
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 9, SEPTEMBER 2022 5811

Scheduling Versus Contention for Massive Random
Access in Massive MIMO Systems

Justin Kang , Graduate Student Member, IEEE, and Wei Yu , Fellow, IEEE

Abstract— Massive machine-type communications protocols1

have typically been designed under the assumption that coordina-2

tion between users requires significant communication overhead3

and is thus impractical. Recent progress in efficient activity4

detection and collision-free scheduling, however, indicates that5

the cost of coordination can be much less than the naive scheme6

for scheduling. This work considers a scenario in which a7

massive number of devices with sporadic traffic seek to access8

a massive multiple-input multiple-output (MIMO) base-station9

(BS) and explores an approach in which device activity detection10

is followed by a single common feedback broadcast message,11

which is used both to schedule the active users to different12

transmission slots and to assign orthogonal pilots to the users13

for channel estimation. The proposed coordinated communication14

scheme is compared to two prevalent contention-based schemes:15

coded pilot access, which is based on the principle of coded slotted16

ALOHA, and an approximate message passing scheme for joint17

user activity detection and channel estimation. Numerical results18

indicate that scheduled massive access provides significant gains19

in the number of successful transmissions per slot and in sum20

rate, due to the reduced interference, at only a small cost of21

feedback.22

Index Terms— Internet-of-Things (IoT), massive random23

access, massive multiple-input multiple-output (MIMO), pilot24

assignment, scheduling.25

I. INTRODUCTION26

FUTURE wireless networks need to support massive con-27

nectivity in the form of the Internet of Things (IoT) and28

massive machine-type communications (mMTC). In a massive29

connectivity scenario, a single cellular base station (BS) must30

support a large number of N devices (in the order of 104 ∼31

106). A salient characteristic of IoT and mMTC traffic is that32

devices typically seek to access the network only sporadically33

and only to transmit small payloads, so that at any given time34

only a small random subset of K � N users are active [1], [2].35
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In this setting it is highly inefficient to pre-assign each user 36

an orthogonal communication resource, since the user only 37

sporadically makes use of it. Designing solutions for massive 38

connectivity that allow users to efficiently gain random access 39

to the network thus becomes an important problem. 40

Existing wireless protocols [3] already implement random 41

access, but on a much smaller scale than is envisioned for 42

massive connectivity in IoT and mMTC [4]. Most of these 43

existing protocols are based on contention. For example, in the 44

Long Term Evolution (LTE) standard, users request access 45

for available resources at random; the BS then transmits 46

a downlink feedback acknowledgement message, which is 47

followed by an uplink response from the users and finally 48

another downlink feedback from the BS for resolving any 49

colliding resource requests and to authenticate the users. 50

With the goal of designing scalable random access solutions 51

to meet the requirements of future systems, many random 52

access schemes that differ from the above traditional approach 53

have been proposed [5], [6]. Among these proposed schemes, 54

the grant-free paradigm [7] is popular. Grant-free protocols 55

rely entirely on uplink communications and focus on dealing 56

with the inevitable interference resulting from user contention. 57

This is typically justified by the fact that the alternative, i.e., 58

using downlink feedback to enable scheduling in order to 59

eliminate interference would come at too great a cost [5]. 60

Recent discoveries in two separate areas, however, have 61

shown that the cost of downlink feedback for scheduling 62

to avoid interference may be less than previously thought. 63

First, for the massive multiple-input multiple-output (MIMO) 64

system, compressed sensing algorithms such as approximate 65

message passing (AMP) can be used for accurate detection 66

of the active users [8] and to simultaneously estimate their 67

channels [9]. Moreover, if only the large-scale fading needs to 68

be estimated, then it is possible to detect K = O
(
L2

)
active 69

devices with only L pilot symbols using a technique known 70

as the covariance approach [10]. 71

The second discovery is that after activity detection, coor- 72

dination among the active devices can be enabled via a 73

common feedback message from the BS to the active users 74

and that the amount of feedback required to ensure collision- 75

free scheduling scales only linearly in K with a coefficient as 76

small as 1.44 bits per active user, and nearly independent of 77

N , in theory. The feedback cost is even less if multiple users 78

can be scheduled in the same time or frequency slot [11]. 79

Together, these two sets of results suggest the following 80

three-step procedure for massive connectivity with massive 81

MIMO. In the first stage, active users transmit uniquely iden- 82
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tifying non-orthogonal pilots; the BS performs sparse activity83

detection based on compressed sensing. In the second stage,84

the BS transmits a common feedback message to the active85

users. In the final phase, the active users transmit additional86

pilots for channel estimation as well as the payload, while87

making use of the feedback message both for assigning pilots88

and for scheduling data transmission into orthogonal slots,89

in order to avoid interference. This scheme differs from grant-90

free schemes by focusing on the prevention of interference,91

rather than mitigating its effects.92

The main goal of this paper is to show the significant93

throughput improvement that can be obtained for the scheduled94

scheme as compared to the contention scheme for massive95

random access, and that such benefit comes only at a small96

cost of feedback.97

A. Related Work98

The classic strategy for implementing contention-based ran-99

dom access is Slotted ALOHA (SA) [12]. In classic SA100

users randomly transmit in orthogonal slots and re-transmit101

in the case of collision. In these systems, the largest frac-102

tion of orthogonal slots that can be effectively utilized for103

user transmission is 1/e, resulting in a significant waste of104

resources. There are many modern variations of SA that105

seek to remedy this by including redundancy in the user106

transmission (typically through the repeated transmission of107

the payload) and by utilizing information from collisions108

via successive interference cancellation (SIC). Most of these109

methods [13]–[15] fall into the category of Coded Slotted110

ALOHA (CSA) [16]. These schemes can utilize a much higher111

fraction of the available resources. In particular, the scheme112

presented in [15] exploits a connection to the erasure decoding113

of fountain codes. By making use of the soliton distribution114

in the design of collision resolution codes, it is shown that115

CSA can asymptotically approach perfect utilization as the116

number of slots and users approach infinity. This advantage117

however comes at a cost, as these schemes often require a long118

block length and require the users to transmit the same packet119

multiple times, resulting in additional energy consumption.120

The CSA protocol describes random access at a packet121

level, ignoring the underlying physical layer. To utilize CSA122

methods in a practical setting, one must also account for the123

physical layer transmission concerns. In particular, massive124

MIMO [17], where each BS is equipped with a large number125

of antennas, has emerged as a key technology for future wire-126

less systems, making random access for massive MIMO an127

important research direction. Critically, the design of massive128

MIMO systems must address the important issue of channel129

estimation. Toward this end, [5] introduces a random access130

protocol for massive MIMO known as Coded Pilot Access131

(CPA), which uses randomly selected orthogonal pilots for132

channel estimation, as well as the concepts of CSA to resolve133

collisions. CPA is a benchmark against which the methods134

proposed in this paper are compared.135

In contrast to the contention-based strategies, this paper136

explores alternatives that are based on the scheduling of the137

active users in orthogonal slots. Conventionally, scheduling138

K users out of a potential pool of N users would require 139

a feedback message of K log(N) bits. Surprisingly, in [11], 140

it is revealed that if only K active users out of N total 141

users are listening to the feedback message, and each active 142

user is only interested in knowing its own scheduled slot, 143

then the fundamental bounds on the size of the common 144

feedback message required to ensure collision-free schedul- 145

ing can be much smaller. Information theoretically, it is 146

shown in [11] that scheduling K users into K slots while 147

avoiding collision only requires approximately log(e)K bits 148

of common feedback, plus an additive term that scales as 149

O(log log(N)) if fixed-length code is used. The fact that the 150

optimal collision-free feedback can be highly efficient is a 151

main motivation for the present work. 152

The use of scheduling and feedback for massive connectiv- 153

ity has already been considered in several recent works [18], 154

[19], but for a different context of unsourced random access 155

[20]–[22], where user identification is abstracted, and the goal 156

is to decode a list of transmitted messages. The unsourced 157

paradigm is most suitable when the messages themselves, 158

rather than the identities of the transmitters, are important. 159

This present paper considers the sourced approach, in which 160

the BS is made aware of the identities of the active users 161

through an activity detection process, then uses a feedback 162

strategy to schedule the active users. In the activity detection 163

process, each user is assigned a unique signature sequence. 164

Due to the large number of devices in the user pool, the 165

signature sequences cannot be orthogonal. But because of the 166

sporadic nature of the device activities, compressed sensing 167

techniques can be used to recover the identities of the active 168

users. In [8], [23], [24] the AMP algorithm is proposed for 169

activity detection in multi-antenna systems. Importantly, the 170

performance of these activity detection methods that employ 171

AMP can be predicted by an analytic framework called state 172

evolution [25]. The AMP algorithm works by performing 173

joint user activity detection and instantaneous channel state 174

information (CSI) estimation. We note however that when the 175

number of antennas is large, the problem of instantaneous 176

CSI estimation from non-orthogonal pilots becomes more 177

difficult, and the convergence of the AMP algorithm becomes 178

considerably slower. 179

In [10], an alternative approach to activity detection is 180

considered based on the key insight that the sample covari- 181

ance matrix of the received signal is a sufficient statistic 182

for detecting the active users. This approach, known as the 183

covariance approach, forgoes CSI estimation and has several 184

advantages when the number of antennas is large. In [6], 185

[26] the performance of the covariance approach is studied 186

asymptotically via a phase transition analysis and numerically 187

for finite parameters, showing that in the massive MIMO 188

setting, it outperforms AMP. 189

Additionally, the idea of joint activity and data detection 190

is considered in [27]. To achieve this, each user is assigned 191

multiple signature sequences and selects one based on the data 192

it wishes to transmit. This is advantageous because it does 193

not require any coordination and can be implemented as a 194

straightforward extension of activity detection. However, since 195

the total number of required sequences grows exponentially 196
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with the size of the data payload, it is suitable only for very197

small payloads.198

B. Main Contributions199

This paper studies the use of feedback to improve massive200

random access schemes in a massive MIMO system. We allow201

for a single common feedback message from the BS to the202

users to enable scheduling. The main contributions are as203

follows:204

• We propose a three-phase random access scheme that205

exploits activity detection and feedback to enable206

coordination. In the first phase, active users transmit207

non-orthogonal uplink pilots for activity detection. After208

the BS has determined the set of active users, it broadcasts209

a common downlink feedback message to assign each210

user a slot and an orthogonal pilot. Importantly, we utilize211

this feedback not just to schedule users, but also to assign212

orthogonal pilots, which resolves the critical issue of213

channel estimation in massive MIMO design. In the final214

phase, the users transmit their orthogonal pilots and data215

in the scheduled slot.216

• For the case where the communications occur over mul-217

tiple coherence blocks, we compare the proposed sched-218

uled approach to random access with contention-based219

CPA [5]. Numerical results indicate that the significant220

performance gains in terms of number of successful221

transmissions and in system efficiency can be obtained222

at a cost of only a small amount of feedback.223

• For the case where the communications occur over a sin-224

gle coherence block, we first show that the feedback rate225

required for scheduling users into different transmission226

slots as proposed in [9] is very small, then show that227

if a moderately higher feedback rate is used to allocate228

orthogonal pilots for channel estimation, then additional229

gains in system sum rate can be obtained as compared to230

the AMP-based joint user activity detection and channel231

estimation scheme described in [9].232

Together, these results quantify the benefit and the cost of233

scheduling orthogonal resources for both channel estimation234

and data transmission in massive random access for massive235

MIMO systems.236

C. Organization237

The rest of the paper is organized as follows. Section II238

presents the system model and the problem formulation.239

In Section III, we review two compressed sensing algorithms240

for device activity detection for massive random access.241

In Section IV, fundamental bounds for collision-free feedback242

scheduling are presented. We then propose the coordinated243

random access scheme that uses common feedback from the244

BS to the users for scheduling and for pilot assignment for245

channel estimation, and numerically compare its performance246

with the uncoordinated contention-based alternatives for the247

fast-fading scenario in Section V and for the slow-fading248

scenario in Section VI. The paper concludes with Section VII.249

Fig. 1. Relationship between frame length T and coherence length D for
the fast-fading and slow-fading channel models.

D. Notation 250

Throughout the paper standard upper and lower-case sym- 251

bols denote scalars. Lower-case and upper-case boldface sym- 252

bols denote vectors and matrices respectively. Calligraphy 253

letters denote sets. Superscripts (·)T and (·)H denote transpose 254

and conjugate transpose respectively. Further, I represents the 255

identity matrix with appropriate dimensions, and CN (μ,Σ) 256

denotes a complex Gaussian distribution with mean μ and 257

covariance Σ. The set [N ] denotes the set {1, . . . , N} and | · | 258

denotes the number of elements of a set. All logarithms are 259

base 2 unless otherwise stated. 260

II. PROBLEM FORMULATION 261

Consider the uplink of an mMTC system consisting of a 262

single BS with M antennas, and N potential users with a 263

single antenna each. Communications occur over a frame, 264

corresponding to the time scale in which the users’ activities 265

are fixed. The length of the frame can also be thought of as 266

the latency constraint within which the active users must be 267

served. We assume that among a large number of N potential 268

users, a random subset of K users are active and seek to 269

transmit a small payload to the BS. Let A ⊂ [N ] with |A| = K 270

denote the set of indices of the active users. 271

The uplink channels are modelled as an independently and 272

identically distributed (i.i.d.) block-fading wireless channel, 273

where the users’ small-scale fading coefficients remain sta- 274

ble for a fixed coherence block. We consider two different 275

scenarios: 276

(i) In the fast-fading scenario, the coherence block is shorter 277

than the frame length, and each frame can be thought of 278

as consisting of Δ consecutive coherence blocks, each of 279

length D channel uses, resulting in a total of T = DΔ 280

channel uses per frame. 281

(ii) In the slow-fading scenario, the coherence length is 282

longer than the frame length, so that without loss of 283

generality, we can assume Δ = 1 and T = D. 284

Fig. 1 illustrates the relations between the frame length and 285

the coherence length for the two cases. Note that the user 286

activity detection needs to take place within each frame length 287

T , while channel estimation needs to take place within each 288

coherent length D. Note that the block length corresponding 289

to coding and modulation would typically be much smaller 290

than D, i.e., each coherence block would consist of many 291

transmission symbols. 292
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TABLE I

SUMMARY OF PROBLEM FORMULATIONS AND ASSUMPTIONS

The fading channel between the ith user and the BS293

in the d-th coherence block is denoted as gihd,i =294

gi [hd,i(1) hd,i(2) . . . hd,i(M)]T where hd,i ∈ CM×1, hd,i ∼295

CN (0, I) is the Rayleigh fading component and gi ∈ R+ is296

the large-scale fading. In each coherence block, some (or all)297

of the active users would choose or be scheduled to transmit298

to the BS. Let Ad ⊆ A denote the set of transmitting users in299

the d-th coherence block. We can write the received signal at300

the BS in the coherence block Yd ∈ CM×D as:301

Yd =
∑

j∈Ad

gjhd,jxd,j + Zd, d = 1, . . . , Δ, (1)302

where xd,j is the signal transmitted by user j ∈ Ad, and303

Zd ∈ CM×D is the additive white Gaussian noise (AWGN)304

with i.i.d. elements distributed according to CN (0, σ2
n). At the305

end of the frame, the BS would use all Yd, d = 1, . . . , Δ, to306

determine the set of active users and their associated payloads.307

Note that this formulation is distinct from unsourced random308

access [20], for which only a list of payloads is required to309

be decoded.310

For protocols that involve feedback, we assume that it takes311

the form of a single common broadcast message from the312

BS to the users. The feedback message occurs at some point313

during the frame. When Δ > 1, we assume that feedback314

occurs between the coherence blocks, and in the slow-fading315

model with Δ = 1, we assume that feedback occurs within316

the coherence block. In this work, we avoid modelling the317

physical feedback channel, and instead quantify the cost of318

feedback through a characterization of the minimum amount319

of information (i.e., number of bits) required to be broadcast320

in order to achieve the scheduling objective.321

We consider the two distinct fading models in order to322

compare the proposed scheduled scheme with existing random323

access protocols. A summary of the models along with the324

existing and proposed new protocols is presented in Table I.325

The assumptions made above falls in line with most works326

on massive MIMO. We remark that the massive MIMO327

system has also been studied under more realistic propagation328

conditions involving correlation between channels and partial329

line-of-sight propagation [28], [29]. For consistency and to330

capture the fundamental aspect of the problem, this paper331

considers the i.i.d. fading model only. A study of the benefits332

of feedback and scheduling in models with correlation is left333

to future work.334

III. SPARSE ACTIVITY DETECTION335

Activity detection is the process by which the BS determines336

the identities of the K active users among the N potential337

users in each frame. There are two well-known approaches, 338

one using the AMP algorithm, and the other, based on a 339

covariance estimation formulation. Both approaches have been 340

shown to be theoretically and practically viable under a range 341

of system parameters. Throughout this work, we assume to 342

operate in regimes where activity detection is feasible. 343

We take a sourced random access approach in which each 344

of the N potential users are assigned uniquely identifying 345

non-orthogonal pilot sequences s1, s2, . . . , sn ∈ CL. In the 346

pilot phase, the active users in A transmit their pilots to the 347

BS. In this case, the received signal can be expressed as: 348

YT =
∑
i∈A

sigihT
i + Z (2) 349

= SΓ
1
2 H + Z, (3) 350

where Y ∈ CM×L is the received signal, S � 351

[s1, . . . , sN ] ∈ CL×N is the signature sequence matrix, Γ � 352

diag {γ1, . . . , γN} ∈ R
N×N
+ where γi = (aigi)2 and ai = 1 if 353

i ∈ A and otherwise 0, and H ∈ CN×M is the combined 354

channel for all users, and Z ∈ CL×M is the AWGN noise 355

matrix. We assume that S is known at the BS. 356

A. AMP Approach 357

One way to formulate the problem of activity detection 358

is to note that the effective CSI matrix X � Γ
1
2 H is row- 359

sparse, and the non-zero rows correspond to the active users. 360

Rewriting (3) as 361

YT = SX + Z, (4) 362

the problem of estimating the user activities can now be for- 363

mulated as that of estimating the sparsity pattern of X from the 364

observation Y, which can be seen as a multiple measurement 365

vector (MMV) compressed sensing problem [30]. One way 366

to solve this problem is to use the AMP algorithm, which 367

yields not only the sparsity pattern but also an estimate of 368

the matrix X. Thus, the AMP approach in fact amounts to 369

joint sparsity activity detection and channel estimation [8], 370

[9]. This is useful in the slow-fading scenario, because the 371

instantaneous CSI remains constant within the frame so the 372

channel estimated from the pilot stage can then be used to 373

design the receiver for data reception. In contrast, for the fast- 374

fading case, where the data transmission occurs in a separate 375

coherence block from activity detection, the estimated value 376

for X would not be useful since the instantaneous CSI would 377

have changed and would need to be re-estimated when data 378

transmissions occur. 379
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B. Covariance Approach380

When the instantaneous CSI is not needed and only the381

device activities are of interest, an alternative approach is382

to consider H as random, and to treat γi = aigi as deter-383

ministic unknown parameters to be estimated. This approach384

is proposed in [6], [10], in which the maximum-likelihood385

estimation (MLE) of γ from Y is formulated as the following386

non-linear optimization problem:387

min
γ

log |Σ| + tr
(
Σ−1Σ̂

)
388

s.t. γ ≥ 0, (5)389

where Σ � SΓSH + σ2
nI and Σ̂ = 1

M YHY are in CL×L.390

This approach is most effective in the massive MIMO regime,391

where the channel hardening effect takes place and Σ̂ →392

Σ as M → ∞. Although the problem (5) is non-convex,393

there are relatively simple and highly effective algorithms for394

numerically finding (local optimal) solutions [10]. Because this395

problem formulation works in the covariance domain for Y,396

it is termed covariance approach in the literature.397

C. Performance398

Both the AMP and the covariance approach have a strong399

theoretical foundation and analysis. For the AMP algorithm,400

the state evolution provides theoretical guarantees on its401

asymptotic performance as L, N and K go to infinity402

(at fixed M ) [9]. For the covariance approach, a phase403

transition analysis has been developed in the regime of404

large M [6], [26].405

While the AMP algorithm is suited for moderate M and406

has the benefit of being able to provide an estimate of the407

instantaneous CSI, the covariance approach has a distinct408

advantage at large M , because it takes advantage of the409

channel hardening effect in the massive MIMO regime. The410

problem formulation (4) aims to detect K×M non-zero entries411

in X from L × M observations in Y, so the AMP algorithm412

is expected to be able to estimate X well only in the regime413

where L is comparable or larger than K . In contrast, the414

problem formulation (5) aims to detect K non-zero entries415

in Γ from L × L observations in Σ, so it can work in the416

regime where K = O(L2). This phase transition phenomenon417

is rigorously established in [6], [26]. Numerical simulations418

comparing the activity detection performance of AMP versus419

covariance approach can be found in [26, Figs. 9 and 10].420

The choice of whether to use AMP versus the covariance421

approach in practice depends on the system setup and the422

operating regime. When L < K , the covariance approach423

would significantly outperform AMP. When L > K , the two424

have comparable performance, with the covariance approach425

having slightly better detection error performance, but with426

the AMP having the benefit of being able to provide an427

estimate of the channel in addition. In the fast-fading scenario428

where the estimated channel is not useful, (because the data429

transmission would have occurred in a different coherence430

block), it is preferable to use the covariance method. In the431

slow-fading scenario, the AMP has the advantage of being432

able to provide an estimate of the channel, but since non-433

orthogonal sequences are used in the pilot phase, the channel434

Fig. 2. Run-time comparison of the AMP versus the covariance approach
as function of M , with K = 100, N = 1000 and L = 100.

estimation error based on AMP alone can be large [9]. Thus, 435

a subsequent channel estimation stage that uses additional 436

feedback to assign orthogonal pilot sequences to the active 437

users can further improve the performance. 438

D. Complexity 439

An equally important consideration for activity detection 440

algorithms is complexity, as practical activity detection algo- 441

rithms must have a run-time comparable to the time scale of 442

the transmission frame and remain feasible even as the number 443

of users N and the number of antennas M grow large. 444

In this respect, we first note that the AMP is based on 445

the observation of an L × M matrix, while the covariance 446

approach is based on an L × L matrix. The AMP algorithm 447

has a manageable complexity only when M is small; its 448

convergence speed slows down considerably as M increases. 449

In the regime of large M , the covariance approach has a 450

significant advantage. 451

Consider the coordinate descent algorithm for solving (5) 452

for the covariance approach. As noted in [26], the complexity 453

of each coordinate update is O(L2). Suppose that the coor- 454

dinate descent algorithm requires each of the N coordinates 455

of γ̂ to be updated W times. Then, the overall complexity is 456

O(L2NW ). Note that since the covariance approach involves 457

averaging over the antennas, the algorithm does not directly 458

scale in complexity with M , making it well suited for the 459

massive MIMO setting. In contrast, the MMV compressed 460

sensing problem (4) involves estimating the row-sparse N×M 461

matrix X, so the run-time of the AMP algorithm has a strong 462

scaling with M . This can be observed in Fig. 2, which shows 463

a run-time comparison of both algorithms using the same 464

computing hardware with increasing M . 465

It should be noted that the expression for the complexity of 466

the covariance approach does not necessarily imply that the 467

complexity increases quadratically with L. This is because the 468

number of iterations needed for convergence strongly depends 469

on how close the operating point is from the phase transition 470

boundary. For example, at fixed M , N and K , if L increases, 471

then W , the number of iterations required to converge to the 472

optimal solution γ, would decrease, as the operating point is 473

now further away from the feasibility boundary. 474

IV. MINIMUM FEEDBACK FOR COLLISION-FREE 475

SCHEDULING 476

Once the set of active users has been detected (with the 477

result denoted here as Â), the BS can then transmit a com- 478

mon feedback message to schedule the active users into the 479
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transmission slots within the frame. A naive feedback scheme480

is to send a list of indices of the K active users in the order481

in which they should transmit. This requires K log(N) bits of482

feedback. It turns out that this naive scheme is not the most483

efficient feedback mechanism. In this section, we explore the484

optimal collision-free feedback strategy and characterize the485

minimum feedback rate.486

A. Fundamental Limits of Collision-Free Feedback487

The naive feedback strategy is not the most efficient feed-488

back mechanism for several reasons. First, if the objective489

of the scheduling is to avoid collision, then the BS can490

choose any of the K! permutations of the list of users—491

removing this freedom can reduce the feedback rate. This492

improvement already leads to a more efficient enumerative493

source coding [18], [31] method of feedback, but even this is494

still far from optimal. To approach the fundamental limit, the495

key observation of [11] is that the only information required496

by an active user is which slot it is scheduled in and any497

information about the other users is redundant. Thus, the498

full list of active users contains more information than what499

each user needs for collision-free scheduling. Additionally, the500

naive scheme also informs the inactive users that they are not501

on the list of active users. Since inactive users are not listening502

to the feedback message, this information is also redundant.503

These observations can be exploited when investigating the504

fundamental limit of collision-free feedback.505

Specifically, we define a collision-free scheduling code as506

the following: For any set of active users Â as determined by507

the BS (with |Â| ≤ K) that need to be scheduled into B slots,508

there must exit a codeword c in the feedback code of size C509

such that:510

qi(c) �= qj(c), ∀i �= j ∈ Â (6)511

where qi, i ∈ [N ], are the feedback decoders for each user that512

map the user into one of the B available slots. Given a set of513

active users, the output of the feedback encoder is simply the514

index of such a codeword. The rate of the feedback code is515

defined to be log(C) if the feedback message must have a516

fixed length, or the entropy of the output of the encoder, if the517

feedback can have variable lengths.518

The fundamental limit of collision-free feedback is found in519

[11] as follows. If the number of available slots B = K , for the520

variable-length case, an achievable rate for the collision-free521

feedback code is log(e)(K+1) bits. Remarkably, this feedback522

rate is independent of N . The proof relies on a random set523

partitioning argument. In addition, converse results are also524

available, which indicate that for sufficiently large N and525

K , this bound is tight to within log(e) bits. For the case of526

fixed-length feedback codes, it can be shown that the problem527

can be directly mapped to the perfect hashing problem. From528

this connection, similar bounds on the feedback rate can be529

found, which have the same dominant log(e)K scaling, plus530

a small O(log log(N)) term.531

Furthermore, in certain applications, it is also of interest to532

consider the case where the available slots B > K , or the case533

where B < K and up to 
K/B� users are permitted per slot534

Fig. 3. The minimum feedback rate using variable-rate code for collision-
free scheduling of K = 1000 out of arbitrary number of N users over B
slots.

and can be resolved subsequently via other means. In these 535

cases, even fewer bits of feedback are required (see [11]). 536

The above fundamental limit for collision-free feedback is 537

significantly less than the naive scheme. For example, for 538

N = 106 and K = B = 1000, the naive scheme would require 539

K log(N) = 20000 bits, while an optimal feedback code 540

would only require at most log(e)(K +1) = 1444 bits. Fig. 3 541

plots the achievable bounds for the rate of variable-length 542

feedback codes as function of B for K = 1000, which shows 543

that if the number of slots is larger than K or if multiple 544

users can occupy the same slot, then the feedback rate can be 545

significantly reduced. Exact expressions for these bounds can 546

be found in [11]. It can be seen from the figure that with just 547

two users per slot, or with number of slots 15% larger than the 548

number of users, the minimum required feedback is already 549

less than one bit per user! 550

B. Feedback Scheduling for Massive MIMO Systems 551

The possibility of highly efficient feedback is the main 552

motive for this paper to consider the benefit of scheduling 553

for massive random access as compared to the conventional 554

contention based random access. Indeed, the aforementioned 555

results show that the cost of scheduling can in theory be as 556

low as at most 1.44 bits per active user for the B = K case. 557

The goal of scheduling for random access is to eventually 558

separate users and to avoid collision. Note that the above 559

discussion has thus far referred to the concept of “slots” in 560

a deliberately abstract manner. For example, the notion of slot 561

does not need to be limited to simple temporal or frequency 562

dimensions and can also include the spatial or code domain. 563

There are also situations in which multiple users can be 564

scheduled into the same time-frequency slot, and they can be 565

subsequently separated in the spatial domain using beamform- 566

ing or multiuser detection. This scenario corresponds to the 567

case of B < K . 568

Moreover, a key challenge of the massive MIMO system 569

is in channel estimation. Specifically, it is desirable to assign 570

orthogonal pilots to the active users in order to avoid pilot 571
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contamination in the channel estimation process. Note that the572

pre-assignment of orthogonal pilots to all potential users is573

not feasible, because there are too many potential users in the574

overall system and not enough orthogonal pilots.575

This paper proposes the use of efficient feedback codes576

for pilot assignment by considering a correspondence between577

slots and unique orthogonal pilots. For massive MIMO sys-578

tems in both the slow and fast-fading settings, we show that579

the use of a feedback strategy to assign unique orthogonal580

pilots to users for channel estimation can improve the system581

sum rate.582

C. Practical Implementations583

We now discuss the viability of practical implementation584

for the optimal collision-free feedback scheme. Fundamentally,585

the efficient feedback strategy amounts to constructing a list586

of hashing functions as the codebook, and for each given set587

of active users, searching for a hash function in the list that588

can map all the active users to distinct hashed values, then589

using the index of the hash function as the codeword.590

A practical implementation of such feedback code can591

be based on a procedure known as the compressed hash-592

displace (CHD) method for perfect hashing [32]. The encoding593

procedure is effectively a two-level random hashing strategy594

of first hashing users into bins, then starting from the bin595

with the most users, hashing users into slots. The random596

hash functions are drawn from an infinite sequence of hash597

functions. A greedy strategy is used to search for the hashing598

functions that result in no collision. The indices of the hashing599

functions, properly compressed, is the feedback message.600

In [32], it is shown that this compression results in a code601

with a linear scaling in K . The scaling coefficient depends602

on the choice of how many bins are used. Numerically it can603

be observed that having a larger number of bins makes the604

encoder faster, but at a cost of higher feedback rate. Indeed,605

when there is only one bin, the algorithm is exactly random606

hashing and requires an exponentially complex search over607

the sequence of hash functions but can achieve the log(e)K608

feedback rate. In practice, the choice of how many bins to609

use can be optimized to balance the trade-off between the610

complexity of encoding at the BS and the feedback rate.611

Note that the feedback considered here is distinct from the612

traditional concept of a grant [7] issued by the BS to the613

active user to acknowledge that its request for transmission has614

been received. The feedback scheduling codeword considered615

in this paper does not provide acknowledgement of detection616

to the active user and instead only serves to schedule the active617

users. If positive acknowledgement of detection is desired,618

the enumerative source coding scheme of [18] can be used,619

requiring log
(

N
K

)
bits of feedback. In many scenarios this is620

significantly more costly than the optimal feedback needed621

for avoiding collision. For a more detailed discussion of622

feedback for acknowledgement, see [33]. The lack of positive623

acknowledgement places fairly stringent requirement for user624

activity detection, because in the event of missed detection,625

the undetected active user would be unaware of the detection626

error and would transmit according to its decoded slot, leading627

Fig. 4. Example of CPA with K = 3, with τ = 2 orthogonal pilots, and a
frame with Δ = 5 coherence blocks.

to collision. For the falsely detected users, an allocated slot 628

would be unoccupied, thus wasted. Fortunately, compressed 629

sensing-based activity detection algorithms can operate at an 630

error rate of 10−3 or less, thus alleviating these concerns. 631

V. SCHEDULED RANDOM ACCESS IN FAST-FADING 632

SCENARIO 633

In this section, we present the proposed three-phase random 634

access scheme for the fast-fading channel model. An important 635

point of reference for our proposed scheme is CPA. CPA 636

is a variant of CSA for massive MIMO [5]. CPA operates 637

by allowing users to contend for resources and potentially 638

to collide with one another, but it then uses SIC to resolve 639

the collisions. In contrast, the proposed scheduled approach 640

to massive random access exploits activity detection and 641

feedback to enable scheduling and to prevent contention for 642

resources between the users in the first place. Before present- 643

ing the scheduled approach random access, we present a brief 644

summary of CPA to provide context for the discussion that 645

follows. 646

A. Coded Pilot Access 647

CPA [5] uses a simple repetition CSA scheme [13] to 648

add redundancy to user transmissions and to enable collision 649

resolution. In this scheme each active user in A transmits the 650

same payload multiple times across multiple coherence blocks. 651

In each coherence block d, whether a user transmits or not is 652

based on the outcome of an independent Bernoulli trial with 653

probability p (where the value of p can be optimized) such that 654

each user transmits an average of β = Δp times. Let the set 655

of transmitting users in block d be denoted as Ad. Inevitably, 656

there would be collisions where two or more users transmit in 657

the same coherence block, i.e., |Ad| > 1. In standard ALOHA, 658

this would mean the loss of the payload and the waste of a 659

resource block. In CSA, however, the redundant transmissions 660

may allow the collisions to be resolved. For example, if the 661

payload of one of the users involved in the collision can be 662

decoded in a different block where there is no collision, the 663

contribution from that user’s transmission can be subtracted 664

from the collision. To resolve as many collisions as possible, 665

a graph based decoding scheme like those used for the erasure 666

channel is used. 667

CPA implements this coding scheme in massive MIMO 668

by accounting for the need for channel estimation, and by 669

providing a method for interference cancellation between 670

coherence blocks. That is, even though user transmissions 671

occur in a different coherence block where the channels are 672
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different, by incorporating a pilot, a payload decoded from673

one coherence block can still be used to subtract that user’s674

contribution from the other blocks.675

As shown in Fig. 4, in the CPA scheme, the received signal676

Yd ∈ CM×D contains two portions within each coherence677

block: Y(p)
d ∈ CM×τ , which is the pilot signals for channel678

estimation, and Y(u)
d ∈ CM×(D−τ), which is the user payload.679

In the pilot transmission phase of the coherence block, each680

active user j ∈ Ad selects a pilot φtj
∈ C1×τ uniformly at681

random from the set of orthogonal pilots {φi}τ
i=1. The signal682

received by the BS in this pilot phase can be written as:683

Y(p)
d =

∑
j∈Ad

gjhd,jφtj
+ Z(p)

d , d = 1, . . . , Δ, (7)684

where Z(p)
d is an AWGN matrix. At this stage, if only a single685

user has selected a given orthogonal pilot φi in a coherence686

block, that user’s channel may be estimated from the received687

signal. If multiple users select the same φi in the same block,688

however, a collision is declared.689

Following the transmission of pilots, users transmit their690

payloads:691

Y(u)
d =

∑
j∈Ad

gjhd,jxj + Z(u)
d , d = 1, . . . , Δ. (8)692

If a user’s channel can be estimated in a given coherence block693

(i.e., it is not involved in a collision), the BS can then attempt694

to decode its payload via receive beamforming. Each user’s695

payload contains information about all the different blocks696

throughout the frame where the user has made transmissions697

as well as the identification information for that user. Even698

though the user’s instantaneous CSI would differ between699

transmissions in different blocks, [5] shows that by exploiting700

the properties of massive MIMO, specifically channel hard-701

ening and the temporal power stability of the instantaneous702

channel, once a payload has been decoded, the associated703

user’s contribution to the received signal in other blocks can be704

subtracted. Decoding then proceeds in the graph as in erasure705

decoding.706

Although CPA can outperform traditional SA based random707

access schemes, it still may not be able to fully utilize708

all the coherence blocks. For example, the way the users709

choose slots for transmission in an i.i.d. fashion as in [5]710

induces a binomial degree distribution on the user nodes in711

the decoding graph. This is suboptimal even with an optimized712

Bernoulli trial probability p. It is well known that for erasure713

decoding, the soliton distribution [15] is an asymptotically714

optimal degree distribution, achieving perfect utilization as the715

number of blocks and number of users go to infinity. But716

as the number of coherence blocks in a frame is typically717

small in practical systems, this asymptotic performance cannot718

typically be achieved. Finally, as in all SA schemes, the fact719

that each user transmits in multiple coherence blocks results720

in unnecessary additional energy consumption.721

B. Scheduled Random Access722

Scheduled random access offers an alternative to the723

contention-based CPA. Rather than using redundancy to724

Fig. 5. Three-phase coordinated random access scheme for the fast-fading
scenario. Activity detection occurs in the first phase where the K active user
transmit non-orthogonal pilot sequences. The BS detects the active users, then
transmits a feedback message to schedule them into the remaining coherence
blocks along with orthogonal pilots within each block.

resolve contention, the proposed scheduled approach instead 725

allocates an initial block for activity detection, followed by 726

a short feedback message from the BS to the users for 727

scheduling. Then, all remaining blocks are perfectly utilized, 728

with no slots wasted for unresolved collisions. Fig. 5 depicts 729

this three-phase procedure for the fast-fading channel model. 730

This scheme offers multiple advantages over CPA. First, 731

in the scheduled approach, all slots are perfectly utilized, 732

with the only overhead being the initial activity detection 733

phase and the feedback, while in CPA, perfect utilization 734

cannot be achieved, and the overhead is more significant. 735

Additionally, this scheduled approach only requires the users 736

to transmit twice: once to transmit non-orthogonal pilots for 737

activity detection and once for data transmission. In contrast, 738

to maximize throughput with CPA, the users often must trans- 739

mit more than twice, resulting in excess power consumption, 740

which is a critical issue for IoT applications. 741

Below we describe the proposed scheme in more detail. 742

1) Activity Detection: The first coherence block is dedicated 743

to activity detection. In this block, all active users simultane- 744

ously transmit pre-assigned non-orthogonal pilot sequences. 745

We use the covariance approach for activity detection. This 746

is because as mentioned in Section III, in the fast-fading 747

model, CSI changes between the activity detection and data 748

transmission phases, thus the CSI estimate provided by the 749

AMP algorithm is not useful in subsequent blocks. Further, 750

due to the complexity scaling of AMP with respect to the 751

number of antennas M , the covariance approach offers a lower 752

complexity and generally superior detection performance. 753

It may be the case, depending on system parameters, 754

that one coherence block is insufficient for accurate activity 755

detection. For example, if the SNR is too low, a single coher- 756

ence block may not allow the active users to transmit pilot 757

sequences long enough to enable accurate activity detection. 758

In such settings, more than one coherence block in the frame 759

can be dedicated to activity detection, at the cost of decreasing 760

the number of remaining slots for payload transmission. In this 761

paper, the system parameters are chosen such that a single 762
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coherence block is sufficient for activity detection, as shown763

in the next section.764

2) Scheduled Transmission: Collision occurs when two or765

more users select the same coherence block for transmission766

and the same pilot for channel estimation. Thus, in scheduled767

transmission the BS needs to use feedback to allocate the768

transmission blocks as well as the pilots for all the active769

users. To this end, consider a pool of τ orthogonal pilots770

φ1, φ2, . . . , φτ ∈ Cτ for channel estimation in each coherence771

block. We use feedback from the BS to assign each active772

user a unique block-pilot pair (d, t) ∈ [2, Δ] × [τ ]. Thus,773

the number of effective slots for the purpose of scheduling774

is B = τ(Δ − 1). To avoid collision, we must have B ≥ K ,775

so τ should be chosen accordingly. Since each user requires776

a unique pair, the minimum amount of feedback required777

is approximately log(e)K bits. Note that up to τ users can778

transmit in the same coherence block, as long as they are779

assigned distinct orthogonal pilots, so that their channels780

can be properly estimated. This allows their payloads to be781

resolved spatially in the massive MIMO system.782

Let (di, ti), i ∈ A be the block-pilot pair decoded by783

the active users based on the feedback from the BS. Let784

Ad � {i | di = d} be the set of active users that have been785

scheduled to transmit in the coherence block d. Just as in CPA,786

each user’s data transmission within a block is split into two787

parts. Let Y(p)
d ∈ CM×τ denote the signal received by the BS,788

we have789

Y(p)
d =

∑
j∈Ad

gjhd,jφtj
+ Z(p)

d , d = 2, . . . , Δ. (9)790

Immediately after transmitting a pilot, each user in Ad trans-791

mits their payloads simultaneously. Let Y(u)
d ∈ CM×(D−τ)

792

denote the signal received by the BS in this stage, we have793

Y(u)
d =

∑
j∈Ad

gjhd,jxj + Z(u)
d , d = 2, . . . , Δ. (10)794

If activity detection is perfect, for each user i ∈ A the BS795

can obtain a channel estimate ĥdi,i based on Y(p)
di

(e.g., via796

a least-squares estimator [5]). Finally, the estimated channel797

is used to separate the transmitted signals in Y(u)
d via receive798

beamforming so that all the payloads can be decoded.799

C. Performance Evaluation800

In this section we numerically compare the performance801

of the proposed scheduled random access scheme with CPA.802

We follow [5] by assuming that the users apply inverse803

power control so gi = 1, and further assume that the804

SNR is 10dB. In addition, the base station is equipped with805

M = 400 antennas and employs maximum ratio combining.806

Furthermore, there are N = 10000 potential users. We assume807

a channel bandwidth and coherence time of 1MHz and 0.3ms808

respectively, meaning D = 300 symbols can be transmitted809

in each coherence block. We assume a latency constraint810

such that Δ = 15. We fix the number of orthogonal pilots811

in the frame to be τ = 64, where each pilot consists of812

τ symbols. Furthermore, to simplify simulation we assume813

perfect interference cancellation in CPA, so the performance814

plot serves as an upper bound for CPA.815

Fig. 6. The number of successful transmissions per slot for scheduled random
access and CPA at Δ = 15, N = 10000, M = 400, L = 300 and τ =
64 for a range of values K .

For scheduled random access, simulation results indicate 816

that with activity detection pilots of length L = 300 and 817

K = 1000, the user activity detector based on the covariance 818

approach can achieve a probability of false alarm pFA = 10−3
819

and a probability of missed detection pMD = 10−4. Thus, 820

a single coherence block provides sufficiently accurate activity 821

detection in this setting. 822

Fig. 6 compares the performance of CPA and scheduled 823

random access under these settings. We use the number of 824

successful transmissions per slot as the performance metric. 825

For scheduled random access, this is the number of active users 826

that are detected, scheduled, and transmit without collision, 827

divided by Δ. For CPA, this is the number of “singleton” users 828

that are successfully decoded, divided by Δ. Note that the 829

performance of CPA depends crucially on the average number 830

of transmissions per user, which is a parameter denoted as β. 831

For scheduled random access, we assume that a user that 832

transmits a pilot not used by any other user in the same slot 833

would always be able to successfully transmit their payload. 834

This effectively assumes perfect channel coding. In CPA, 835

we make a similar assumption, and further assume that SIC 836

can be done perfectly. Note that these assumptions favor 837

CPA, because a payload suffering a decoding failure due 838

to insufficient channel coding only impacts that particular 839

payload in the scheduled random access, while in CPA it can 840

prevent SIC and impact the ability to decode other payloads 841

as well. 842

The interpretations of the simulation results presented in 843

Fig. 6 are as follows: 844

1) Scheduled Random Access: Since we operate in the 845

regime where activity detection is accurate, the impact of 846

detection error is negligible. Thus, so long as the number of 847

users is less than the maximum number of available slots, i.e., 848

K ≤ τ(Δ−1), all users can be accommodated, and the number 849

of successful transmissions grows linearly in K in this regime 850

as can be seen in Fig. 6. If K > τ(Δ − 1) there are more 851

users than can be scheduled. If the feedback message does not 852

provide positive acknowledgement (e.g., as in a CHD-based 853
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feedback coding scheme [11] as discussed in Section IV-C),854

then the BS cannot prevent active users from transmitting.855

In this case, despite that the BS schedules only a subset of856

detected users of size τ(Δ− 1), due to the collision from the857

active users not explicitly scheduled, the number of successful858

transmissions would decrease in the regime K > τ(Δ − 1)859

as plotted in Fig. 6. However, if positive acknowledgment is860

provided (e.g., as in [33]) at the cost of additional feedback861

bits, then the BS can use feedback to ensure that only the max-862

imum number of supported users would transmit, resulting in863

no drop-off. Note that the scheduled random access performs864

best when K = τ(Δ−1), however, as in general the number of865

active users may vary from frame to frame based on the arrival866

process, it is not possible to always operate at this setting.867

The amount of feedback required to achieve this perfor-868

mance is given in [11, Section V] (e.g., Fig. 3 for B = 1000).869

This scheme requires B to be known prior to the start of the870

frame, which is also a requirement in CPA. For the setting of871

Fig. 6, the amount of feedback is at most 1.3 kbits, which is872

a small fraction (typically < 1%) of the overall throughput.873

2) CPA: Fig. 6 presents several plots depicting the per-874

formance of CPA. The dashed curve presents the number875

of successful transmissions per slot after optimizing over β,876

the average number of transmissions per user. The dashed877

curve increases with K until K ≈ 0.9τΔ, at which point878

performance begins to sharply drop off, showing that the879

approach requires additional slots to be effective, and does not880

perform well if too many users attempt access. This dashed881

curve serves as an upper bound on the performance of CPA882

and is generally unattainable without an accurate estimation883

of K , as the optimal β∗ in general depends on K .884

We also plot the performance of CPA at different power885

levels. When β = 2, each user transmits twice, and the886

average uplink power requirement matches that of scheduled887

random access. But for most values of K , β = 2 is less888

than the optimal value β∗, and the performance degradation is889

significant. We also present results for β = 3, which is closer890

to optimal. For K � 880, β∗ > 3 and for K � 880, β∗ < 3.891

3) Comparison: Fig. 6 shows that when there are many892

more available slots than active users, CPA with β∗ and893

scheduled random access perform similarly, but optimal CPA894

requires on average up to 50% more power in the uplink, while895

scheduled random access requires feedback from the BS to896

the users. Furthermore, decreasing β in this regime leads to897

significant degradation in the performance of CPA.898

As the number of users approaches the maximum number of899

available slots, however, the performance gain of the scheduled900

approach over CPA becomes apparent. The performance of901

CPA begins to diminish rapidly around K ≈ 0.9τΔ, while902

the performance of scheduled random access is significantly903

more stable, peaking at K = τ(Δ − 1).904

These results show that when operating in a regime where905

K is close to the maximum, scheduled random access has906

a considerable advantage. For CPA to maximize the number907

of successful transmissions per slot, it requires an additional908

overhead of some fraction of slot-pilot pairs. In general,909

we may wish to operate at (K, τΔ) for which the number910

of successful transmissions per slot is maximized. However,911

Fig. 7. Slow-fading scenario with joint user activity detection and channel
estimation using non-orthogonal pilots.

in practice, user activities vary with time depending on the 912

arrival process (e.g., as modeled by a Poisson or Beta arrival 913

model) with inherent randomness in K . Thus, a random access 914

protocol must perform well not only for one choice of K , but 915

also over a range of potential values of K . In other words, 916

the stability of the random access scheme around its optimal 917

operating point is important, so that the system can be loaded 918

more aggressively. This is a consideration that would favor the 919

proposed scheduled approach as compared to CPA. 920

Note that the above analysis does not account for the extra 921

overhead in the payload of CPA, which requires each user to 922

transmit identification information, as well as pointers needed 923

for interference cancellation. Although the cost of pointers 924

can be considered negligible, the cost of identification is 925

log(N) ≈ 13 bits per user, which must be included in the 926

payload in CPA, but not in the proposed scheduled approach. 927

In conclusion, a small amount of feedback can significantly 928

improve the overall number of successful transmissions per 929

slot in scheduled random access, while using less power per 930

user as compared to contention-based schemes for a massive 931

MIMO system in the fast-fading scenario. 932

VI. SCHEDULED RANDOM ACCESS IN SLOW-FADING 933

SCENARIO 934

In this section we investigate the case of the slow-fading 935

channel model, where all communications occur over a single 936

coherence block. This situation occurs when the CSI changes 937

slowly relative to the time scale of user activities. For example, 938

the system may have a latency requirement dictating that an 939

active user must be served in a period of time shorter than the 940

coherence block. As compared to the fast-fading case, the main 941

difference in slow fading is that each user’s instantaneous CSI 942

is the same in both the activity detection and data transmission 943

phases. This means that any pilot symbols initially used for 944

activity detection can subsequently be re-used for channel 945

estimation. In this section, we discuss two protocols. One uses 946

non-orthogonal pilots to estimate the user channels, while the 947

second scheme uses feedback to assign orthogonal pilots to 948

different users for channel estimation. 949

A. Joint Activity Detection and Channel Estimation Using 950

Non-Orthogonal Pilots 951

The paradigm of joint activity detection and channel estima- 952

tion is investigated in [8], [9]. In that work, a frame of length T 953

symbols is separated into two phases, with L symbols for joint 954

activity detection and channel estimation, and the remaining 955
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T − L symbols for data transmission. The activity detection956

phase remains identical as in Section III, but additionally,957

because the problem is formulated as an MMV compressed958

sensing problem (4), the estimated value of the CSI matrix959

X, can be useful for receiver design in the subsequent data960

transmission phase. This scheme does not require feedback,961

because in the data transmission phase all users can transmit962

simultaneously and the BS can separate their signals using963

receive beamforming based on the previously estimated CSI.964

One of the problems with this approach is that when too965

many users are transmitting simultaneously, interference can966

lead to a significant degradation in the overall rate. Specif-967

ically, when the system is overloaded, meaning K/M > 1,968

it can be advantageous to temporally schedule users, i.e., the969

transmission phase is divided into B non-overlapping slots of970

T−L
B symbols, such that in each slot only at most 
K/B�971

users are scheduled for transmission. The spectral efficiency972

for each user averaged over the frame can be written as:973

RNO
k =

T − L

TB
log(1 + γNO

k ), (11)974

where γNO
k is the signal-to-interference-and-noise-ratio975

(SINR), which includes the interference terms due to the users976

who transmit in the same slot as well as the effect of the977

channel estimation error and the AWGN. The asymptotic value978

of γNO
k can be computed via the state evolution of AMP.979

It can be shown that when MMSE receive beamforming is980

used, scheduling can improve the achievable sum rate of an981

overloaded system [9]. This means that we can optimize the982

system over B to determine the optimal B∗ that maximizes983

the user sum rate.984

Although this scheme is already investigated in [9], the985

minimum cost of scheduling and feedback has not been986

previously quantified. In this work, we note that this is a987

case of scheduling multiple users per slot as investigated988

in [11], so the information-theoretic bounds from [11] can989

be used to determine the amount of feedback required for990

scheduling. Since the BS is equipped with many antennas,991

in most cases we have B∗ � K . In this regime, Fig 3992

shows that significantly less than K log(e) bits of feedback993

are needed. Note that when B = 1, this approach reduces to994

the previous no feedback case.995

B. Scheduling of Orthogonal Pilots for Channel Estimation996

Despite the promise of using non-orthogonal pilots for both997

activity detection and channel estimation, one of the key998

conclusions of [9] is that the bottleneck in performing joint999

activity detection and channel estimation lies in the use of1000

non-orthogonal pilots for channel estimation, which leads to a1001

significantly larger channel estimation error as compared to if1002

orthogonal pilots are used, resulting in lower achievable rates.1003

We propose to resolve this issue via a natural extension to1004

the previously discussed scheduling strategy. Since effective1005

activity detection for K users requires shorter pilots than1006

channel estimation for those same K users, we propose to per-1007

form activity detection using non-orthogonal pilots of length1008

L1 via the covariance approach, then subsequently to provide a1009

feedback message as in Section IV to assign orthogonal pilots1010

Fig. 8. Slow-fading scenario with channel estimation based on orthogonal
pilots.

of length L2 to each of the active users for a second channel 1011

estimation phase. Here the covariance approach is suitable for 1012

the first phase, because the BS does not require estimates of 1013

the channels at the intermediate stage after the non-orthogonal 1014

pilot transmissions. After the orthogonal pilots are transmitted 1015

by the active users, the BS can use both the non-orthogonal 1016

pilots in the first phase and the orthogonal pilots in the second 1017

phase to perform channel estimation using a linear MMSE 1018

channel estimator [34]. Explicitly, we can write the estimate 1019

of the channels between the K active users and the M BS 1020

antennas HT
MMSE ∈ CK×M as 1021

ĤT
MMSE = Y

(
PHRHP + σ2

nI
)−1

PHRH, (12) 1022

where Y ∈ CM×L is the received signal during the channel 1023

estimation phase, RH = E[HHH ] is the channel correlation 1024

matrix, and P ∈ CK×L is a matrix that has rows equal 1025

to the pilots of the K active users. These pilots can be 1026

either non-orthogonal, or a concatenation of orthogonal and 1027

non-orthogonal pilots transmitted by the active users. 1028

The use of orthogonal pilots eliminates pilot contamination 1029

between the users, resulting in an overall sum rate gain due to 1030

the improved channel estimates. In addition, the same feedback 1031

message used to assign pilots can be re-used to schedule users 1032

across B slots, and the optimal B∗ can be chosen to maximize 1033

the user sum rate. The overall scheme is shown in Fig 8. 1034

The per-user spectral efficiency averaged over the frame for 1035

the proposed scheme can be characterized as: 1036

RO
k =

T − L1 − L2

TB
log(1 + γO

k ) (13) 1037

where γO
k is the SINR which includes the effect of the channel 1038

estimation error when both non-orthogonal and orthogonal 1039

pilots are used. As with the previous case, MMSE receive 1040

beamforming is used for data transmission. To compute the 1041

SINR, we follow the method in [35, Appendix A] but with 1042

the MMSE beamforming. The method accounts for the choice 1043

of the pilots, the resultant channel estimation error, as well as 1044

the distribution of the channels, in computing the SINR. 1045

The proposed scheme assigns an orthogonal pilot to each 1046

user, so it requires more feedback than the case of using 1047

only non-orthogonal pilots. Since the pilot indices are unique, 1048

at least K log(e) bits of feedback would be required. No addi- 1049

tional feedback is needed to schedule users into the B slots 1050

as the pilot index can be re-used to determine the slot. For 1051

example, a user who is assigned pilot index k can be assigned 1052
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to transmit in slot b = k mod B. All the users are then1053

distributed uniformly over the B slots.1054

C. Performance Evaluation1055

To evaluate the benefit of assigning orthogonal pilots for1056

channel estimation in the slow-fading scenario, we consider a1057

simulation setup like that in [9]. Let rn denote the distance1058

between user n and the BS, ∀n. It is assumed that each1059

rn is randomly distributed in the range [0.8, 1] km. The1060

path-loss model of the wireless channel for user n is given1061

as −128.1 − 36.7 log10 rn in dB ∀n. The bandwidth and1062

coherence time of the channel are 1MHz and 2ms respectively,1063

thus there are a total of T = 2000 symbols per frame. The1064

transmit power is constant across the coherence block and is1065

set to be 13dBm. The power spectral density of the AWGN1066

at the BS is −169dBm/Hz.1067

First, we investigate the impact of the number of temporal1068

slots B used for scheduling data transmission for both the1069

case that non-orthogonal pilots are used and the case that1070

orthogonal pilots are used for channel estimation. The optimal1071

B is a function of the frame length T , the pilot length L,1072

and the other system parameters. As an example, consider a1073

scenario with M = 64 antennas at the BS and K = 150 of1074

the N = 2000 users are active. (This smaller value of M is1075

chosen so that we operate in a regime where the complexity1076

of the AMP algorithm remains tractable.) In the case that1077

orthogonal pilots are assigned for channel estimation, we first1078

use non-orthogonal pilots of length L1 = 200 for activity1079

detection, then we use feedback to assign orthogonal pilots of1080

length L2 = L−L1 to the active users for channel estimation.1081

With L1 = 200 and under these conditions, simulation results1082

show that if the covariance approach is used for activity1083

detection, the probability of false alarm is pFA < 10−5 and the1084

probability of missed detection is pMD = 10−4. This shows1085

that L1 = 200 is adequate.1086

Under the above parameters, we first show an example of1087

optimizing B assuming a value of L = 600; subsequently,1088

we present simulations that also optimize over L. Fig. 9 shows1089

the user sum rate versus the number of scheduled slots B1090

assuming that the MMSE receive beamforming is used at the1091

BS for the case of L = 600. In this overloaded system both the1092

cases of using the orthogonal and the non-orthogonal pilots for1093

channel estimation benefit from having B > 1 scheduled slots1094

for data transmission. It can be observed that the optimal B1095

occurs when the system is close to fully loaded and K
MB < 1.1096

Fig. 10 compares the sum rate of the three approaches1097

for scheduled random access discussed in this section plotted1098

against the total pilot length L, where for each value of L,1099

we numerically find the optimal B (when applicable) and1100

use this B∗ when evaluating the sum rate. These numerical1101

results are summarized along with the required feedback in1102

Table II. Note that increasing the length of the pilots improves1103

the channel estimation error and increases the achievable1104

rate for the remaining symbols but decreases the number of1105

slots available for data transmission, thus creating a trade-off.1106

We observe that for joint activity and channel estimation using1107

non-orthogonal pilots via AMP without feedback (B = 1),1108

Fig. 9. Sum rate vs. number of transmission slots for scheduled random
access in slow-fading scenario with K = 150, M = 64, N = 2000, T =
2000 and L = 600. “Non-orthogonal pilots” refers to using AMP for joint
activity detection and channel estimation. “Orthogonal pilots” refers to using
the covariance approach for activity detection with L1 = 200, followed by
assigning orthogonal pilots of L2 = 400 for channel estimation.

Fig. 10. Sum rate vs. pilot length for scheduled random access in slow-fading
scenario with K = 150, M = 64, N = 2000, T = 2000. “Non-
orthogonal pilots” refers to using AMP for joint activity detection and channel
estimation. “Orthogonal pilots” refers to using the covariance approach for
activity detection with L1 = 200, following by assigning orthogonal pilots
of length L−L1 for channel estimation. Where indicated, users are scheduled
in the optimal number of B∗ transmission slots.

there is little gain from using longer pilots. This is because 1109

the bottleneck is the significant interference due to having all 1110

users transmit simultaneously in an overloaded system. The 1111

sum rate can be significantly improved by scheduling users 1112

over an optimized number of B∗ slots. Furthermore, when 1113

orthogonal pilots are assigned to the users, we see a higher 1114

sum rate due to the improved channel estimation from the use 1115

of orthogonal pilots. 1116

These benefits come at only a small cost of feedback as 1117

summarized in Table II. For the case of assigning orthogonal 1118

pilots and the scheduling slots to the K users, the amount of 1119

feedback required is K log(e), or roughly 216 bits per frame, 1120

and this remains the same regardless of B. This works out 1121

to be 108 kbps. If non-orthogonal pilots are used for channel 1122



KANG AND YU: SCHEDULING VERSUS CONTENTION FOR MASSIVE RANDOM ACCESS IN MASSIVE MIMO SYSTEMS 5823

TABLE II

SUM RATE AND FEEDBACK COST FOR SCHEDULED RANDOM ACCESS
SCHEMES IN SLOW FADING

estimation, by referring to the fundamental bounds in [11], the1123

minimum feedback needed to assign users to B∗ = 4 slots is1124

only 18 bits per frame of feedback, or 9 kbps.1125

VII. CONCLUSION1126

This paper investigates the benefit of scheduling for massive1127

random access in massive MIMO systems—an approach made1128

possible by recent advancements in efficient activity detection1129

and feedback. We propose a three-phase scheduled random1130

access procedure that begins with activity detection using non-1131

orthogonal pilots, followed by BS feedback for scheduling,1132

and finally, data transmission for the scheduled users. User1133

activities are detected from the non-orthogonal pilots using1134

either the AMP algorithm, which also provides a channel1135

estimate, or via the covariance approach. Scheduling is imple-1136

mented via a single common feedback message from the BS to1137

the active users. Specifically, we quantify the cost of feedback1138

needed for scheduling, and point out that the feedback message1139

can be used to schedule users to distinct transmission slots1140

to avoid collision, as well as to assign orthogonal pilots to1141

different users for channel estimation. Leveraging the results1142

in [11], we show that the minimum feedback rate to ensure1143

collision-free scheduling can be very low.1144

We investigate the performance of the proposed sched-1145

uled approach to massive random access in comparison to1146

contention-based or non-scheduled approaches in both the1147

fast-fading setting where activity detection and data trans-1148

mission occur in different coherence blocks, and the setting1149

where fading is slow relative to the latency requirements of1150

the system, so activity detection and data transmissions occur1151

within a single coherence block.1152

In the fast-fading setting, the proposed scheduled random1153

access approach is compared to the uncoordinated coded-1154

ALOHA-based CPA approach. We show that the use of1155

activity detection and feedback to enable scheduling can lead1156

to notable improvements in system performance, such as the1157

increased average number of transmissions per slot and the1158

decreased overall power consumption, at a cost of only a1159

small amount of feedback. In the slow-fading setting, the1160

proposed scheduled approach is compared with the approach1161

of joint activity detection and channel estimation via AMP [9].1162

We show that in an overloaded system, scheduling users to1163

different transmission slots requires a very small amount of 1164

feedback. In addition, assigning orthogonal pilots to the users 1165

for channel estimation can lead to further improvement in sum 1166

rate at a moderate cost of feedback. 1167

These results establish that the use of relatively small 1168

amounts of feedback in random access protocols can lead to 1169

significant gains in system performance and efficiency, indi- 1170

cating that feedback should be considered in the development 1171

of future random access protocols. 1172
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