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Abstract— We consider the channel estimation and envi-
ronment mapping problems in multiple-input multiple-output
orthogonal frequency division multiplexing systems empowered
by intelligent reconfigurable surfaces (IRSs). In order to acquire
more in-depth environmental information, as well as, to flexibly
take into account existing real-life infrastructure, we propose a
novel three-dimensional conformal IRS architecture consisting
of reflective unit cells distributed on curved surfaces. We model
the training signal as a third-order canonical polyadic ten-
sor and construct a tensor factorization problem. Given spe-
cific conditions on the allocated temporal-frequency training
resources, we develop four channel estimation approaches, i.e.,
least squares, direct, wideband direct and wideband subspace
methods, by leveraging tensor techniques and nonlinear system
solvers. By fully exploiting the characteristics of conformal
IRSs, we propose two decoupling modes to precisely recover
the multipath parameters without ambiguities, which cannot be
supported by the traditional IRS planar topologies. We imple-
ment scatterer mapping and user positioning tasks based on
precise parameter estimates. Simulation results indicate that the
proposed conformal IRS structure and estimation schemes can
recover the channel state information with remarkable accuracy,
thereby offering a centimeter-level resolution of environment
mapping.

Index Terms— Channel estimation, cascaded parameter decou-
pling, conformal IRSs, environment mapping.

I. INTRODUCTION

M ILLIMETER wave (30–300 GHz) technologies have
been widely investigated as a promising candidate

for tackling the seamless data traffic deluge and frequency
resource shortage in the fifth generation (5G) era [1].
As one of the potential development directions of the future
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sixth generation (6G), exploiting the high-frequency spectrum,
e.g., terahertz (0.1–10 THz), has also attracted intensive atten-
tion [2]. Multiple-input multiple-output (MIMO) arrays can be
integrated into high-frequency wireless systems with a minia-
turized implementation, providing remarkable beamforming
gains [3]. For the sake of addressing the limited coverage
and line-of-sight (LoS) blocking problems, intelligent recon-
figurable surfaces (IRSs) have been recently researched to help
establishing additional non-line-of-sight (NLoS) links [4].

IRSs can improve the quality and coverage of radio prop-
agation by providing supplementary channels, contributing
to the full coverage and broadband connectivity of future
wireless networks [5]. An IRS architecture, typically a pro-
grammable metasurface, is composed of a massive number
of unit cells that can independently interact with the incident
signals [6], [7]. The reflection amplitudes and phase shifts
of the IRS reflectors can be dynamically reconfigured by a
digital controller to artificially customize the electromagnetic
responses of the reflected waves [8]. In this way, IRSs can
help constructing a smart propagation environment, providing
additional degrees of freedom for transceiver design and
network optimization [9]. Recently, IRSs have been integrated
into numerous applications to improve the system capacity
or eliminate inter-cluster interference, e.g., MIMO detection,
non-orthogonal multiple access, physical layer security and
radio localization and mapping [10]–[13]. Note that these
services require exact knowledge of the channel parameters to
fully reap the potential of IRSs, thereby entailing fundamen-
tal challenges to the channel estimation problem with fully
passive IRS modules.

We now delineate the following relevant works: A comp-
ressed sensing (CS) strategy with predefined on-grid
codebooks was proposed in [14]. An atomic norm denois-
ing scheme with infinite-resolution codebooks was proposed
in [15]. A tensor-based strategy that decomposes the cascaded
channel by iterative updates was presented in [16]. A binary-
reflection controlled least squares (LS) protocol supported
by switchable unit cells was presented in [17]. A three-
phase training framework with linear minimum mean square
error (LMMSE) estimators was developed in [18]. A joint
matrix factorization and completion scheme that adopts the
approximate message passing (AMP) and Riemannian gradient
method was developed in [19]. A matrix-calibration-based
factorization that exploits the long-term channel information
with the Bayesian inference framework was proposed in [20].
Most of these works estimate the separated channels from
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the base station (BS) or user equipment (UE) to the IRS
plane, which, however, induces inevitable ambiguities due to
the passive nature of reflectors. These estimation uncertainties
hinder the exact recovery of multipath parameters, limiting
the integration of IRSs into environment-dependent applica-
tions [10]–[13]. To tackle this problem, a hybrid IRS layout,
composed of both passive and active unit cells, was designed
in [21], [22], where a tensor completion algorithm and a deep
learning network were proposed respectively. Furthermore,
by applying additional pilot sounding procedure or anchor
nodes equipped with sensing antennas, some works esti-
mated the channel coefficients in a large timescale [23], [24].
Although these works eliminate the estimation uncertainties,
they entail extra hardware complexity and training overhead,
thereby raising challenges to practical IRS design and training
resource allocation.

In this paper, we consider the channel estimation prob-
lem of IRS-empowered MIMO orthogonal frequency division
multiplexing (OFDM) systems. We propose a novel three-
dimensional (3-D) conformal IRS architecture composed of
passive unit cells with distinct coordinates and orientations,
which can be regarded as a generalized concept of the
twin-IRS structure consisting of two IRS planes proposed in
our prior work [25]. This topological design can not only
better fit the curved surfaces of communication infrastruc-
ture, but also, more significantly, perceive the environmental
information of the 3-D real world. Specifically, the conformal
IRSs enable the processor to accurately retrieve the cascaded
channel coefficients and parameters along three orthogonal
spatial directions. By leveraging nonlinear system solvers,
we can exactly recover the individual multipath parameters,
e.g., angles of arrival (AoAs), angle of departure (AoDs)
and time delays. Unlike some existing works that rely on
strong assumptions, e.g., the existence of LoS paths with
parameters determined by a priori device configurations [26],
[27], the proposed conformal IRSs are able to decouple the
cascaded parameters of realistic channels, thereby supporting a
centimeter-level resolution of environment mapping. The main
contributions of this paper are summarized as follows:

• We propose a 3-D conformal IRS structure configured
on a curved surface, modeling its reflector array response
as a combination of phase shift and radiated power fac-
tors. The characteristics of conformal IRSs, e.g., shadow
effect and coverage region, are analyzed. Moreover,
we model the training signal as a third-order canonical
polyadic (CP) tensor, and transform the channel estima-
tion problem into a tensor factorization task [28], [29].
By applying a beamspace beamforming strategy at
the BS/UE antennas, we obtain the corresponding
angular parameters through the 2-D (unitary) ESPRIT
algorithm.

• Provided that there are sufficient training frames,
we apply a least squares (LS) method to decompose
the BS-IRS-UE channel, retrieving the cascaded spatial
parameters along three orthogonal directions. By lever-
aging the characteristics of power radiation pattern and
phase shifts among multipath signals, we develop two
decoupling schemes, namely “All” and “Pair” modes,

to factorize the cascaded parameters. By applying the
nonlinear solver, i.e., Levenberg-Marquardt algorithm
(LMA), we efficiently complete the recovery of angular
parameters without estimation ambiguities or additional
hardware complexity.

• Whenever there are insufficient training frames, we fully
exploit in-depth information provided by conformal IRS
topologies to develop channel estimation schemes. In the
narrowband training scenario, we construct optimization
objectives and constraints based on the power radia-
tion pattern. By applying intelligent algorithms, e.g.,
particle swarm optimization (PSO), we directly recover
the channel parameters from the compressed cascaded
IRS response vectors. In the wideband training sce-
nario, by leveraging the frequency-sensitive characteris-
tics of practical reflectors [30], we propose two different
approaches based on the direct optimization and kernel
subspace derivation, respectively.

• By determining the transformation rules of local-global
systems, we implement the mapping of actual channel
path directions from the estimated angular parameters.
By leveraging the quasi-optical propagation features of
mmWave frequencies, we exactly decouple the cascaded
temporal parameters to realize a precise 3-D localization
of the UE and scatterers with a centimeter-level res-
olution. Moreover, by modeling the rotation procedure
of devices, we uniquely recover the orientation of UE
antennas with a 0.1◦-level resolution.

Simulation results indicate that the proposed channel esti-
mation schemes can achieve considerable performance of para-
meter recovery even with limited training measurements. More
importantly, the proposed 3-D conformal IRS structure can
decouple the cascaded parameters without estimation uncer-
tainties, supporting a high-resolution environment mapping.

The rest of the paper is organized as follows: Section II
introduces the IRS-empowered MIMO-OFDM system and the
proposed 3-D conformal IRS model. Section III presents the
channel estimation schemes with sufficient temporal measure-
ments. Section IV presents the channel estimation schemes
with limited training frames. Section V discusses the applica-
tion of environment mapping based on the estimated channel
information. Section VI presents the numerical results of chan-
nel estimation and parameter recovery schemes, as well as, the
performance of environment mapping. Section VII draws the
most important conclusions.

Notations: a, A, A and A denote vectors, matrices, tensors
and element sets, respectively; (·)T , (·)∗, (·)H and (·)† denote
the transpose, conjugate, Hermitian transpose and pseudo-
inverse, respectively; ⊗, �, � and ◦ denote the Kronecker,
Khatri-Rao, Hadamard and tensor outer products, respectively;
abs(·), arg(·), | · | and �(·) denote the element-wise absolute
value, measured phase, modulus and true phase, respectively;
• and × denote the vectorial dot and cross products, respec-
tively; � · �2, � · �F denote the 2-norm and Frobenius-norm,
respectively; Diag(·) denotes a diagonal matrix formed by
the argument vector; ker(·) and dim(·) denote the kernel
and dimensionality, respectively; 0m×n, In and eN,n denote
all-zeros matrices, identity matrices and basis unit vectors,
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Fig. 1. An IRS-empowered MIMO-OFDM system, where the BS communi-
cates with the UE via the IRS, while the direct UE-to-BS link is assumed to
be blocked. The IRS reflection coefficients are configured by the BS through
the controller.

respectively; C2
n � n(n − 1)/2, I(n) � {1, . . . , n}; U(a, b)

and CN (μ, σ2) denote the uniform and complex normal distri-
butions, respectively; Matr(A; [k1, . . . , kP ], [kP+1, . . . , kN ])
denotes a matricization that unfolds A ∈ CI1×···×IN

into A ∈ C

�P
p=1 Ikp×�N

q=P+1 Ikq ; A×nU denotes the mode-n
tensor-matrix product [31].

II. SYSTEM MODEL

We consider an IRS-empowered MIMO-OFDM system as
illustrated in Fig. 1, where one BS equipped with NB antennas
and MB radio frequency chains (RFCs) communicates with
one UE equipped with NU antennas and MU RFCs. The sys-
tem occupies K subcarriers with a central carrier frequency fc

and a bandwidth fs. The direct UE-to-BS link is assumed to be
obstructed as in the vast body of related literature [14]–[16].
In practice, the BS-UE channel can be efficiently removed
by considering two signals with different IRS coefficients and
mutually subtracting them. The proposed channel estimation
schemes are still applicable.

Unlike most studies that consider one-dimensional (1-D) or
two-dimensional (2-D) IRS structures [14]–[27], we propose a
3-D conformal IRS architecture with NI reflectors distributed
on a curved surface. Two examples of conformal topologies,
i.e., cylindrical array (CyA) and spherical array (SA), are
shown in Fig. 2(a), (b), respectively. The conformal IRSs can
better fit the shape of the communication devices and envi-
ronmental infrastructure (buildings, vehicles, etc.), supporting
a more flexible deployment of IRSs. More significantly, this
design is able to comprehensively perceive the real-world
environment information thanks to its 3-D structure, thereby
facilitating in-depth environment mapping that cannot be sup-
ported by traditional IRSs.

We focus on an uplink training transmission for channel
estimation with in total Ptr training frames, where each frame
includes Qtr time slots. During the qth time slot of each frame,
the UE transmits pilot symbols xk,q ∈ C

MU precoded by
Fk,q ∈ CNU×MU . The BS combines the received signal by
Wk ∈ CNB×Mtr with Mtr ≤ MB parallel streams. The IRS
unit cells utilize dynamic reflection coefficients {ψk,n}NI

n=1 ∈
CPtr across the training frames, while Ktr out of K subcarriers

Fig. 2. Two example designs of the conformal IRS architecture. Red arrow:
signal wave with azimuth/elevation angles {φ, θ}; Blue arrow: orientation
vector of the nth element with azimuth/elevation angles {φn, θn}. (a) CyA:
Nv concentric bows with a radius rcy and an interspacing dv; each contains
Nh elements. (b) SA: Equiangular distribution along Nv parallels and Nh
meridians with a radius rs.

are allocated for training. Then, the received training signal
within the qth time slot of the pth frame at the kth subcarrier
can be represented as

yk,p,q = WH
k HBI,kDiag([Ψk]p,:)HIU,kFk,qxk,q + nk,p,q,

(1)

where Ψk � [ψk,1, . . . ,ψk,NI
] ∈ CPtr×NI denotes the IRS

training pattern; nk,p,q ∈ C
Mtr is the additive noise; HBI,k ∈

CNB×NI and HIU,k ∈ CNI×NU denote the one-hop IRS-to-BS
and UE-to-IRS channels at the kth subcarrier, respectively.

Assuming that the system works at the mmWave fre-
quencies, the spatially sparse channels HBI,k and HIU,k

can be defined by the Saleh-Valenzuela model as [14], [15],
[21]–[23]

HBI,k =
LBI�
�t=1

βBI,k,�taB(φB,�t , θB,�t)a
H
I (φt,�t , θt,�t)

= ABDiag(βBI,k)AH
t , (2a)

HIU,k =
LIU�
�r=1

βIU,k,�raI(φr,�r , θr,�r)a
H
U (φU,�r , θU,�r),

= ArDiag(βIU,k)AH
U , (2b)

where LBI(IU) denotes the number of paths; {βBI,k,�t �
αBI,�te

−j 2πkfs
K τBI,�t , βIU,k,�r � αIU,�re

−j 2πkfs
K τIU,�r} denote

the equivalent path gains with {αBI,�r , αIU,�r} and
{τBI,�t , τIU,�r} being the complex gains and time delays,
respectively; {φ(θ)B,�t , φ(θ)U,�r} denote the azimuth
(elevation) AoAs and AoDs at the BS and UE, respectively;
{φ(θ)r,�r , φ(θ)t,�t} denote the azimuth (elevation) AoAs and
AoDs at the IRS side, respectively; aB(U)(φ, θ) ∈ C

NB(U)

and aI(φ, θ) ∈ CNI denote the array response vectors
of BS (UE) antennas and conformal IRS, respectively;
AB(U) ∈ CNB(U)×LBI(IU) and At(r) ∈ CNI×LBI(IU)

concatenate the steering vectors corresponding to all the
channel paths; βBI(IU),k ∈ C

LBI(IU) concatenates the
equivalent path gains. Note that HBI(IU),k may contain one
kind of the LoS and NLoS components or both of them.
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Due to the exacerbated loss of mmWave propagation, only
the NLoS paths scattered once are considered.1

The passive reflectors of a conformal IRS can be arbi-
trarily arranged on the curved surface. The nth element is
located at the coordinates μn ∈ R3, while its orientation,
defined as the normal direction of the unit cell, is denoted by
νn ∈ R3. Specifically, the elemental locations and orientations
of the CyA and SA topologies in Fig. 2(a), (b) are respectively
defined as

CyA:

�
μn = [rcy cosφnh , rcy sin φnh , hnv ]

T
,

νn = [cosφnh , sinφnh , 0]T ,
(3a)

SA:

�
μn = rs [cosφnh sin θnv , sin φnh sin θnv , cos θnv ]

T
,

νn = [cosφnh sin θnv , sin φnh sin θnv , cos θnv ]
T

,

(3b)

where rcy, rs denote the radii of the cylinder and sphere,
respectively; {φnh , hnv} denote the azimuth angle and ele-
vation height of the (nh, nv)th entry of the CyA, respectively;
{φnh , θnv} denote the azimuth and elevation angles of the
(nh, nv)th entry of the SA, respectively; the 2-D tuple (nh, nv)
is mapped to the index n as n � (nh − 1)Nv + nv with
NI = NhNv. For a uniformly-distributed CyA, φnh = φlb +
φub−φlb

Nh−1 (nh − 1), hnv = nvdv with φlb(ub) and dv being
the lower (upper) bound of azimuth angles and elevation
inter-element spacing, respectively. For a uniformly-distributed
SA with equal-angle partitions, φnh = φlb + φub−φlb

Nh
nh,

θnv = θlb + θub−θlb
Nv

nv with φlb(ub) and θlb(ub) being
the lower (upper) bound of azimuth and elevation angles,
respectively.2

For one response vector of the conformal IRS array, its
phase term is determined by the phase-shift difference along
the array aperture, whilst its magnitude term is characterized
by the power radiation pattern of the reflectors. The radi-
ation pattern defines the variation rule of the power radi-
ated or received by the unit cells with respect to the wave
direction [35], [36]. For one signal component with a unit
direction vector d(φ, θ) � [cosφ sin θ, sin φ sin θ, cos θ]T , the
corresponding IRS array response can be represented as

aI(φ, θ) � pI(φ, θ) � gI(φ, θ), (4a)

pI(φ, θ) �
�
ej 2π

λc
μT

1 d(φ,θ), . . . , ej 2π
λc

μT
NI

d(φ,θ)
�T

, (4b)

gI(φ, θ) �
�
f

�
2
+ (νT

1 d(φ, θ)), . . . , f
�
2
+(νT

NI
d(φ, θ))

�T

,

(4c)

1Generally, the second-order rays have a power degradation of 10–20 dB
relative to the first-order ones, which can be identified and filtered out along
with the diffuse scattering components [32]. Moreover, the contribution of the
higher-order rays to the total received energy is about 2%–10% and is thus
negligible [33], [34].

2The far-field condition of (2), (3) generally holds with d ≥ 2D2

λ
, where

d, D and λ denote the distance between the transmitter and the center of the
IRS array, the largest dimension of the IRS array and the signal wavelength,
respectively [35]. Moreover, d = 5λ can be regarded as the lower bound
of the near field of the IRS array. If the IRS is too small to fulfill the
condition 2D2

λ
> 5λ, then the IRS operates only in the far-field region for

distances > 5λ [36]. Specifically, the array aperture D2 can be approximated
by rcy(φub − φlb)dvNv and r2

s (φub − φlb)(cos θlb − cos θub) for the
CyA and SA topologies, respectively.

where � ≥ 0 is the power radiation coefficient (� = 0
corresponds to ideal omnidirectional reflectors); f+(x) �
max(x, 0) is the ramp function. Physically, the definition
of gI(·) indicates that the radiated power level is inversely
proportional to the angle between the signal direction and the
unit cell orientation [6], [7]. Note that for a traditional IRS
composed of reflectors with identical orientations, its ampli-
tude response gI(φ, θ) degenerates into a scalar coefficient
gI(φ, θ). Unfortunately, this scalar term usually gets mized
with the path gains, and is difficult to be directly retrieved.
By contrast, the conformal IRS supports the extraction of the
power radiation pattern, providing more information to the
channel estimation procedure.

Remark 1: Note that f+(νT
nd(φ, θ)) physically corre-

sponds to the fact that the IRS reflectors normally cannot
reflect or refract incoming signals from their backside. This
is due to the shielding phenomenon of opaque substrates or
carriers, referred to as a shadow effect [37], [38]. For each
pair of paths (	t, 	r), an effective link via the IRS unit cell
can be established only if

min
�
νT

nd(φt,�t , θt,�t),ν
T
nd(φr,�r , θr,�r)

�
>0, ∃n∈I(NI).

(5)

If the condition (5) holds for all the unit cells with an
arbitrary pair of directions in a certain space, then this
space belongs to the perfect workspace of the confor-
mal IRS. For instance, the perfect workspace of a CyA with
{φlb, φub, dv} =

�−π
6 , π

6 , λc
4

	
is

�
φ ∈ 
−π

3 , π
3

�
, θ ∈ [0, π]

	
,

while that of a SA with {φlb, φub, θlb, θub} =
�−π, π, 0, π

6

	
is

�
φ ∈ [−π, π] , θ ∈ 


0, π
3

�	
. By increasing the curvature

radius or the array size of conformal IRSs, one can effectively
reduce the occurrence probability of shadow effect to sustain
an acceptable communication quality. Note that with suffi-
cient training measurements, the proposed channel estimation
schemes can recover the cascaded IRS response vectors and
detect the unit cells affected by the shadow effect.3

III. CHANNEL ESTIMATION WITH

SUFFICIENT MEASUREMENTS

The training signals (1) across PtrQtr time slots in total
can be concatenated as Yk = [yk,1,1,yk,1,2, . . . ,yk,Ptr,Qtr ] ∈
CMtr×PtrQtr . It can be equivalently regarded as a matricization
form of a third-order tensor as Yk = Matr(Yk; 1, [3, 2]),
where Yk ∈ CMtr×Qtr×Ptr fits the CP tensor model with a
maximal CP-rank of NI as

Yk =
NI�

n=1

WH
k [HBI,k]:,n ◦ FT

k [HIU,k]Tn,: ◦ [Ψk]:,n + N k

= I3,NI ×1
�HBI,k ×2

�HIU,k ×3 Ψk + N k, (6)

where Fk � [Fk,1xk,1, . . . ,Fk,Qtrxk,Qtr ] ∈ CNU×Qtr ;�HBI,k � WH
k HBI,k ∈ CMtr×NI and �HIU,k � FT

k HT
IU,k ∈

CQtr×NI denote the equivalent channels; N k ∈ CMtr×Qtr×Ptr

3The diagnosis technique has been developed for IRS-aided system mon-
itoring and maintenance, which can locate faulty reflecting elements and
retrieve failure parameters [39]. Moreover, a transmissive-reflective IRS with
transparent substrates has also been proposed, which can provide a full 360◦
coverage to eliminate the shadow effect [40].
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is the noise tensor; I3,NI ∈ {0, 1}NI×NI×NI denotes a
third-order identity tensor that contains ones in its diag-
onal. Note that by column-wisely arranging { �HBI,k}Ktr

k=1,
{ �HIU,k}Ktr

k=1 and {Ψk}Ktr
k=1, one can derive a multi-carrier sig-

nal tensor with a maximal rank of KtrNI. This method, how-
ever, increases the number of tensor inner components, leading
to higher computational complexity. Thus, we subcarrier-
wisely process the received training signals unless otherwise
stated.

Performing the channel estimation is now equivalent to
solving a decomposition problem of (6). Traditionally, one
could employ iterative decomposition methods, e.g., alternat-
ing least squares (ALS) and approximate message passing
(AMP) [16], [19], to implement the channel separation. Note
that (6) contains information of structural antenna/reflector
arrays, as well as, spatially sparse propagation channels.
By fully exploiting these data characteristics, we can develop
more effective parameter-based channel estimation schemes.

A. Beamforming Design

Define Yk(1) � Matr(Yk; 1, [3, 2]) as the mode-1 unfold-
ing of Yk, and compute its dominant left singular vectors
Uk ∈ CMtr×LBI . The column subspace of Yk(1) can be
linearly spanned as UkT−1

k with Tk ∈ CLBI×LBI being a
nonsingular matrix. Supposing Mtr 
 NB, we present two
feasible beamforming strategies to recover {φB,�t , θB,�t}.

1) On-Off Scheme: One simple way is to activate a number
of antennas equal to the quantity of measurements in a
Kronecker product form Wk = Wh,k ⊗ Wv,k with

Wh(v),k =


IMh(v) 0Mh(v)×(NB,h(v)−Mh(v))

�T
, (7)

where NB,h(v), Mh(v) are the numbers of antennas and data
streams across the horizontal (vertical) aperture, respectively.
The rotational-invariance property in 2-D element space is
preserved as

(Jh2 ⊗ IMv )UkT−1
k = (Jh1 ⊗ IMv )UkT−1

k Υh, (8a)

(IMh ⊗ Jv2)UkT−1
k = (IMh ⊗ Jv1)UkT−1

k Υv, (8b)

where Υh,Υv ∈ CLBI×LBI are diagonal matrices con-
taining

�
κh,�t � 2πdB,h

λc
sin θB,�t sin φB,�t

	
and

�
κv,�t �

2πdB,v
λc

cos θB,�t

	
, respectively, with dB,h(v) being the horizon-

tal (vertical) spacing; Jh1(v1),Jh2(v2) ∈ {0, 1}(Mh(v)−1)×Mh(v)

drop the first and last vector entries, respectively. Evidently,
as the 2-D ESPRIT algorithm does, we can retrieve Υh(v)

and Tk by performing an eigenvalue decomposition (EVD)
on (8) under a LS criterion [41]. Note that the simulta-
neous diagonalization can be applied to automatically pair
{κh,�t} and {κv,�t}, from which {φB,�t , θB,�t} can be easily
recovered [42].

2) DFT Scheme: In order to maximize the beamforming
gain of antennas while preserving the structural information,
we adopt a beamspace combining design as



Wh(v),k

�
:,mh(v)

=


DNBh(v)

�
:,ωmh(v)

e
j

NBh(v)−1

2

2π(ωmh(v)−1)
NBh(v) ,

(9)

where DNBh(v) ∈ CNBh(v)×NBh(v) is a discrete Fourier

transform (DFT) matrix;
�
ωmh(v)

	Mh(v)

mh(v)=1
denote the search-

ing codewords forming Dh(v) sectors of interest (SoI),
where each SoI contains at least two consecutive code-
words. By following [43, Lemma 4], we define the selec-
tion matrices Jh1(v1),Jh2(v2) ∈ R(Mh(v)−Dh(v))×Mh(v) . The
rotational-invariance property in the 2-D beamspace is then
preserved as

(Jh2 ⊗ IMv)UkT−1
k = (Jh1 ⊗ IMv)UkT−1

k Υh, (10a)

(IMh ⊗ Jv2)UkT−1
k = (IMh ⊗ Jv1)UkT−1

k Υv, (10b)

where Υh,Υv ∈ RLBI×LBI contain {tan(κh,�t/2)} and
{tan(κv,�t/2)} on their diagonals, respectively. Following
the 2-D beamspace unitary ESPRIT, the automatic pairing
of {κh,�t} and {κv,�t} can be facilitated by performing a
composite EVD as [41], [43]

T−1
k (Υh + jΥv)Tk

= ((Jh1 ⊗ IMv)Uk)†(Jh2 ⊗ IMv)Uk

+ j((IMh ⊗ Jv1)Uk)†(IMh ⊗ Jv2)Uk. (11)

Remark 2: For the case of precoding, one can simi-
larly define Yk(2) � Matr(Yk; 2, [3, 1]) and follow (8)–
(11) to recover {φU,�r , θU,�r}. The structural properties of
WH

k aB(·) and FT
k a∗

U(·) are retained in the linear spans of
Yk(1) and Yk(2), respectively. Generally, the rank of Yk(1)

or Yk(2) equals to min(Ptr min(LBI, LIU), max(LBI, LIU)),
leading to a feasibility condition for the parameter recovery
Ptr ≥



max(LBI,LIU)
min(LBI,LIU)

�
.

B. Parameter Recovery and Decoupling

After retrieving {φ(θ)B,�t , φ(θ)U,�r}, we remove their con-
tributions, i.e., AB(U), from Yk by performing mode-1 and
mode-2 tensor-matrix products (in the noiseless case) as

Zk = Yk ×1 (WH
k AB)† ×2 (FT

k A∗
U)†

= I3,NI ×1 Diag(βBI,k)AH
t ×2 Diag(βIU,k)AT

r ×3 Ψk.

(12)

The training pattern Ψk commonly has a rank of min(Ptr, NI).
Given sufficient training measurements, i.e., Ptr ≥ NI,
we leverage the algebraic LS solution to derive in total
L � LBILIU pairs of cascaded response vectors of the IRS
array:

Gk � Matr
�Zk ×3 Ψ†

k; [2, 1], 3
�

=
�
Diag(βBI,k) ⊗ Diag(βIU,k)

� �
AH

t � AT
r

�
,

(13a)

[Gk]T�,: = βBI,k,�tβIU,k,�r a∗
I (φt,�t , θt,�t) � aI(φr,�r , θr,�r)� �� �

aI,cas,�∈CNI

,

(13b)

where 	 � (	t − 1)LIU + 	r indexes the correspond-
ing equivalent paths. In order to eliminate the distortion
of the unknown path gains, we define the scalar variables
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g
(n1,n2)
k,� � [Gk]�,n1 [Gk]−1

�,n2
, n1 < n2 ∈ I(NI), whose

amplitude and phase terms are respectively expressed as��g(n1,n2)
k,�

��
=

�
f+(νT

n1
d(φt,�t , θt,�t))f+(νT

n1
d(φr,�r , θr,�r))

f+(νT
n2

d(φt,�t , θt,�t))f+(νT
n2

d(φr,�r , θr,�r))

� �
2

,

(14a)

�g
(n1,n2)
k,�

=
2π

λc

�
μn1

−μn2

�T (d(φr,�r , θr,�r)−d(φt,�t , θt,�t)).
(14b)

We construct R ∈ R
C2

NI
×3 and gk,� ∈ C

C2
NI by row-wisely

concatenating {μT
n1

− μT
n2
} and

�
g
(n1,n2)
k,�

	
, respectively,

forming a linear system of equations. Note that there may
exist a periodic ambiguity, i.e., arg

�
g
(n1,n2)
k,�

�
= �g

(n1,n2)
k,� +

2iπ, i ∈ Z, referred to as a spatial aliasing or phase wrapping
problem [44]. Since �d(φr,�r , θr,�r) − d(φt,�t , θt,�t)�2 ≤ 2,
we select D � {(n1, n2)|�μn1

−μn2
�2 ≤ λc/4} to eliminate

spatial aliasing. By introducing a diagonal weighting matrix
D ∈ R

C2
NI

×C2
NI with |D| ones corresponding to the index

tuples in D, we apply a weighted least squares (WLS) solution
to retrieve the cascaded phase parameters as⎡⎣ωx,�

ωy,�

ωz,�

⎤⎦
� �� �
ω�∈R3

�

⎡⎣cosφr,�r sin θr,�r − cosφt,�t sin θt,�t

sinφr,�r sin θr,�r − sin φt,�t sin θt,�t

cos θr,�r − cos θt,�t

⎤⎦
� �� �

d(φr,�r ,θr,�r )−d(φt,�t ,θt,�t )

=
λc

2π
(DR)†D arg(gk,�). (15)

Generally, R has full column rank with |D| � 3 that ensures
the feasibility and uniqueness of (15). The spatial aliasing of
arg

�
g
(n1,n2)
k,�

�
, (n1, n2) /∈ D can be effectively corrected if a

desirable initial estimate is available. Hence, to fully leverage
the available training data, we adopt an iterative informed
phase unwrapping (IPU) method [45]:

�g(i)
k,� = arg(gk,�) − 2π

�
arg(gk,�) − 2π

λc
Rω(i−1)

� + π

2π

�
,

(16a)

ω
(i)
� =

λc

2π
R†�g(i)

k,�, (16b)

where �g(i)
k,�, ω(i)

� denote the estimates of phase differences
and cascaded angles at the ith iteration, respectively; the
initial ω(0)

� is derived from the WLS method of (15). Since
the observed phase differences are corrected by the addition
of integer multiples of 2π, the convergence of (16) can be
expected after a few iterations.

1) “All” Decoupling Mode: On each orthogonal direc-
tion, LBILIU equations with respect to the angular variables,
i.e., cosφt(r),�t(r) sin θt(r),�t(r) , sin φt(r),�t(r) sin θt(r),�t(r) and
cos θt(r),�t(r) , can be formulated, but only (LBI + LIU − 1)
of them are linearly independent. Equivalently, we can formu-
late in total 3(LBI + LIU − 1) effective nonlinear trigono-
metric equations with respect to 2(LBI + LIU) parameters�
φt(r),�t(r) , θt(r),�t(r)

	
. As long as this nonlinear equation sys-

tem is not underdetermined, i.e., the number of propagation

paths satisfies

3(LBI + LIU − 1) ≥ 2(LBI + LIU) ⇔ LBI + LIU ≥ 3,
(17)

it is possible to decouple all the L sets of cascaded para-
meters simultaneously and achieve exact parameter esti-
mates. We adopt the Levenberg-Marquardt algorithm (LMA),
a trust region approach synthesizing the steepest descent and
Gaussian-Newton methods, to solve the decoupling prob-
lem [46]. Define xφ,θ ∈ R2(LBI+LIU) as the variable vector
of

�
φt(r),�t(r) , θt(r),�t(r)

	
, and ω(xφ,θ) : R2(LBI+LIU) 
→

R
3LBILIU as the mapping function of cascaded parameters

in (15). By leveraging the first-order Taylor expansion and
damping method, the LS minimization problem at each itera-
tion of LMA can be constructed as

min
Δx

(i)
φ,θ

1
2

���eω

�
x(i−1)

φ,θ

�
+ Jeω

�
x(i−1)

φ,θ

�
Δx(i)

φ,θ

���2

2

+
1
2
ζ
�
Δx(i)

φ,θ

�T Δx(i)
φ,θ, (18a)

s.t. eω(xφ,θ) � ω(xφ,θ) − ω̂, Jeω (xφ,θ) � ∂eω(xφ,θ)
∂xφ,θ

,

(18b)

where x(i)
φ,θ, Δx(i)

φ,θ ∈ R2(LBI+LIU) are the current estimate and
update step at the ith iteration, respectively; ω̂ ∈ R3LBILIU

is the actual estimate of {ω̂�}LBILIU
�=1 derived by (16); ζ is

a tunable damping factor. The Jacobian matrix Jeω (·) ∈
R3LBILIU×2(LBI+LIU) can be easily derived by exploiting the
partial derivatives of d(φr,�r , θr,�r)−d(φt,�t , θt,�t) with respect
to

�
φt(r),�t(r) , θt(r),�t(r)

	
. By computing the partial derivative

of (18) with respect to Δxφ,θ and setting it equal to zero,
we can derive the update normal equation as�

JT
eω

(x(i−1)
φ,θ )Jeω (x(i−1)

φ,θ ) + ζI2(LBI+LIU)

�
Δx(i)

φ,θ

= −JT
eω

(x(i−1)
φ,θ )eω(x(i−1)

φ,θ ). (19)

If the latest estimate x(i)
φ,θ = x(i−1)

φ,θ + Δx(i)
φ,θ leads to a

decreased objective error, we reduce ζ and increase the step
size to accelerate the convergence; otherwise, we increase ζ
and reject this update. For the specific rules of adjusting ζ,
the interested readers are referred to [46, §4.1.1].

2) “Pair” Decoupling Mode: Note that if LBI + LIU = 2,
i.e., HBI,k and HIU,k each contain only one single path (e.g.,
the LoS component), the LMA may not uniquely converge
to the desired solution. In this case, we need to leverage the
information of the angle-dependent power radiation pattern.
For an arbitrary pair of (	t, 	r), one can formulate a con-
strained multivariable LS minimization problem:4

min
φt,�t ,θt,�t ,
φr,�r ,θr,�r

1
2
�eg,��2

2 � 1
2

����� gI,cas,�

�gI,cas,��2
− abs([Gk]T�,:)

�[Gk]T�,:�2

�����
2

2

,

(20a)

s.t. d(φr,�r , θr,�r) − d(φt,�t , θt,�t) = ω̂�, (20b)

4Based on (13), one can also straightforwardly utilize the amplitude equa-

tions
�

[gI,cas,�]n1
[gI,cas,�]n2

� �
2

=
��g(n1,n2)

k,�

��, ∀n1, n2 to formulate the minimization
objective in (20), which involves no normalization operation.
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where gI,cas,� �gI(φt,�t , θt,�t)�gI(φr,�r , θr,�r) is the cascaded
radiation pattern; the operations abs(a) and a/�a�2 remove
the phase and amplitude distortions of {βBI,k,�t , βIU,k,�r},
respectively. Instead of considering the scalar objective func-
tion 1

2�eg,��2
2, we utilize each entry of eg,� ∈ RNI to formulate

up to NI amplitude equations, along with three cascaded phase
equations (20b), with respect to four variables. Based on the
first-order derivatives presented in Appendix A, the LMA can
be directly employed to solve (20).

After reconstructing the IRS response vectors, i.e., �At(r),
through the decoupled angular parameters, the cascaded
equivalent path gains, as well as, the cascaded time delays
can be sequentially derived as

ρBIU,k,� � βBI,k,�tβIU,k,�r =eT
L,�Gk

��AH
t � �AT

r

�†
eL,�,

(21a)

τBIU,� � τBI,�t +τIU,�r =− K

2π(k1−k2)fs
arg

�
ρBIU,k1,�

ρBIU,k2,�

�
,

(21b)

where k1, k2 ∈ I(Ktr). One can average (21b) among multiple
training subcarriers to enhance the recovery accuracy. Note
that if 2π(k1 − k2)fsτBIU,k/K ≥ 2π, there may exist a
temporal aliasing, i.e., τ̂BIU,� = τBIU,� − iK

(k1−k2)fs
, i ∈ Z.

This implies that the system bandwidth and training subcarrier
interval should be carefully configured.

Remark 3: Traditional IRSs regularly arrange reflectors
along one or two orthogonal spatial directions, while only
one third or two thirds of data of {ω�}LBILIU

�=1 in (14) can
be retrieved. If the local coordinate system of the IRS does
not coincide with the global one, one can only achieve one or
two linear combinations of cascaded parameters of each pair
of paths (	t, 	r). One can thus formulate up to 2(LBI+LIU−1)
equations with respect to 2(LBI + LIU) variables. Recalling
that the scalar power radiation pattern commonly gets wrapped
with the path gains, the objective (20a) is invalid with little
effective information, i.e.,

��g(n1,n2)
k,�

�� ≡ 1, ∀n1, n2. Hence, only
underdetermined equation systems can be constructed with
common IRS topologies, which cannot yield unique solutions
of the channel parameters. As a consequence, most existing
works are bound to estimate the cascaded channel parameters
without further processing, which limits significantly the inte-
gration of IRSs into wireless services [14]–[20]. By contrast,
the proposed 3-D IRS topology empowers exact channel para-
meter recovery, supporting more wireless applications, e.g.,
environment mapping, user localization, mobility tracking, etc.

IV. CHANNEL ESTIMATION WITH

INSUFFICIENT MEASUREMENTS

When the quantity of measurements is less than the num-
ber of reflectors, i.e., Ptr < NI, the structural information
of the IRS topology is compressed by the training pattern.
As Ψ†

kΨk �= INI , one cannot utilize the LS solution (12) to
derive Gk ∈ CLBILIU×NI , as well as, the cascaded channel
Hcas,k � HBI,k � HT

IU,k = (AB ⊗ A∗
U)Gk. In order to

realize channel estimation and parameter recovery with lim-
ited training measurements, we seek to exploit the in-depth

physical and electromagnetic characteristics of the conformal
IRS unit cells.

A. Single-Carrier Training

One straightforward idea is to reduce the number of
activated reflectors during the training procedure. With
the existing manufacturing technology of IRSs, it is hard
to physically implement such controllable switching-on/off
circuits [17]–[19]. An alternative method is to geometrically
arrange the reflectors as a sparse array with a degree of
freedom comparable to that of the full one [47]. However,
both schemes may reduce the beamforming gain or coverage
range of conformal IRSs, yielding a weaker transceiving signal
strength. Therefore, we manage to recover the compressed
channel information from a signal processing point of view.

1) CS Scheme: A simple approach is to apply the existing
CS technique to retrieve the angular parameters from the
compressed cascaded response vector ΨkaI,cas,�. The main
challenge is the design of the four-dimensional (4-D) code-
book with respect to {φt(r),�t(r) , θt,�t(r)}. In order to reduce
the time and space complexity of CS algorithms, we leverage
a hierarchical design that recursively narrows the search with
increased resolution.

We define the search grids of azimuth and elevation angles
as Sh, Sv, respectively. The search range of the initial layer

is
�
[φ(0)

min, φ
(0)
max] × [θ(0)

min, θ
(0)
max]

�2
, which is evenly divided

into (Sh × Sv)2 codewords as
�{φ(0)

sh } × {θ(0)
sv }�2. After the

CS algorithm returns the indices of the best matching code-
words, i.e., (s	

h,t(r), s
	
v,t(r)), we update the search range of the

next layer as

φ
(1)
min,t(r) = φ

(0)
s	
h,t(r)−Wh/2, φ

(1)
max,t(r) = φ

(0)
s	
h,t(r)+Wh/2,

(22a)

θ
(1)
min,t(r) = θ

(0)
s	
v,t(r)−Wv/2, θ

(1)
max,t(r) = θ

(0)
s	
v,t(r)+Wv/2,

(22b)

where Wh(v) denotes the horizontal (vertical) window length.
Then, the division and selection of the desired codewords are
similar to those at the last layer. Based on (22), the codebook
resolution is increased by Sh(v)/Wh(v) times per layer. The
estimation procedure terminates when the parameter resolution
reaches the predefined threshold.

2) Direct Scheme: The dynamically derived 4-D CS code-
books may entail heavy storage burden to the signal processor,
whose resolution also limits the estimation accuracy. Thus,
we now develop a flexible approach that directly extracts the
channel parameters from the cascaded IRS response vectors.
This is applicable to arbitrary conformal IRSs with general
training patterns. By exploiting the representation of Zk

in (11), one can verify that

s
(p1,p2)
k,� � [Zk]�t,�r,p1

[Zk]�t,�r,p2

=
[Ψk]p1,:aI,cas,�

[Ψk]p2,:aI,cas,�
, (23a)

0 =
�
[Ψk]p1,: − s

(p1,p2)
k,� [Ψk]p2,:

�
aI,cas,�, (23b)

where p1 < p2 ∈ I(Ptr). Define ξ(p1,p2)
k,� � [Ψk]Tp1,: −

s
(p1,p2)
k,� [Ψk]Tp2,:, and row-wisely concatenate

�
ξ

(p1,p2)T
k,�

	
into
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a matrix Ξk,� ∈ C
C2

Ptr
×NI . We can now formulate a linear

zero-forcing transformation, i.e., Ξk,�aI,cas,� = 0C2
Ptr

. Note
that the cascaded path gain ρBIU,k,� has been eliminated via
the division operation in (23). Then, the LS minimization
problem with respect to the angular parameters of a pair of
paths (	t, 	r) can be constructed as

min
φt,�t ,θt,�t ,φr,�r ,θr,�r

1
2

��Ξk,� (gI,cas,� � pI,cas,�)
��2

2
, (24a)

s.t. gI,cas,� � gI(φt,�t , θt,�t) � gI(φr,�r , θr,�r),
(24b)

pI,cas,� � p∗
I (φt,�t , θt,�t) � pI(φr,�r , θr,�r).

(24c)

The LMA can be applied to solve (24), which, however,
may return complex-valued estimates due to the complex
operations involved in the objective and constraints. Hence,
we equivalently transform (24) into a real-valued optimization
problem as follows:

min
φt,�t ,θt,�t ,
φr,�r ,θr,�r

1
2

���� �(Ξk,�) −�(Ξk,�)
�(Ξk,�) �(Ξk,�)

!
 
gI,cas,� � cosγI,cas,�

gI,cas,� � sinγI,cas,�

!����2

2

, (25a)

s.t. [gI,cas,�]n = f
�
2
+ (νT

nd(φt,�t , θt,�t))

× f
�
2
+ (νT

nd(φr,�r , θr,�r)), (25b)

[γI,cas,�]n =
2π

λc
μT

n (d(φr,�r , θr,�r) − d(φt,�t , θt,�t)),

(25c)

where γI,cas,� � �pI,cas,� ∈ RNI . Since (25) does not directly
impose any constraint on the variables {φt(r),�t(r) , θt(r),�t(r)}
as in (18), the algorithm results are extremely sensitive to
the initial point. To this end, we adopt the particle swarm
optimization (PSO), a population based stochastic optimization
technique, to obtain an appropriate start point [48]. The
algorithm is initialized with a population of random solutions,
called particles, and searches for optima by updating genera-
tions. By keeping track of the current individual fitness and
globally shared optima, the particles dynamically adjust their
coordinates and velocities.

B. Multi-Carrier Training

We notice that the reflecting coefficients of the practical IRS
unit cells vary with the frequencies of incident signals, causing
a dual phase- and amplitude-squint effect that may undermine
some applications, e.g., beamforming design and capacity opti-
mization, in wideband systems [30]. This frequency-sensitive
nature can also introduce additional information that supports
our design of more effective channel estimation schemes.

1) Direct Scheme: Define Y ∈ CMtr×Qtr×Ptr×Ktr as the
multi-carrier training signal that arranges {Yk}Ktr

k=1 along
its fourth dimension. In the same way, one can obtain the
compressed wideband signal tensor Z ∈ CLBI×LIU×Ptr×Ktr

as a concatenation of {Zk}Ktr
k=1. One can verify

z� � [Matr(Z ; [3, 4], [2, 1])]:,(�t−1)LIU+�r

= αBI,�tαIU,�r



�1,�ΨT

1 , . . . , �Ktr,�Ψ
T
Ktr

�T� �� �
�Ψ�∈CKtrPtr×NI

aI,cas,�,

(26)

where �k,� � e−j 2πkfs
K τBIU,� . In the generic case,5 since

the dual phase- and amplitude-squint effect of IRSs is
modeled as a continuous function [30, Eq. (1)–(3)], the
phase-shifted wideband IRS training pattern �Ψ� has a rank
of min(KtrPtr, NI). Assuming sufficient training subcarriers,
i.e., Ktr ≥ �NI/Ptr�, one can derive the LS solution of
{aI,cas,�} up to scalar scaling ambiguities. However, �Ψ� is
commonly undetermined due to the unknown {�k,�}Ktr

k=1.
We thus formulate an optimization problem with respect to
five variables {φt,�t , θt,�t , φr,�r , θr,�r , τBIU,�} as

min
φt,�t ,θt,�t ,
φr,�r ,θr,�r ,

τBIU,�

1
2

����� gI,cas,�

�gI,cas,��2
− abs

� �Ψ†(��)z�

��� �Ψ†(��)z�

��
2

�����
2

2

(27a)

s.t. d(φr,�r , θr,�r) − d(φt,�t , θt,�t)

=
λc

2π
(DR)†D arg

� �Ψ†(��)z�

�
, (27b)

�Ψ(��) �


�1,�ΨT

1 , . . . , �Ktr,�Ψ
T
Ktr

�T
, (27c)

where �� � [�1,�, . . . , �Ktr,�]T ; D ∈ R
C2

NI
×C2

NI ,R ∈
R

C2
NI

×3 follow the idential definitions as in (14). This problem
can also be converted into a real-valued version to prevent the
LMA from converging to complex-valued estimates. Note that
according to the feature scaling theory, the nanosecond-level
time delays {τBIU,�} should be normalized, e.g., into the
range [0, 1], to accelerate the convergence of gradient-based
algorithms.

In order to avoid dynamically calculating the derivatives
with respect to �Ψ†(��), we here develop a hierarchical search
strategy similar to (20). We define the initial search range
of time delays



τ

(0)
min, τ

(0)
max

�
, which is uniformly divided into

Sτ codewords
�
τ

(0)
sτ

	
. Given one codeword and its corre-

sponding phase-shifted multi-carrier IRS training pattern, one
can directly utilize the aforementioned LS scheme combined
with the All/Pair decoupling modes to recover the channel
parameters in aI,cas,�. The best matching codeword index,
i.e., s	

τ , is chosen as the one that results in the small-
est objective error 1

2�eg,��2
2. Then, its neighbouring region


τ
(0)
s	

τ−Wτ /2, τ
(0)
s	

τ +Wτ /2

�
is selected with a window length Wτ

as the updated search range for the next layer. The wideband
training pattern �Ψ(·) with respect to the predefined codewords
can be computed in advance and stored at the signal processing
terminal.

2) Subspace Scheme: In order to further reduce the com-
putational complexity in the case of large amounts of training
subcarriers, we develop a more efficient algorithm by exploit-
ing the frequency-sensitive characteristics of IRS training
pattern. We recall that aI,cas,� belongs to the kernel (nullspace)

5A generic property means that it holds with probability one when the
values of the training pattern matrices are drawn from absolutely continuous
probability density functions [30].
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of Ξk,� in (21), (22); moreover,
�
ξ
(p1,p2)
k,�

	
generally construct

a maximal linearly independent set of at most (Ptr−1) vectors,
yielding rank(Ξk,�) = Ptr − 1. According to the rank-nullity
theorem [49, Eq. (3.205)], dim(ker(Ξk,�)) = NI−Ptr+1 with
an orthogonal basis {bk,�,1, . . . ,bk,�,NI−Ptr ,aI,cas,�} ∈ CNI .

In the generic case, there exists a maximal linearly inde-
pendent set of min(2(NI − Ptr) + 1, NI) vectors among�{bk1,�,i}NI−Ptr

i=1 , {bk2,�,i}NI−Ptr
i=1 ,aI,cas,�

	
for two subcarri-

ers indexed by k1, k2. Thus, we have dim(ker(Ξk1,�) +
ker(Ξk2,�)) = min(2(NI − Ptr) + 1, NI). Define Ξk1k2,� ��
ΞT

k1,�,Ξ
T
k2,�

�T

that has a kernel as the intersection of the

nullspaces, i.e., ker(Ξk1,�) ∩ ker(Ξk2,�). The dimension of
ker(Ξk1k2,�) can be derived by the dimension formula as
follows [49, Eq. (2.15)]:

dim(ker(Ξk1k2,�)) = dim(ker(Ξk1,�)) + dim(ker(Ξk2,�))
− dim(ker(Ξk1,�) + ker(Ξk2,�))

= 2(NI − Ptr + 1)
− min(2(NI − Ptr) + 1, NI),

= max(1, NI − 2(Ptr − 1)). (28)

Furthermore, (28) can be extended to the case of Ktr training
subcarriers. By concatenating the multi-carrier IRS training

coefficients as Ξ� �
�
ΞT

1,�, . . . ,Ξ
T
Ktr,�

�T

∈ C
KtrC

2
Ptr

×NI ,
we have

rank(Ξ�) = min(NI − 1, Ktr(Ptr − 1)), (29a)

dim(ker(Ξ�)) = max(1, NI − Ktr(Ptr − 1)). (29b)

Obviously, given sufficient frequency resources, i.e., Ktr ≥

NI−1
Ptr−1

�
, Ξ� has a rank-one kernel with a single basis vector

b�,1 ∈ CNI . According to (21), (29), the cascaded response
vector coincidentally belongs to this kernel, i.e., Ξ�aI,cas,� =
0KtrC2

Ptr
, and thus can be uniquely represented by b�,1 up to

a scalar scaling ambiguity. We develop a simple procedure to
compute the kernel basis by exploiting the following property
of kernel intersection:

Lemma 1 [50, Theorem 6.4.1]: Define the orthogonal
basis for ker(Ξk1,�) as Bk1,� � [bk1,�,1, . . . ,bk1,�,NI−Ptr+1].
Define the orthogonal basis for ker(Ξk2,�Bk1,�) as Vk1k2,� �
[vk1k2,�,1, . . . ,vk1k2,�,NI−2(Ptr−1)]. Then, Bk1,�Vk1k2,� forms
an orthogonal basis for ker(Ξk1,�) ∩ ker(Ξk2,�).

By recursively performing the operations of Lemma 1,
one can gradually update the desired subspace from the
multi-carrier IRS training patterns, i.e., calculating the basis
of

"ki

k=k1
ker(Ξk,�) at the ith iteration. Note that in practice,

the environmental noise will interfere the direct derivation of
kernel subspaces. We approximate the kernel basis of a matrix
by its right singular vectors corresponding to the least singular
values.

V. IRS-EMPOWERED ENVIRONMENT MAPPING

With precisely recovered channel parameters, many applica-
tions of environment mapping, e.g., scatterer positioning, user
localization and orientation, etc., can be realized with high
resolution. We assume that in the global coordinate system,
the BS, UE and IRS are located at pB, pU and pI ∈ R3 with

orientations nB, nU and nI ∈ R3, respectively. For a linear
or planar antenna array, its orientation is commonly set as the
identical normal direction of elements; for a conformal reflec-
tor array, its orientation can be arbitrarily defined. Moreover,
we define the default orientations of the BS, UE and IRS
in their local coordinate systems as ṅB, ṅU and ṅI ∈ R3,
respectively.6

A. Environment Mapping

One significant step of environment mapping is to construct
the relationship between the global and local coordinate sys-
tems, which determines the transformation of the communi-
cation channel parameters to physical geographic parameters.
Generally, the rotation of a device with an actual orientation
n = [nx, ny, nz]T from a default one ṅ = [ṅx, ṅy, ṅz]T can
be parameterized by a rotation axis and a rotation angle as

c � ṅ × n =

⎡⎣cx

cy

cz

⎤⎦ =

⎡⎣ṅynz − ṅzny

ṅznx − ṅxnz

ṅxny − ṅynx

⎤⎦, (30a)

ξ � arccos(ṅ • n) = arccos(ṅxnx + ṅyny + ṅznz),
(30b)

where �c�2 = sin ξ. This rotation can be realized by the
Rodrigues’ rotation formula as [51]

n = ṅ cos ξ + c × ṅ + c(c • ṅ)
1 − cos ξ

sin2 ξ
. (31)

Then, the rotation matrix for (31) can be derived as

Rṅ→n � I3 + C + C2 1 − cos ξ

sin2 ξ
, (32a)

C �

⎡⎣ 0 −cz cy

cz 0 −cx

−cy cx 0

⎤⎦, (32b)

where (1 − cos ξ)/ sin2 ξ = (1 + cos ξ)−1; C ∈ R3×3 is
the cross-product matrix of c. The linear transformation n =
Rṅ→nṅ is expressed explicitly in terms of the elements of
{ṅ,n}. Given a priori device orientations, one can determine
the rotation transformations of the BS and IRS, denoted by RB

and RI ∈ C3×3 respectively. By substituting the recovered
angular parameters into the unit direction function d(φ, θ),
we derive the local directions of signal paths, i.e., ḋB,�t ,
ḋt,�t and ḋr,�r ∈ R3. Their corresponding global directions,
denoted by dB,�t , dt,�t and dr,�r ∈ R3, are then calculated as
dB,�t = RBḋB,�t , dt(r),�t(r) = RIḋt(r),�t(r) .

We note that the orientation of the UE is commonly
unknown, whose Rodrigues’ rotation from ṅU to nU cannot
be uniquely recovered based on ḋU,�r ,dU,�r ∈ R3. To this
end, we apply another definition of device rotation following
an artificially specified procedure. The default orientation of
the UE is set as ṅU � [1, 0, 0]T , while the actual one is
nU � d(φU, θU) defined by two orientation angles {φU, θU}.

6The default orientation mainly determines the specific expression form of
array response vectors. For instance, for an UPA on the local x-y plane with
a normal [0, 0, 1]T , the unit phase shift terms along the array aperture are
{sin θ cos φ, sin θ sinφ}; for an UPA on the local y-z plane with a normal
[1, 0, 0]T , the unit phase shift terms are {sin θ sin φ, cos θ}.
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With the right-hand rule in mind, the rotation from ṅU to nU

is divided into one rotation by (θU − π/2) around the y-axis
followed by another rotation by φU around the z-axis. Thus,
the corresponding rotation matrix is given by

RU(φU, θU)
� Rz(φU)Ry(θU − π/2)

=

⎡⎣cosφU sin θU − sin θU − cosφU cos θU

sinφU sin θU cosφU − sinφU cos θU

cos θU 0 sin θU

⎤⎦, (33)

where Ry(z)(·) ∈ R3×3 denotes the basic yaw (pitch) rotation
matrix. With specified rotation angles and axes, the rotation
parameters of (33) are possible to be uniquely retrieved.

The scatterer located at sBI,�t ∈ R3 is the intersection point
of two spatial lines passing through pB and pI with directions
dB,�t and dt,�t , respectively. In practice, the estimated lines
may not exactly intersect, and the median point of their
common perpendicular can serve as an approximate estimate
of the scatterer position. Denote two points by qB(x1) �
pB + x1dB,�t and qI(x2) � pI + x2dt,�t with x1, x2 ∈ R.
Then, the scatterer coordinates can be derived as follows

min
x�[x1,−x2]T

�qB(x1) − qI(x2)�2
2 = �Ax− b�2

2 (34a)

s.t. A �


dB,�t dt,�t

�
, b � pI − pB, (34b)

sBI,�t =
1
2

(qB(x	
1) + qI(x	

2)), (34c)

where {x	
1, x

	
2} is calculated by the LS solution of (34) as

x	 =
�
AT A

�−1
AT b. Then, the time delay of the corre-

sponding IRS-to-BS NLoS path is simply computed as

τBI,�t =
1
vc

(�pB − sBI,�t�2 + �pI − sBI,�t�2), (35)

where vc = 3 × 108 m/s is the light velocity. Given the
estimate of the cascaded time delay τBIU,� in (19), one can
directly recover the time delay of the corresponding UE-to-
IRS path as τIU,�r = τBIU,� − τBI,�t .

B. User Localization and Orientation

We suppose that HIU,k contains a LoS path indexed by
	r = 1, which can be identified by its smallest propagation
delay. One can simply realize the user localization by utilizing
a hybrid angle-delay positioning scheme:

pU = pI + dr,1vcτIU,1. (36)

The global direction of the LoS path is dU,1 = −dr,1 = (pI−
pU)/vcτIU,1, whilst the local one is ḋU,1 = d(φU,1, θU,1)
with the estimated AoDs {φU,1, θU,1}. These two direction
vectors also follow the transformation dU,1 = R(φU, θU)ḋU,1.
By applying the universal formulas of trigonometric functions
to the third row of (33), one can verify that


ḋU,1

�
1

1 − ο2
U

1 + ο2
U

+


ḋU,1

�
3

2οU

1 + ο2
U

=


dU,1

�
3
, (37)

where οU � tan(θU/2). Clearly, there exist two solutions
of οU to the quadratic equation (37). By substituting these
two solutions back into the first two rows of (33), one can

correspondingly derive two solutions of ϕU � tan(φU/2). The
incorrect solution of {ϕU, οU} can be immediately discarded
only when it obviously falls outside the feasible region. In this
case, the additional information from the NLoS components
of HIU,k is necessary to help obtaining the precise estimates
of orientation angles. For the ith (i ∈ {1, 2}) candidate�
φ

(i)
U , θ

(i)
U

	
, the scatterers between the IRS and UE can be

localized similarly as in (34):

sIU,�r =
1
2

��
d(i)

U,�r
−dr,�r

� �
d(i)

U,�r
dr,�r

�†
(pI − pU)

�
+

1
2

(pU + pI), (38)

where d(i)
U,�r

= RU

�
φ

(i)
U , θ

(i)
U

�
ḋU,�r . The corresponding time

delay τ
(i)
IU,�r

is then computed. Recalling that the exact estimate
of τIU,�r has been obtained by (35), the correct estimates of
orientation can be determined as

nU =d
�
φ

(i	)
U , θ

(i	)
U

�
, i	 =arg min

i∈{1,2}

��τ (i)
IU,�r

−τIU,�r

��. (39)

VI. NUMERICAL RESULTS

The typical settings of simulation parameters are listed here:
NI = 36 (6 × 6), NB = NU = 36 (6 × 6), Mtr = Qtr =
16 (4 × 4); K = 128, fs = 0.32 GHz, fc = 28 GHz; LBI =
LIU = 2;7 φB(U),�t(r) ∈ 
−π

3 , π
3

�
, θB(U),�t(r) ∈ 


π
6 , 5π

6

�
,

τBI(IU),�t(r) ∈ �
0, 10−7sec

�
, αBI(IU),�t(r) ∼ CN (0, 1). The

detailed settings of the example conformal IRS topologies
are tabulated in Table I. The LS, Direct, wideband direct
(W-Direct) and wideband subspace (W-Subspace) schemes
proposed in Section III. B, Section IV. A, Section IV. B. 1)
and Section IV. B. 2), respectively, are simulated. Apart from
the LS and W-Subspace schemes that can be combined with
the All/Pair decoupling modes of (17), (18), respectively, the
other schemes default to the Pair mode.

Table II compares the performance of different beam-
forming schemes with random IRS training patterns.8 The
performance of OMP is limited by its codebook resolution
(102 × 102), which is less sensitive to the noise level. As the
SoIs generally cover the angular parameters, the DFT beam-
forming achieves the best accuracy with a received SNR
7.7 dB and 6.3 dB higher than those of the random and
On-Off counterparts, respectively. Hereinafter, we design the
beamformers in a form of DFT matrices, determining their
SoIs based on the coarse estimates from the On-Off scheme
with one extra training frame.

7One can leverage the principal component analysis or minimum length
description to estimate the number of paths [52]. To facilitate the evaluation
of parameter recovery performance, LBI, LIU are assumed to be a priori
known or perfectly estimated.

8The noise Nk ∼ CN (0, σ2
n) is set with a fixed power level σ2

n; �(φ),
�(θ) denote the average rooted mean square error (RMSE) of {φB(U),�t(r)

}
and {θB(U),�t(r)

}, respectively; the signal-to-noise ratio (SNR) is defined as

�Yk − Nk�2
F/�Nk�2

F. The random and On-Off schemes apply arbitrary
and 0-1 coefficients, respectively, across (Ptr + 1) frames; the DFT scheme
uses 0-1 coefficients for a coarse estimation of one frame, followed by DFT
coefficients with optimized SoIs for a fine estimation of Ptr frames. All the
beamformers are normalized to have identical Frobenius norms.
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TABLE I

TYPICAL SIMULATION SETTINGS OF CONFORMAL IRS TOPOLOGIES

Fig. 3. RMSE of the decoupled channel parameters vs. SNR, Nh = Nv = 6,
Ptr = 48, � = 1.0.

Fig. 4. RMSE of the decoupled channel parameters vs. the number of training
frames, Nh = Nv = 6, SNR = 30 dB, � = 1.0.

Fig. 3 plots the RMSEs of the decoupled channel parameters
on the IRS for the LS scheme versus the received SNR with
Ptr = 48. The performance of the LS scheme improves
exponentially with respect to the increasing SNR. Moreover,

the LS-Pair version generally outperforms the LS-All version,
benefiting from the additional power radiation information.
The only exception is the elevation angle recovery for the
CyA, which is due to the fact that the power radiation pattern
of the CyA’s vertical linear subarrays is a scalar coefficient
that cannot be utilized effectively.

Fig. 4 plots the RMSEs for the LS scheme versus the
number of training frames (Ptr ≥ NI) with SNR = 30 dB.
By availing of more temporal measurements, the estimation
accuracy can be effectively enhanced by an order of mag-
nitude. Furthermore, the marginal benefit of increasing the
training overhead gradually decreases as Ptr tends to larger
values.

Fig. 5 plots the RMSEs for the OMP and Direct schemes
in (22), (25) versus the received SNR with Ptr = 25.9 Due to
the dominant complexity of iterative optimization, the Direct
scheme can achieve high estimation accuracy comparable to
the LS scheme with much fewer measurements. By contrast,
the OMP scheme works well in the low-SNR region, but hits
a performance bottleneck in the high-SNR region. This stems
from the matching error of finite-resolution codebooks.

Fig. 6 plots the RMSEs for the OMP and Direct schemes
versus the number of training frames with SNR = 30 dB. With
dynamical computational complexity, the Direct scheme per-
forms robustly against the varying amount of measurements;
even a drastic decrease of Ptr will not result in a significant
performance deterioration. The OMP scheme naturally cannot
benefit much from the increased training overhead due to the
limitation of codebook resolution.

Fig. 7 plots the RMSEs for the W-Direct and W-Subspace
schemes versus the received SNR with Ptr = 16, Ktr = 6.
By exploiting the information of frequency-dependent IRS
training patterns, the wideband training schemes can compen-
sate for the performance gap caused by the limited quantity of
measurements. Concretely, the W-Direct scheme outperforms
the W-Subspace scheme for the SA, while the latter works
better for the CyA. This can be explained as follows: the
CyA provides much less phase shift and power radiation
information than the SA due to its repetitive row/column
arrangement (see Fig. 2), whilst the optimization-based direct
scheme entails higher requirements for the array structural
features than the algebraic subspace scheme.

Fig. 8 plots the RMSEs for the W-Direct and W-Subspace
schemes versus the number of training subcarriers with an
SNR = 30 dB. As Ktr increases, the proposed schemes

9The hierarchical codebook of the OMP scheme consists of two levels; each
level has an elevation/azimuth resolution of 20× 40 and 30× 30 for the SA
and CyA, respectively. The corresponding window length are 2×4 and 3×3,
respectively.
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT BEAMFORMING SCHEMES

Fig. 5. RMSE of the decoupled channel parameters vs. SNR, Nh = Nv = 6,
Ptr = 25, � = 1.0.

Fig. 6. RMSE of the decoupled channel parameters vs. the number of training
frames, Nh = Nv = 6, SNR = 30 dB, � = 1.0.

achieve improved estimation performance with gradually
diminishing marginal benefits, which is similar to the per-

Fig. 7. RMSE of the decoupled channel parameters vs. SNR, Nh = Nv = 6,
Ptr = 16, Ktr = 6, � = 1.0.

Fig. 8. RMSE of the decoupled channel parameters vs. the number of training
subcarriers, Nh = Nv = 6, SNR = 30 dB, Ptr = 16, � = 1.0.

formance trend versus Ptr as in Figs. 4, 6. This indicates
that one can select only a small part of subcarriers to ensure
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Fig. 9. RMSE of the decoupled channel parameters vs. the number of paths,
Nh = Nv = 6, SNR = 30 dB, � = 1.0; LS: Ptr = 48, Ktr = 1;
W-Subspace: Ptr = 16, Ktr = 6.

Fig. 10. RMSE of the decoupled channel parameters vs. the power radiation
coefficient, Nh = Nv = 6, SNR = 30 dB; LS: Ptr = 48, Ktr = 1;
W-Subspace: Ptr = 16, Ktr = 6.

the training efficiency while controlling the computational
overhead. Considering the performance-complexity efficiency
of the proposed schemes, we leverage the LS and W-Subspace
schemes hereinafter to evaluate the performance of channel
estimation and environment mapping.

Fig. 9 plots the RMSEs versus the number of propagation
paths, where the LS and W-Subspace schemes are performed
with Ptr = 48, Ktr = 1 and Ptr = 16, Ktr = 6, respectively.
As the total number of cascaded channel paths increases,
the estimation error generally shows an upward trend. More
specifically, when LBI increases and LIU remains unchanged,
the parameter decoupling accuracy of HBI,k gradually wors-

Fig. 11. RMSE of the environment mapping and user localization vs. SNR,
Nh = Nv = 6, Ktr = 6, � = 1.0; W-Subspace: Ptr = 16, LS: Ptr = 48.

Fig. 12. RMSE of the environment mapping and user localization vs. the
power radiation coefficient, Nh = Nv = 6, Ktr = 6, SNR = 30 dB;
W-Subspace: Ptr = 16, LS: Ptr = 48.

ens, whilst that of HIU,k may experience a slight improvement
(in conditions of small LBI, LIU) followed by a continu-
ous deterioration, and vice versa. This can be explained as
follows: too many mixed signal components naturally intro-
duce negative uncertainties and disturbances into the channel
estimation; however, by moderately adding more cascaded
phase/amplitude constraints of a particular path, the recovery
precision of this path can be effectively improved.

Fig. 10 plots the RMSEs versus the IRS power radiation
coefficient with SNR = 30 dB. As � increases from 0 to 4.0,
the performance of the All mode continues to deteriorate,
whilst that of the Pair mode first improves and then wors-
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TABLE III

COMPUTATIONAL COMPLEXITY OF CHANNEL ESTIMATION APPROACHES

ens. The former does not rely on the cascaded amplitude
information from the radiation pattern of conformal IRSs,
while the latter depends on effective amplitude constraints
with an appropriate value of �. In conclusion, a too small
power radiation coefficient cannot lead to significant amplitude
variations along the array aperture, whilst a too large one may
cause a disappearance of weak signal responses at some unit
cells.

Fig. 11 plots the RMSEs of the environment mapping
applications versus the received SNR, where the LS and
W-Subspace schemes are applied to a wideband system with
Ktr = 6 training subcarriers.10 With the exactly decoupled
channel parameters, the proposed schemes can support accu-
rate localization and orientation with resolutions of lower than
1 cm and 0.1◦, respectively. By exploiting the additional infor-
mation of IRS training coefficients, the W-Subspace scheme
can achieve remarkable performance close to that of the
LS scheme with only one-third of training measurements.

Fig. 12 plots the RMSEs of the environment mapping versus
the coefficient of IRS power radiation with SNR = 30 dB.
Since the channel estimation results can be averaged among
multiple subcarriers, the LS scheme achieves superior perfor-
mance. Naturally, the localization and orientation precision
with respect to an increasing � shows a variation tendency sim-
ilar to the parameter recovery curves under All/Pair decoupling
modes as in Fig. 10. This indicates that the specific circuit
implementation of IRS unit cells significantly affects the
reliability of channel estimation, as well as, the environment
mapping.

Finally, Table III tabulates the computational complexity of
the proposed channel estimation schemes. Provided with suf-
ficient training frames or subcarriers, the LS and W-Subspace
schemes perform robustly with fixed computational overhead.
To compensate for the performance deterioration from lim-
ited training resources, the (W-)Direct scheme works with a
dynamically adjustable complexity with respect to the flexible
termination threshold. The complexity and performance of the
BALS scheme heavily depend on its iteration threshold. Under
most simulation conditions of limited training overhead, the
BALS algorithm cannot work satisfactorily to return effective
estimates of the channel parameters.

VII. CONCLUSION

We considered the channel estimation problem and envi-
ronment mapping applications of IRS-empowered mmWave

10The device coordinates and orientations are randomized such that the
channel parameters fall into the predefined distribution ranges. The LoS and
NLoS paths are randomized with maximum length bounds of 10 m and 20 m,
respectively.

MIMO-OFDM systems. In order to obtain accurate envi-
ronmental information, we proposed a novel 3-D conformal
IRS architecture composed of reflective unit cells arranged
on a curved surface. We modeled the training signals as a
third-order CP tensor, transforming the channel estimation
problem into a tensor factorization task. By fully exploiting
the spatial and frequency characteristics of conformal IRSs,
we develop multiple channel estimation schemes that can
apply to different condition of allocated training resources
with the algebraic subspace and iterative optimization tech-
niques. Based on the 3-D array topology of conformal IRSs,
we achieved en exact decoupling of multipath parameters
without estimation ambiguities. Finally, we implemented the
environment mapping applications, determining the coordi-
nates and orientations of scatterers and users. Numerical
results showed that the proposed channel estimation schemes
can precisely retrieve the channel parameters at the conformal
IRS side, leading to a remarkable resolution of environment
mapping.

APPENDIX

DERIVATIVES OF (20)

The first-order partial derivative of eg,� in (20) with respect
to φt,�t is written as

∂eg,�

∂φt,�t

=
∂eg,�

∂gI,cas,�

∂gI,cas,�

∂φt,�t

=
�

1
�gI,cas,��2

INI −
gI,cas,�gT

I,cas,�

�gI,cas,��3
2

�
∂gI,cas,�

∂φt,�t

,

(40)

where the nth entry of the derivative of gI,cas,� with respect
to φt,�t is written as

∂[gI,cas,�]n
∂φt,�t

=
�

2
νT

n

∂d(φt,�t , θt,�t)
∂φt,�t

ε
�
νT

nd(φt,�t , θt,�t)
�

× f
�
2−1
+

�
νT

nd(φt,�t , θt,�t)
�

× f
�
2
+

�
νT

nd(φr,�r , θr,�r)
�
, (41)

with ε(·) being the Heaviside step function. Similarly, the
partial derivative of eg,� with respect to θt,�t can be calculated
by following (40), (41), except for the term of ∂d(φt,�t ,θt,�t)

∂θt,�t
.

The first order derivatives of d(φt,�t , θt,�t) with respect to
φt,�t , θt,�t are respectively expressed as follows:

∂d(φt,�t , θt,�t)
∂φt,�t

= [− sinφt,�t sin θt,�t , cosφt,�t sin θt,�t , 0]T ,

(42a)
∂d(φt,�t , θt,�t)

∂θt,�t

= [cosφt,�t cos θt,�t , sin φt,�t cos θt,�t ,

− sin θt,�t ]
T . (42b)
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