)
(see (28)). Let us denote an optimal action in state s
at iteration i = 1, 2, . . . by π(i)(s), which is given by
π(i)(s) = arg mina∈Ak

Q(i)(s, a). We have

V (i+1)(s)− V (i+1)(s)
= min

a∈Ak

Q(i+1)(s, a)− min
a∈Ak

Q(i+1)(s, a)

= Q(i+1)(s, π(i+1)(s)) −Q(i+1)(s, π(i+1)(s))
(a)

≤ Q(i+1)(s, π(i+1)(s))−Q(i+1)(s, π(i+1)(s)),

where (a) follows from the fact that taking action π(i+1)(s)
in state s is not necessarily optimal. We show that
Q(i+1)(s, π(i+1)(s))−Q(i+1)(s, π(i+1)(s)) ≤ 0 for all possi-
ble actions π(i+1)(s) ∈ {0, 1}. The proof is presented for the

case where π(i+1)(s) = 1 and b ≥ 1; the proof follows
similarly for the other three cases, i.e., π(i+1)(s) = 0 and
b < Bk, π(i+1)(s) = 0 and b = Bk, and π(i+1)(s) = 1 and
b = 0. We have the relations in (35), shown at the bottom of
the page, where in step (a) we used (10)–(13), step (b) follows
from the assumption Δ ≤ Δ, and step (c) follows from the
induction assumption. �

D. Proof of Theorem 1

Proof: For brevity, we drop the unnecessary sub-
scripts, e.g., VR,μ,k is simply shown by V . Let us
define Q(s, a) � ck(s, a) + μa +

�
s�∈Sk

Pr(s�|s, a)h(s�).
Thus, V (s) = mina∈Ak

Q(s, a). Proving that π� has a
threshold-based structure with respect to the AoI is equivalent
to showing the following: if the optimal action in state s =
(r, b, Δ) is π�(s) = 1, i.e., Q(s, 1) − Q(s, 0) ≤ 0, then for
all states s = (r, b, Δ) with Δ ≥ Δ the optimal action is also
π�(s) = 1, i.e., Q(s, 1) − Q(s, 0) ≤ 0. This is equivalent to
showing that Q(s, 1)−Q(s, 0) ≤ Q(s, 1)−Q(s, 0). The proof
is presented for the case where 1 ≤ b < Bk; the proof follows
similarly for the other two cases, i.e., b = Bk and b = 0. We
have the relations in (36), shown at the bottom of the page,
where step (a) follows from the assumption Δ ≤ Δ and step
(b) follows from Lemma 1. �

E. Proof of Theorem 2

Proof: Let T (t) ⊂ X (t) denote the set of truncated
sensors at slot t, i.e., the sensors that are not commanded
under the relax-then-truncate policy π̃, given that they are
commanded under policy π�

R. By the truncation procedure,
if |X (t)| > M , M sensors are chosen randomly (uniform)
from the set X (t) and commanded (i.e., |X (t)| −M sensors

Q(i+1)(s, 1)−Q(i+1)(s, 1)

= ck(s, 1) +
�

s�∈Sk

Pr(s�|s, 1)V (i)(s�)− ck(s, 1)−
�

s�∈Sk

Pr(s�|s, 1)V (i)(s�)

(a)
= r(1 − μk) (min{Δ + 1, Δmax} −min{Δ + 1, Δmax})
 �� �

(b)≤0

+
N�

n=0

1�
l=0

Pr(r� = n) (lλk + (1− l)(1− λk)) (1− μk)

×
�
V (i)(n, b + l− 1, min{Δ + 1, Δmax})− V (i)(n, b + l − 1, min{Δ + 1, Δmax})

�

 �� �

(c)≤0

≤ 0, (35)

Q(s, 1)−Q(s, 1)−Q(s, 0) + Q(s, 0)

= ck(s, 1) +
�

s�∈Sk

Pr(s�|s, 1)V (s�)− ck(s, 1)−
�

s�∈Sk

Pr(s�|s, 1)V (s�)− ck(s, 0)

−
�

s�∈Sk

Pr(s�|s, 0)V (s�) + ck(s, 0) +
�

s�∈Sk

Pr(s�|s, 0)V (s�) = r (min{Δ + 1, Δmax} −min{Δ + 1, Δmax})
 �� �
(a)≥0

+
N�

n=0

1�
l=0

Pr(r� = n)(lλk + (1 − l)(1− λk)) (V (n, b + l, min{Δ + 1, Δmax})− V (n, b + l, min{Δ + 1, Δmax}))
 �� �
(b)≥0

≥ 0,

(36)
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are not commanded). Hence, the probability that sensor k

belongs to T (t) is 1{|X (t)|>M|}

�
|X (t)|−M

|X (t)|

�
. At each slot, the

additional per-sensor cost under π̃ compared to π�
R is no more

than NΔmax (see (6)). Therefore, the expected additional cost
over all sensors under π̃ compared to π�

R is upper bounded by
K�

k=1

1{X (t)>M}
|X (t)| −M

|X (t)|
 �� �
Pr(k∈T (t))

NΔmax

= NKΔmax (|X (t)| −M)+

|X (t)| , (37)

where (·)+ � max{0, ·}.
We introduce the following (penalized) strategy π̂R: at each

slot, command the sensors based on π�
R but add a penalty

NKΔmax (|X (t)|−M)+

|X (t)| to the cost over all sensors (see (37)).
It is clear that the average cost obtained under π̂R is not less
than that obtained by π̃, i.e., C̄π̃ ≤ C̄π̂R . Also, recall from
(20) that the average cost obtained under policy π�

R is a lower
bound for the average cost obtained by an optimal policy π�,
i.e., C̄π�

R
≤ C̄π� . Moreover, policy π̃ is a sub-optimal solution

for (P1), i.e., C̄π� ≤ C̄π̃ . Therefore, we have

C̄π�
R
≤ C̄π� ≤ C̄π̃ ≤ C̄π̂R . (38)

Using (38), the difference between the average cost obtained
by the proposed relax-then-truncate policy π̃ and the average
cost obtained by an optimal policy π� is upper bounded as

C̄π̃ − C̄π�

(a)

≤ C̄π̂R − C̄π�
R

= lim
T→∞

1
NKT

T�
t=1

Eπ�
R

�
NKΔmax (|X (t)| −M)+

|X (t)|

�
(b)

≤ Δmax

M
lim

T→∞

1
T

T�
t=1

Eπ�
R



(|X (t)| −M)+

�
(c)

≤ Δmax

M
lim

T→∞

1
T

T�
t=1

Eπ�
R



(|X (t)| − Eπ�

R
[|X (t)|])+

�
(d)

≤ Δmax

M
lim

T→∞

1
T

T�
t=1

Eπ�
R

 ��|X (t)| − Eπ�
R
[|X (t)|]

��!

=
Δmax

M
lim

T→∞

1
T

T�
t=1

MAD(|X (t)|), (39)

where (a) follows from (38), (b) follows from (|X (t)|−M)+

|X (t)| ≤
(|X (t)|−M)+

M , (c) follows from Eπ�
R
[|X (t)|] ≤ M , for suffi-

ciently large t, and (d) follows from (·)+ ≤ | · |. �

F. Proof of Lemma 2

MAD(X) = E[|X − ν|] =
" ∞
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dx
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√
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#
2
π

σ

" ∞
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ye−
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2 y2
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#
2
π

σ. (40)

G. Proof of Lemma 3

Proof: The cardinality of set X (t) (i.e., the set of
sensors that are commanded under π�

R) can be written as
|X (t)| =

�K
k=1 ak(t), where ak(t) ∈ {0, 1}, k ∈ K, are

K independent binary random variables. Let ωk(t) be the
probability that sensor k is commanded at slot t under policy
π�

R, i.e., ωk(t) � Pr(ak(t) = 1). We define a random variable
Z(t) � |X (t)|−

�
k ωk(t)√�

k ωk(t)(1−ωk(t))
. We have

MAD(Z(t)) = MAD

$
|X (t)| −

�
k ωk(t)%�

k ωk(t)(1 − ωk(t))

&

(a)
= MAD

$
|X (t)|%�

k ωk(t)(1 − ωk(t))

&
(b)

≥ MAD

$
|X (t)|%

K/4

&
≥MAD

'
|X (t)|√

K

(
,

(41)

where (a) follows because the MAD does not change by
adding a constant to all values of the variable (similar to
variance) and (b) follows from

�K
k=1 ωk(t)(1− ωk(t)) ≤ K

4 .
By the Lyapunov central limit theorem [51, Theorem 27.3],

Z(t) converges in distribution to a standard normal distribu-
tion, i.e., Z(t) ∼ N (0, 1), as K goes to infinity. Thus, we have

lim
K→∞

MAD
'
|X (t)|√

K

(
(a)

≤ lim
K→∞

MAD(Z(t))
(b)
=

#
2
π
≤ 1,

(42)

where (a) follows from (41) and (b) follows from Lemma 2.
�

H. Proof of Theorem 3

Proof: We have

lim
K→∞

�
C̄π̃ −C̄π�

�
(a)

≤ lim
K→∞

�
Δmax

Γ
√

K
lim

T→∞

1
T

T�
t=1

MAD
'
|X (t)|√

K

(�
(b)

≤ lim
K→∞

Δmax

Γ
√

K
= 0, (43)

where (a) follows from Theorem 2 and M = ΓK , and (b)
follows from Lemma 3. �
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