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Abstract— This paper studies the impact of additional pilot
overhead for covariance matrix estimation in a time-division
duplexed (TDD) massive multiple-input multiple-output (MIMO)
system. We choose average uplink (UL) and downlink (DL)
spectral efficiencies (SEs) as performance metrics for the massive
MIMO system, and derive closed form expressions for them
in terms of the additional pilot overhead. The expressions
are derived by considering linear minimum mean squared
error (LMMSE)-type and element-wise LMMSE-type channel
estimates that represent LMMSE and element-wise LMMSE
with estimated covariance matrices, respectively. Using these
expressions, a detailed theoretical analysis of SE behavior as a
function of pilot overhead for both LMMSE-type and element-
wise LMMSE-type channel estimation are presented, followed
by simulations, which also demonstrate and validate theoretical
results.

Index Terms— Spectral efficiency, massive multiple-input
multiple-output (MIMO), covariance estimation, channel estima-
tion, pilot contamination.

I. INTRODUCTION

AMULTI-USER massive multiple-input multiple-output
(MIMO) system comprises multiple cells, each hav-

ing a base station (BS) with a large number of anten-
nas (hundreds) to serve multiple users (tens) within the cell.
It is considered to be one of the key technologies for the
fifth-generation (5G) cellular systems due to the consider-
able improvement in spectral efficiency (SE) through spatial
multiplexing [1]–[5] achieved with low computational com-
plexity [1], [6], [7]. However, acquiring channel state infor-
mation (CSI) at the base station (BS) is essential to realize the
benefits of a massive MIMO system.

We consider a time-division duplexing (TDD) massive
MIMO system where the CSI is acquired through uplink (UL)
pilots. In time-variant channels, the channels in two different
coherence blocks, which is a collection of symbols within
a coherence time and bandwidth, are uncorrelated. Conse-
quently, the channel has to be estimated in each coherence
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block. The number of orthogonal pilots available for channel
estimation in a coherence block is limited by the number of
available symbols in the coherence block that are not reserved
for UL data and DL data, and as a result, UL pilot sequences
need to be reused by users across the cells, causing the pilot
contamination problem [1], [8], [9].

Despite the presence of pilot contamination, under the
assumption that the covariance matrices of interfering users
are asymptotically linearly independent to each other, the sum
rate of the massive MIMO system has been proven to
be unbounded [10]. However, the authors assume that
contamination-free covariance matrices of individual users
are available at the BS, while, in practice, these covariance
matrices also have to be estimated at the BS. Covariance
matrix estimation in a multi-cell TDD massive MIMO system
is a non-trivial task because the channel estimates from which
the covariance matrix estimates are obtained are themselves
contaminated. Naively utilizing the contaminated channel esti-
mates in a sample covariance estimator will result in the target
user covariance matrix estimate containing the covariance
matrices of the interference users. The algorithm that estimates
the target covariance matrix in such a setup needs additional
information from the users to isolate the target user covariance
from the contaminated covariance; this is typically done using
additional pilots.

Methods for estimating the individual covariance matrices in
the presence of pilot contamination have been recently studied
in [11]–[16]. In all these works, the authors assume that
the channel covariance matrices are constant across multiple
coherence blocks, and then, the observations from a few of
these coherence blocks are used to estimate the covariance
matrices. In [11], the authors first estimate the angle-delay
power spread function from the contaminated channel esti-
mates of multiple coherence blocks, then use this function
for supervised/unsupervised clustering of the multipath com-
ponents belonging to the target user. Finally, they use the
clusters to estimate the spatial covariance matrix of the target
user. In [14], the authors develop a method where the pilot
allocation is changed in each coherence block. The channel
estimates obtained from these blocks are then used to obtain
a maximum-likelihood estimate of the contamination-free
covariance matrix. Work [15] presents two methods which
avoid contamination in the covariance matrices by utilizing
dedicated orthogonal pilots for each user for estimating its
individual spatial covariance matrix. In [16], a new pilot
structure and a covariance matrix estimation method are devel-
oped that offer higher throughput and lower mean squared
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error (MSE) of the channel estimates compared to the method
in [15]. Although [16] requires additional pilots for estimating
the individual covariance matrices of each user, it does not
assume any additional structures on the covariance matrices
of the users unlike [11]–[13], and it does not require backhaul
communication between the neighboring cells unlike [14].
Moreover, since the additional pilots in [16] are not dedicated
to each user as in [15], the number of additional pilots in [16]
does not grow with the total number of users in the entire
system. Therefore, in this paper, we choose [16] to study the
performance of covariance estimation method in a massive
MIMO system. In particular, we emphasize the impact of
pilot overhead or choice of channel estimation method on the
performance of a massive MIMO system.

Utilization of the estimated covariance matrices for channel
estimation results in a trade-off for the system performance.
Indeed, increase of the number of additional pilots for esti-
mating the covariance matrices will not only improve the
quality of the covariance estimate (and hence, the channel
estimate) but also increase the pilot overhead. Consequently,
choosing the additional pilot overhead related to estimating
the covariance matrices becomes a key trade-off problem for
the system performance.

Except [11], in all the covariance estimation papers men-
tioned above, the authors derive SE expressions corresponding
to a single realization of covariance estimate. Such an SE is
achievable for a practical receiver which does not have perfect
covariance information. However, one can notice, these papers
use a numerically computed average SE as a performance
metric of covariance estimation method in a massive MIMO
system. Therefore, in this paper, we utilize the SE value that is
averaged over multiple realizations (ensemble average) of the
covariance estimates as a performance metric of the covariance
estimation method in [16]. We first derive average SE expres-
sions for two types of channel estimation methods namely:
(1) LMMSE-type and (2) element-wise LMMSE-type channel
estimation methods, that use estimated covariance matrices.1

Note that, in this paper, we use LMMSE-type/element-wise
LMMSE-type to denote the channel estimation with estimated
covariance matrices, and LMMSE/element-wise LMMSE to
denote channel estimation with true covariance matrices.
Using the derived expressions, we demonstrate the impact
of pilot overhead and channel estimation method on the
performance of the massive MIMO system with imperfect
covariance information at BSs.

The following are the contributions of this paper.

• We first derive closed-form expressions for the average
UL and DL spectral efficiencies when the LMMSE-type
and element-wise LMMSE-type channel estimates are
used in a maximum ratio combiner (MRC) UL receiver,
and in a matched filter precoding DL transmitter.

• Using theoretical and simulation studies on the derived
SE expressions, we establish the fact that the number
of additional pilots for covariance estimation is a key
trade-off parameter that needs to be chosen optimally.

1Some preliminary results are also reported in [17].

• Using these expressions, we then quantitatively compare
the performance of the element-wise LMMSE-type chan-
nel estimate with the LMMSE-type channel estimate.
To the best of our knowledge, this is the first work that
quantitatively compares the average UL/DL SE obtained
with LMMSE-type and element-wise LMMSE-type
estimates.

The paper is organized as follows. In Section II, we describe
the system model along with a brief review of the channel
estimation and covariance matrices estimation methods we
want to study. Section III reports the derivations of the
closed-form expressions for the UL and DL SEs for both the
channel estimation techniques described above. In Section IV,
we present a detailed theoretical discussion on the impact of
pilot overhead and channel estimation technique on massive
MIMO. In Section V we provide the simulation results that
demonstrate the theoretical conclusions made in Section IV.
We conclude this work in Section VI. Technical proofs of
lemmas and theorems in the paper appear in appendices at the
end of the paper.

Notation: We use boldface capital letters for matrices,
and boldface lowercase letters for vectors. The superscripts
(·)∗, (·)ᵀ, and (·)H denote element-wise conjugate, transpose,
and Hermitian transpose operations, respectively. Moreover,
CN (m,R) denotes (circularly symmetric) complex Gaussian
random vector with mean vector m and covariance matrix
R, while W(N,R) denotes Wishart random matrix with N
degrees of freedom and R is the covariance matrix that cor-
responds to underlying Gaussian random vectors. In addition,
U [x1, x2] stands for the uniform distribution between x1 and
x2. The element in ith row and jth column of the matrix A is
denoted as [A]ij , I stands for an identity matrix (of appropriate
size), diag(A) is a diagonal matrix whose diagonal elements
are same as the diagonal elements of the matrix A. We use
tr(·) to denote trace of a matrix, ‖·‖ to denote l2 norm of a
vector or a matrix, i.e., Frobenius norm, and E{·} stands for
the mathematical expectation. Finally, the symbol δij is the
Kronecker delta such that δij = 1 if i = j, and 0 otherwise.

II. SYSTEM MODEL

We consider a massive MIMO system with L cells, each
having a BS with M antennas and serving K single-antenna
users. We make a realistic assumption that the channels
between users and BSs are spatially correlated [18]. The
channel between user (l, k) (kth user in lth cell) and BS
in the jth cell is denoted as hjlk ∈ C

M and is assumed to
be distributed as CN (0,Rjlk), where Rjlk � E{hjlkhH

jlk} is
the spatial covariance matrix. We consider the block-fading
model where the channel is assumed to be constant over the
coherence bandwidth Bc and coherence time Tc. In other
words, the channel is assumed to be constant over a coherence
block containing τc = BcTc symbols.

We consider TDD transmission and each coherence block is
divided into slots for UL pilots, UL and DL data. The number
of data symbols in the UL and DL time slot is denoted as Cu

and Cd, respectively. The channel is assumed to be reciprocal,
i.e., the DL channel between BS j and user (l, k) can be
written as h∗

jlk . This is represented in Fig. 1(a).
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Fig. 1. Time frequency grid and pilot positioning.

We consider two types of UL pilots, namely, (i) pilots
for estimating the channel (also referred to as ChEst pilots)
and (ii) pilots for estimating the covariance matrix (referred
to as CovEst pilots). Both ChEst pilots and CovEst pilots are
assumed to be of length P symbols.

The spatial covariance matrices are assumed to be con-
stant over a considerably longer time-interval and bandwidth
than a single coherence block [11], [14]–[16], [19].2 Specif-
ically, we assume that the covariance matrices are coherent
over the time-interval Ts and system bandwidth Bs, which
implies that they can be assumed to be constant over τs =
BsTs/τc coherence blocks (usually several tens of thousands
of blocks in practice). This time-frequency grid over which
the second-order statistics of the channel are assumed to be
constant is illustrated in Fig. 1(b).

Each of the τs coherence blocks contain ChEst pilots for
channel estimation, whereas only NR out of the τs coherence

2Note that, according to [19], this assumption is valid of urban and rural
environment. Howeever, this is questionable for indoor scenarios.

Fig. 2. Coherence block with additional CovEst pilots.

blocks contain CovEst pilots in addition to the ChEst pilots (as
can be seen in Fig. 1(b)). The coherence blocks that contain
the CovEst pilots are depicted in Fig. 2.

The UL received signal, Yj [n] ∈ CM×Cu , in the nth

coherence block at BS j is given as

Yj [n] =
L∑

l=1

K∑
k=1

√
μhjlkx

ᵀ
lk[n] + Nj [n] (1)

where xlk ∈ CCu is the signal transmitted by user (l, k),
Nj ∈ CM×Cu is the additive white Gaussian noise (AWGN)
at the BS, and μ is the UL transmit power. The transmitted
data xlk is assumed to be distributed as xlk ∼ CN (0, I)
whereas the elements of Nj are assumed to be identically
and independently distributed (i.i.d) as CN (0, 1).

In the DL, the received signal zju[n] ∈ CCd at user (j, u)
in the nth coherence block can be written as

zju[n] =
L∑

l=1

K∑
k=1

√
λ(hH

jlublk)dlk[n] + e[n]

where dlk ∈ CCd is the payload data from BS l to its
user (l, k), blk ∈ CM is the corresponding precoding vector
normalized such that the average transmitted power is λ,
i.e., E{‖blk‖2} = 1, and e ∈ CCd is the AWGN noise
distributed as CN (0, I).

A. Channel Estimation

A dedicated set of P (≥ K) symbols is allocated to
UL pilots for channel estimation in each coherence block,
as shown in Figs. 1(a) and 2. In other words, let pk ∈ CP

denote the ChEst pilot sequence used by the kth user in any
of the L cells. Then, for another user m in the same cell,
we have pH

k pm = Pδkm. We assume that the same P pilots
are reused in each cell and each user is randomly allocated
one of these pilots for channel estimation.

The pilot transmissions in all cells are assumed to be
synchronized. Then, the received signal at BS j during pilot
transmissions in the nth coherence block (denoted as Y(p)

j [n])
can be written as

Y(p)
j [n] =

L∑
l=1

K∑
k=1

√
μhjlkp

ᵀ
k + N(p)

j [n] (2)

where N(p)
j [n] ∈ CM×P is the noise during pilot transmission.



KOCHARLAKOTA et al.: IMPACT OF PILOT OVERHEAD AND CHANNEL ESTIMATION 8245

We consider LMMSE and element-wise LMMSE tech-
niques for estimating hjlk from the observed signal Y(p)

j

given in (2). In what follows, we first review these estimation
techniques.

1) LMMSE Channel Estimation: From (2), the least-squares
(LS) channel estimate of user (j, u) at BS j in the nth coherent
block (denoted as ĥLS

jju[n]) can be obtained as follows3

ĥLS
jju[n] = argmin

g
‖Y(p)

j [n] −√
μgpᵀ

u‖2

= hjju +
∑
l �=j

hjlu +
1

P
√

μ
N(p)

j [n]p∗
u. (3)

Using this LS channel estimate that serves as a sufficient
statistic for hjju, the resultant LMMSE estimate can be easily
derived to be [15]

ĥLMMSE
jju [n] = RjjuQ−1

ju ĥLS
jju[n]

Qju � E{ĥLS
jju[n](ĥLS

jju[n])H} =
L∑

l=1

Rjlu +
1

Pμ
I.

(4)

Although the channel estimates in the above equation
assume that the covariance information is known, in practice
it has to be estimated at the BS. Therefore, it is reasonable
to replace these matrices with estimated covariance matrices
(R̂jju, and Q̂ju) to get LMMSE-type channel estimate as
follows

ĥjju[n] = R̂jjuQ̂−1
ju ĥLS

jju[n] (5)

For known covariance case, the computational complexity
in evaluating (4) is O(M3). Furthermore, the computational
complexity of a sample covariance matrix of an M×1 channel
vector is O(NM2), where N is the number of samples.
Therefore, the total computational complexity involved in
evaluating (5) is O(M3 + M2 NR + M2 NQ), where NR

and NQ are the number of pilot sequences (samples) used for
computing R̂jju and Q̂ju, respectively.

2) Element-Wise LMMSE Channel Estimation: An alter-
native approach for LMMSE channel estimation is to use
the element-wise LMMSE estimate; this technique requires a
fewer number of samples/pilots for the covariance estimation
that does not grow with M [10].

The element-wise LMMSE estimate of the channel can be
obtained as

[ĥel−LMMSE
jju [n]]p =

[Sjju]pp

[Pju]pp
[ĥLS

jju[n]]p, p ∈ {1, . . . , M}

where Sjju � diag(Rjju) and Pju � diag(Qju). The
element-wise LMMSE-type estimate with estimated covari-
ance matrices (Ŝjju, and P̂ju) can be written as

[ĥel
jju[n]]p =

[Ŝjju]pp

[P̂ju]pp

[ĥLS
jju[n]]p, p ∈ {1, . . . , M} (6)

3As the channel observations, in this case, are linear measurements in
gaussian noise, one should note that this is also an MMSE estimator.

Here, each diagonal element of Ŝjju (P̂ju) is computed
using a sample variance estimator of the corresponding ele-
ment of the channel vector. If we use NR (NQ) number of
channel samples for estimating Ŝjju (P̂ju), the computational
complexity involved in evaluating each element of ĥel

jju[n] is
O(NR + NQ). Therefore, the total computational complexity
involved in evaluating ĥel

jju is O(MNR + MNQ). Element-
wise LMMSE-type channel estimation substantially reduces
the computational complexity at the cost of some performance
degradation caused due to the fact that we ignore non-diagonal
elements of R̂jju and Q̂ju. Later in Section V, we compare the
performance of these two channel estimation methods using
simulations.

B. Covariance Matrix Estimation

Several methods to address the covariance matrix estimation
problem have been proposed in literature [11], [14]–[16].
However, among these methods, only the estimators in [15]
and [16] are in closed-form and consequently, lend themselves
to mathematical analysis. Moreover, since [16] is seen to out-
perform [15], we select the estimator in [16] for performance
analysis when the estimate is used for both LMMSE-type and
element-wise LMMSE-type channel estimation. We assume
that the BSs have knowledge of the random phase sequences.

In this subsection, we briefly review the pilot structure
introduced in [16] and the corresponding spatial covariance
estimation method. The objective is to compute a pair of R̂jju

and Q̂ju (or Ŝjju and P̂ju) for each set of τs contiguous
coherence blocks.

To obtain Q̂ju, since the matrix Qju is defined as
the covariance matrix of ĥLS

jju[n], we use these LS chan-
nel estimates from multiple coherence blocks in a sam-
ple covariance estimator. We use a set of NQ (≥ M )
number of LS estimates for computing Q̂ju. Therefore,
we have the following unbiased covariance estimator Q̂ju =
1

NQ

∑NQ

n=1 ĥLS
jju[n](ĥLS

jju[n])H . Similarly, the unbiased esti-
mate of Pju is obtained using a sample covariance estimator as
follows

[P̂ju]pp =
1

NQ

NQ∑
n=1

|[ĥLS
jju[n]]p|2, ∀p ∈ 1 . . .M.

For estimating Rjju and Sjju, as depicted by the red
coherence blocks in Fig. 1(b), each user transmits an additional
pilot sequence of length P symbols for NR out of the τs

coherence blocks. Specifically, the CovEst pilots, denoted as
{φlk[n]}NR

n=1, are transmitted by the user (l, k), with the pilot
sequence in nth coherence block given as a phase-shifted
version of the ChEst pilot, i.e., φlk[n] = ejθlnpk. The
phase-shifts {θln}NR

n=1 are (pseudo-)random and are generated
such that {θln}NR

n=1 is independent of the channel vectors
and satisfies E{ejθln} = 0 [16]. A random sequence that
satisfies both these properties is θln ∼ U [0, 2π). Furthermore,
the random phase sequences are assumed to be i.i.d across
cells.

Now, let Y(r)
j [n] be the received signal when the users

transmit the CovEst pilots φju[n]. Then, Y(r)
j [n] can be
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written as

Y(r)
j [n] =

L∑
l=1

K∑
k=1

√
μhjlkφᵀ

lk[n] + N(r)
j [n] (7)

where N(r)
j [n] is the AWGN noise at the BS that has the same

statistics as N(p)
j [n].

We denote LS channel estimates obtained from the pilots
pu and φju as ĥ(1)

jju[n] and ĥ(2)
jju[n], respectively. Using (2)

and (7) and by using the fact that φlk[n] = ejθlnpk, the LS
estimates can be straightforwardly obtained as [16]

ĥ(1)
jju[n] = hjju +

∑
l �=j

hjlu +
1

P
√

μ
N(p)

j [n]p∗
u (8)

ĥ(2)
jju[n] = hjju +

∑
l �=j

hjluej(θln−θjn)

+
1

P
√

μ
N(r)

j [n]p∗
ue−jθjn (9)

In the following subsections, we describe both cases of com-
plete and diagonal matrix estimation using the aforementioned
LS channel estimates.

1) Estimation of R̂jju: Note that the second and third terms
in (8), corresponding to the interference and noise, respec-
tively, are independent of the second and third terms in (9).
Consequently, the cross-correlation of ĥ(1)

jju[n] and ĥ(2)
jju[n]

can be easily shown to be same as the covariance matrix
Rjju [16]. Therefore, we can use the following unbiased
Hermitian-symmetric sample cross-covariance matrix as an
estimate for Rjju

R̈jju =
1

2NR

NR∑
n=1

ĥ(1)
jju[n]

(
ĥ(2)

jju[n]
)H

+
1

2NR

NR∑
n=1

ĥ(2)
jju[n]

(
ĥ(1)

jju[n]
)H

(10)

As NR → ∞, one can show that the estimated covariance
matrix converges in probability to the true covariance matrix,
i.e., R̈jju

P−→
NR→∞

Rjju. However, this unbiased covariance

estimator does not guarantee positive diagonal elements for
finite NR. Therefore, we consider a regularized estimate for
the covariance matrix given by

R̂jju = αRR̈jju + (1 − αR)Rb (11)

where Rb is an arbitrary symmetric positive definite bias-
matrix, and αR is a design parameter. Additionally, it is useful
to define R̄jju to denote the expected value of R̂jju as
R̄jju � E{R̂jju} = αRRjju + (1 − αR)Rb.

2) Estimation of Sjju: For element-wise LMMSE-type
estimation, it is sufficient to estimate the diagonal matrix
Sjju. Therefore, we use an unbiased Hermitian-symmetric
covariance estimate S̈jju (similar to R̈jju) as follows

[S̈jju]pp

=
1

2NR

NR∑
n=1

[ĥ(1)
jju[n]]p[ĥ

(2)
jju[n]]∗p

+
1

2NR

NR∑
n=1

[ĥ(2)
jju[n]]p[ĥ

(1)
jju[n]]∗p, ∀p ∈ 1 . . .M. (12)

A regularized estimate for Sjju is given by

Ŝjju = αRS̈jju + (1 − αR)diag(Rb). (13)

We define S̄jju as the expected value of Ŝjju, S̄jju �
E{Ŝjju} = αRSjju + (1 − αR)diag(Rb), for future use.

In summary, the BS needs to compute channel covariance
matrices for each set of τs coherence blocks in order to
obtain the LMMSE-type/element-wise LMMSE-type channel
estimates in each coherence block within the set.

III. AVERAGE UL AND DL SPECTRAL EFFICIENCIES

AS PERFORMANCE METRIC

In order to analyze the performance of the covariance
estimation algorithm in a massive MIMO system, we derive a
closed-form expression for a performance metric that captures
the impact of pilot overhead. Clearly, the performance of
a massive MIMO system directly depends on the quality
of channel covariance estimates. In the literature [14]–[16],
the achievable SE value is typically computed for a single set
of τs coherence blocks as a function of the estimated covari-
ance matrices corresponding to that set. Such an SE value
corresponding to a single realization of covariance matrices
is particularly important for designing practical receivers but
does not clearly capture the impact of covariance estimation.
Therefore, we consider average SE computed across different
realizations of the covariance matrices (ensemble average) as
the performance metric. We derive closed-form expressions
for average SE for both UL and DL data for LMMSE-type
and element-wise LMMSE-type channel estimation.4 Note that
the maximum ratio combining corresponds to a lower SE
value when compared to LMMSE combining [10]. Moreover,
the aim of the average SE-based performance metric derived
in this paper is to capture the impact pilot overhead but not
to present an achievable rate. Therefore, we use matched filter
precoding and maximum ratio combining for deriving the SE
expressions in the DL and UL communication, respectively.

A. Uplink Spectral Efficiency

In this section, the average SE for the UL channel of a target
user (j, u) is derived when the channel estimates are used
in a maximum ratio combiner at the BS. For the maximum
ratio combiner, the combining vector vju[n] can be written as
vju[n] = ĥjju[n] = ŴjuĥLS

jju[n], where

Ŵju =

⎧⎪⎨
⎪⎩

R̂jjuQ̂−1
ju , LMMSE-type channel estimate

ŜjjuP̂−1
ju , element-wise LMMSE-type

channel estimate.

For the sake of mathematical tractability, we make the
following assumptions

• R̂jju (Ŝjju) and Q̂ju (P̂ju) are each computed from
a different non-overlapping set of coherence blocks that
does not include nth block [15]. Consequently, the ran-
dom variables R̂jju/Ŝjju, Q̂ju/P̂ju, and ĥLS

jju[n] are
mutually uncorrelated.

4Note that, [14]–[16] utilize numerically computed average rate as a
performance measure for covariance matrix estimation method.
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• For the LMMSE-type channel estimate, NQ is assumed
greater than M , so that the distribution of Q̂−1

ju is
non-degenerate inverse Wishart.

The received combined signal is given by

vH
juyj =

√
μE{vH

juhjju}xju

+
√

μ(vH
juhjju − E{vH

juhjju})xju

+
∑
k �=u

√
μvH

juhjjkxjk

+
∑
l �=j

K∑
k=1

√
μvH

juhjlkxlk + vH
junj (14)

In (14), the first term corresponds to the signal component,
the second term is a result of the uncertainty in the array
gain, the third term corresponds to the non-coherent intra-
cell interference, the fourth term corresponds to the coherent
interference from pilot contamination, and the last term corre-
sponds to the additive noise component. Since the first term is
uncorrelated with the subsequent terms, a lower bound on SE
of the UL channel from user (j, u) to BS j can be obtained
as [15]

SE
(ul)
ju =

(
1 − P

Cu
− NRP

Cuτs

)
log2

(
1 + γ

(ul)
ju

)
, [bits/s/Hz]

where γ
(ul)
ju is given by

γ
(ul)
ju =

|E{vH
juhjju}|2∑

l,k

E{|vH
juhjlk|2} − |E{vH

juhjju}|2 + 1
μE{vH

juvju}

and the expectation E{·} is over the channel realizations.
In the pre-log factor, P/Cu accounts for ChEst pilots, and
NRP/Cuτs accounts for CovEst pilots. However, since we
assume that Ŵju and ĥLS

jju[n] are mutually independent,
we have E{·} = EW {EhLS{·}}, where EW is the expectation
over Ŵju, and EhLS is the expectation over the LS estimate.

Let Rs �
L∑

l=1

K∑
k=1

Rjlk + 1
μI. Then, the signal to interference

plus noise ratio (SINR) expression can be further simplified
to (15) [15], as shown at the bottom of the next page.

B. Uplink Spectral Efficiency When Ŵju = R̂jjuQ̂−1
ju

In this subsection, expressions for all the terms given in (15)
are derived for the case when Ŵju = R̂jjuQ̂−1

ju . In what
follows, ER{·} represents the expectation over R̂jju, EQ{·}
represents the expectation over Q̂ju, and EW {·} represents
the expectation over both R̂jju and Q̂ju. It should be noted
that, as already mentioned, we have assumed that R̂jju and
Q̂ju are estimated from different pilot resources (coherence
blocks) such that the estimates are independent to each other.
Therefore, ER{·} and EQ{·} can be evaluated independently.

Before analytically deriving the expectations for the terms
in (15), we present some useful lemmas.

Lemma 1: Given an arbitrary matrix A ∈ CM×M , and
for any mutually independent M-dimensional random vector
h distributed as CN (0,R), we have

E{hhHAhhH} = RAR + Rtr(AR) (17)

E{|hHAh|2} = |tr(AHR)|2 + tr(ARAHR). (18)
Proof: The proof is available in Appendix A.

Lemma 2: Given a Hermitian matrix C ∈ CM×M , an arbi-
trary matrix A ∈ CM×M , and a complex Wishart matrix,
X ∈ CM×M , distributed as W(N, I), we have

E
{
[X−1]ij

}
=

[I]ij
N − M

(19)

E
{
[X−1]ij [X−1]lk

}
=

[I]ij [I]lk + 1
N−M [I]lj [I]ik

(N − M)2 − 1
(20)

E{tr(X−2C)} =
N

(N − M)3 − (N − M)
tr(C) (21)

E{|tr(X−1A)|2} =
|tr(A)|2 + 1

N−M tr(AAH)
(N − M)2 − 1

. (22)

Proof: The proof is available in Appendix B.
Lemma 3: Given an arbitrary matrix A ∈ CM×M , we have

E{R̈jjuAR̈jju}
= RjjuARjju

+
1

2NR
Qjutr(AQju) +

1
2NR

Rjjutr(ARjju) (23)

E{|tr(R̈jjuA)|2}
= |tr(RjjuA)|2

+
1

2NR

{
tr(AQjuAHQju) + tr(ARjjuAHRjju)

}
(24)

Proof: The proof of this lemma uses Lemma 1 and is
presented in Appendix C.
Now we are ready to formulate the key theorem of this
subsection.

Theorem 1: The numerator term of (15) when Ŵju =
R̂jjuQ̂−1

ju is given by

EW {tr(ŴH
juRjju)}

= tr(WH
juRjju)

+
{

NQ

NQ − M
tr(W̄H

juRjju) − tr(WH
juRjju)

}
(25)

The first and second terms of the denominator in (15) are
given by

EW {tr(ŴjuQjuŴH
juRs)}

= tr(WjuQjuWH
juRs)

+
{

κ1tr(W̄juQjuW̄H
juRs) − tr(WjuQjuWH

juRs)

+
α2

Rκ1

2NR
Mtr(RsQju) +

α2
Rκ1

2NR
tr(Wju)tr(RsRjju)

}
(26)

and (16), as shown at the bottom of the next page, respectively.
Here, κ1 � NQκ2/(NQ − M), κ2 � N2

Q/((NQ−M)2−1),
W̄ju � R̄jjuQ−1

ju and Wlu � RjluQ−1
ju for all l = 1 to L.

Proof: We define a matrix Q̃ju as

Q̃ju � NQ(Q− 1
2

ju Q̂juQ
− 1

2
ju ). (27)
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It can be seen that Q̃ju is Wishart distributed,
i.e., W(NQ, I).

Using (27) and the fact that Ŵju = R̂jjuQ̂−1
ju , the numer-

ator term of (15) can be written as

EW {tr(ŴH
juRjju)}
= NQEW {tr(Q− 1

2
ju Q̃−1

ju Q− 1
2

ju R̂jjuRjju)}. (28)

Taking direct expectation over R̂jju in (28) and also using
Lemma 2, (25) can be obtained.

Proof of (26) and (16) is as follows. Substituting
Ŵju = R̂jjuQ̂−1

ju into the first and second terms in the
denominator of (15) and using Lemma 2, we get the following
equations

EW {tr(ŴjuQjuŴH
juRs)}

= κ1ER{tr(Q−1
ju R̂jjuRsR̂jju)} (29)

EW {|tr(ŴH
juRjlu)|2}

= κ2ER{|tr(Q−1
ju R̂jjuRjlu)|2}

+
κ1

NQ
ER{tr(Q−1

ju R̂jjuR2
jluR̂jjuQ−1

ju )}. (30)

Then using Lemma 3, and substituting (11) into (29)
and (30), we get (26) and (16), respectively.
Note that the expectation terms given in Theorem 1 contain
two components: (i) the component that corresponds to known
covariance information (first term of the right-hand side of
the equations) and (ii) a penalty component (all terms except
the first term of the right-hand side of the equations) due to
regularization of Rjju estimate and due to imperfect channel
covariance information. Note that for αR = 1, and as NR and
NQ tend to infinity, the penalty components of the expectation
terms vanish.

C. Uplink Spectral Efficiency When Ŵju = ŜjjuP̂−1
ju

In this subsection, we present the derivations for all the
terms given in (15) when Ŵju = ŜjjuP̂−1

ju . In what follows,
ES{·} represents the expectation over Ŝjju, EP {·} represents
the expectation over P̂ju, and EW {·} represents the expecta-
tion over both Ŝjju and P̂ju.

Before analytically deriving the expectations for the terms
in (15), we present some useful lemmas.

Lemma 4: Given a zero mean complex Gaussian 2 × 1
random vector h = [h1, h2]ᵀ with covariance matrix

R =
[
r11 r12

r21 r22

]

we can state that E{|h1|2|h2|2} = r11r22 + r12r21.
Proof: The proof of this lemma is straight forward to

obtain and we omit it due to lack of space.
Lemma 5: Given arbitrary matrices A1 ∈ CM×M ,

A2 ∈ CM×M , A ∈ CM×M , and a matrix Y = Z/2, where
Z is a diagonal matrix whose elements are i.i.d. χ2 random
variables with 2N -degrees of freedom (N > 2), we have

E{tr(Y−1A1Y−1A2)} = τ1tr(A1A2) + τ2tr(A1dA2d)
(31)

E{|tr(Y−1A)|2} = τ1|tr(A)|2 + τ2tr(AH
d Ad) (32)

where τ1 � 1/(N − 1)2, τ2 � τ1/(N − 2), A1d � diag(A1),
A2d � diag(A2), and Ad � diag(A).

Proof: The proof is available in Appendix D.
Lemma 6: Given an arbitrary matrix A ∈ CM×M and an

arbitrary diagonal matrix D ∈ RM×M , then

E{S̈jjuAS̈jju} = SjjuASjju +
1

2NR
A ◦ Qju ◦ Qju

+
1

2NR
A ◦ Rjju ◦ Rjju (33)

E{|tr(S̈jjuD)|2} = |tr(SjjuD)|2

+
1

2NR

M∑
p=1

M∑
q=1

[D(Qju ◦ Qju)D]pq

+
1

2NR

M∑
p=1

M∑
q=1

[D(Rjju ◦ Rjju)D]pq

(34)
Proof: The proof is available in Appendix E.

Now we are ready to formulate the key theorem of this
subsection.

Theorem 2: The numerator term of (15) when
Ŵju = ŜjjuP̂−1

ju is given by

EW {tr(ŴH
juRjju)}

= tr(W̄H
juRjju)

+
{

NQ

(NQ − 1)
tr(W̄H

juRjju) − tr(WH
juRjju)

}
(35)

γ
(ul)
ju =

|EW {tr(ŴH
juRjju)}|2

EW {tr(ŴjuQjuŴH
juRs)} +

L∑
l=1

EW {|tr(ŴH
juRjlu)|2} − |EW {tr(ŴH

juRjju)}|2
(15)

EW {|tr(ŴH
juRjlu)|2} = |tr(WH

juRjlu)|2 +
{

κ2|tr(W̄H
juRjlu)|2 − |tr(WH

juRjlu)|2 +
α2

Rκ2

2NR
tr(WluQjuWH

luQju)

+
α2

Rκ2

2NR
tr(WluRjjuWH

luRjju) +
κ1

NQ
tr(W̄H

juW̄juQjuWH
luWluQju) +

α2
Rκ1

2NQNR
Mtr(W2

jluQ
2
ju)

+
α2

Rκ1

2NQNR
tr(Wju)tr(W2

jluQjuRjju)
}

(16)
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The first and second terms of the denominator in (15)
are given by (36) and (37), as shown at the bottom of
the next page, respectively, where κ3 = N2

Q/(NQ − 1)2,
κ4 = κ3/(NQ − 2), Ss � diag(Rs), W̄ju � S̄jjuP−1

ju and
Wlu � SjluP−1

ju for all l = 1 to L.
Proof: We define the diagonal matrix P̃ju as follows

P̃ju � NQ(P−1
ju P̂ju). (39)

It can be seen that the elements of 2P̃ju are i.i.d. χ2 random
variables with 2N -degrees of freedom. Using (39) and the fact
that Ŵju = ŜjjuP̂−1

ju , the numerator term of (15) can be
written as

EW {tr(ŴH
juRjju)}

= NQEW {tr(P̃−1
ju P−1

ju ŜjjuRjju)}

= NQ

M∑
p=1

EP {[P̃−1
ju ]pp}ES{[P−1

ju ŜjjuRjju]pp}. (40)

Taking direct expectation over Ŝjju in (40) and using the
properties of inverse χ2 distribution, (35) can be obtained.

Proof of (36) and (37) is as follows. Substituting Ŵju =
ŜjjuP̂−1

ju and (39) into the first and second denominator terms
of (15) and using Lemma 5, we get the following equations

EW {tr(ŴjuQjuŴH
juRs)}

= κ3ES{tr(P−1
ju QjuP−1

ju ŜjjuRsŜjju)}
+ κ4ES{tr(P−1

ju ŜjjuSsŜjju)} (41)

EW {|tr(ŴH
juRjlu)|2}

= κ3ES{|tr(P−1
ju ŜjjuSjlu)|2}

+ κ4ES{tr(P−2
ju Ŝ2

jjuS2
jlu)}. (42)

Then using Lemma 6 and substituting (13) into (41)
and (42), we get (36) and (37), respectively.
Similar to Theorem 1, the penalty components of the expec-
tation terms given in Theorem 2 also vanish if αR = 1, and
as NR and NQ tend to infinity.

D. Downlink Spectral Efficiency

The DL spectral efficiency for user (j, u)
is given in this section for a matched filter

precoder, i.e., bju = ĥjju[n]/
√

E{‖ĥjju[n]‖2} =

ŴjuĥLS
jju/

√
E{‖ŴjuĥLS

jju[n]‖2}. Therefore, the received
signal at user (j, u) can be written as

zju =
√

λE{bH
juhjju}dju

+
√

λ(bH
juhjju − E{bH

juhjju})dju

+
∑
k �=u

√
λ(bH

juhjjk)djk

+
∑
l �=j

K∑
k=1

√
λ(bH

juhjlk)dlk + eju. (43)

Here, we assume that the scalar in the denominator of the

precoding vector,
√

E{‖ĥjju[n]‖2}, is a known constant at the

BS. The first term in (43) corresponds to the desired signal
component, the second term corresponds to the uncertainty in
the DL transmit array gain, the third term corresponds to the
non-coherent intra-cell interference, the coherent interference
from pilot contamination given by the fourth term, and the
last term represents the additive noise component. The second
term in (43) corresponds to the uncertainty in the DL transmit
array gain. Then, due to the similarity between the UL received
combined signal in (14) to the DL received signal, a lower
bound on DL channel SE of the user (j, u) can be easily
shown to be

SE(dl)
ju = log2

(
1 + γ

(dl)
ju

)
[bits/s/Hz],

where γ
(dl)
ju is given by (38), as shown at the bottom of

the next page, and R(dl)
s �

L∑
l=1

K∑
k=1

Rjlk. We utilize channel

reciprocity and avoid the use of DL pilots. Consequently, there
is no pre-log factor for the SE expression. The expectation
taken in all the terms of (38) is over the random matrix
Ŵju. However, Ŵju = R̂jjuQ̂−1

ju for the LMMSE-type
channel estimation and Ŵju = ŜjjuP̂−1

ju for the element-wise
LMMSE-type channel estimation. These expectation terms are
already presented in Theorems 1, and 2 for the LMMSE-type,
and element-wise LMMSE-type, respectively. Furthermore,
Rs should be replaced by R(dl)

s in computing the expectation
terms.

IV. MAIN DISCUSSION: IMPACT OF PILOT OVERHEAD

AND CHANNEL ESTIMATION

Based on the closed-form SE expressions derived in the
previous section, we have established a direct relation between
the average SE value and the parameters NR and NQ.
Thus, we discuss here the impact of these parameters on
the SE corresponding to the LMMSE-type and element-wise
LMMSE-type channel estimation. We also address the ques-
tion of how to choose between LMMSE-type and element-wise
LMMSE-type channel estimations.

It can be noted from the expectation terms in Theorems 1
and 2 that the penalty components due to imperfect covariance
information gradually vanish with an increase in NR and
NQ, but the penalty due to the regularization remains finite.
Furthermore, if ||Wju − W̄ju||/||Wju|| � 1 (i.e., if αR is
close to 1), one can state that these expectation terms converge
to the values that correspond to the known covariance case.
However, despite leading to an improvement in γ

(ul)
ju (due to

convergence of the expected values), an increase in NR also
causes a degradation in the pre-log factor of the derived UL
SE expression. Therefore, the choice of NR impacts UL SE
in two ways: (i) smaller the value of NR, higher the error in
covariance estimation and hence lower the value of UL SE
and (ii) larger the value of NR, higher the consumption of UL
resources and hence lower the value of UL SE. Whereas, due
to the absence of DL pilots, the DL SE does not degrade with
an increase in NR; it gradually rises to the DL SE value that
corresponds to the known covariance case. Larger NQ makes
both the UL and DL SE better due to the improved estimates
of Qju (or Pju). Therefore, given an SE requirement, the aim
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here is to choose minimum NR and NQ values that are
sufficient to provide the desired SE.

Since estimating Qju (or Pju) does not involve additional
pilot transmission, choosing NQ is not as critical as choosing
NR. Therefore, if we consider NQ as known, it is also
important to derive NR values that make the LMMSE-type
channel estimation preferable to the element-wise
LMMSE-type one, and vice-versa. By comparing the
UL/DL SINR values (in (15) or (38)) for the two channel
estimation techniques, we can compute a threshold, N̄R,
such that the element-wise LMMSE-type estimator is
preferable if NR < N̄R, and the LMMSE-type estimator is
preferable otherwise. Note that N̄R is different for UL and
DL covariance estimation. It can be obtained by equating the
SINR expressions for the LMMSE-type and element-wise
LMMSE-type channel estimation techniques (for UL and DL)
and solving the corresponding equation for NR. After some
straight forward algebra, N̄R can be obtained in the form

N̄R =
fc − ah

ag − fb
(44)

where b, c, g and h are given at the bottom of the next page
along with the following parameters

a =
(

NQ

NQ − M
tr(W̄H

juRjju)
)2

f =
(

NQ

(NQ − 1)
tr(W̄H

juRjju)
)2

S̄s = diag(R̄s); R̄s =

{
Rs, for UL

R(dl)
s , for DL

d =

⎧⎨
⎩

0, for UL
1
λ

, for DL.

Note that N̄R is a function of NQ which can take any
real value. Thus, if N̄R is negative for some value of NQ,

it means, for that particular choice of NQ, there is no valid NR

that makes the LMMSE-type channel estimation preferable.
Consequently, using (44), we can also compute a threshold
for NQ below which element-wise LMMSE-type channel
estimation is always preferred. However, deriving a theoretical
expression for such a threshold is extremely difficult. It can
be easily computed numerically.

Therefore, the closed-form expressions for average UL
and DL SE, for the LMMSE-type and element-wise
LMMSE-type channel estimation methods serve as tools for
choosing different design parameters, and also as a tool for
choosing a preferred channel estimation technique. In practice,
with approximate models of the covariance matrix of an
individual user in a massive MIMO system, the derived expres-
sions for average SE enables us to choose these parameters for
the desired UL and DL SE values.

In what follows, we validate the derived theoretical SE
expressions with simulated SE obtained by averaging over
multiple realizations of random covariance estimation matri-
ces. Then, we compare the theoretical SE expressions with
the SE expressions that correspond to known covariance case.
Finally, we also depict the impact of NR on the SE.

V. SIMULATION RESULTS

We consider a massive MIMO system with L = 7 cells,
each comprising a BS with M = 100 antennas and K = 10
users. The BSs are at a distance of 300 m apart from each
other, and the users are uniformly spaced at a distance of
120 m from the BS in their cells. The users that reuse the
same pilot in different cells are at the same position relative
to the corresponding BSs. The angular spread of the channel
cluster is assumed to be 20◦, within which the received
paths from a user are assumed to be uniformly distributed.
We consider a 3GPP urban macro (UMa) [20] scenario with
a non-line-of-sight (N-LOS) channel for simulating the path
loss model. The mean path loss of the received signal from a

EW {tr(ŴjuQjuŴH
juRs)}

= tr(WjuQjuWH
juRs) +

{
κ3tr(W̄juQjuW̄H

juRs) − tr(WjuQjuWH
juRs)

+
α2

Rκ3

2NR
tr

(
P−1

ju QjuP−1
ju {Rs ◦ Qju ◦ Qju} + P−1

ju QjuP−1
ju {Rs ◦ Rjju ◦ Rjju}

)
+ κ4tr(W̄juPjuW̄H

juSs)

+
α2

Rκ4

2NR
tr(SsPju) +

α2
Rκ4

2NR
tr(WjuSsSjju)

}
(36)

EW {|tr(ŴH
juRjlu)|2}

= |tr(WH
juSjlu)|2 +

{
κ3|tr(W̄H

juSjlu)|2 − |tr(WH
juSjlu)|2 +

α2
Rκ3

2NR

M∑
p=1

M∑
q=1

[Wlu(Qju ◦ Qju)Wlu]pq

+
α2

Rκ3

2NR

M∑
p=1

M∑
q=1

[Wlu(Rjju ◦ Rjju)Wlu]pq + κ4tr(W̄2
juS

2
jlu) +

α2
Rκ4

2NR
tr(W2

luP
2
ju) +

α2
Rκ4

2NR
tr(W2

luS
2
jju)

}
(37)

γ
(dl)
ju =

|EW {tr(ŴH
juRjju)}|2

EW {tr(ŴjuQjuŴH
juR

(dl)
s )} +

L∑
l=1

EW {|tr(ŴH
juRjlu)|2} − |EW {tr(ŴH

juRjju)}|2 + 1
λ

(38)
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user that is at a distance d ( in m) from the BS is given as
PL(f, d) = 32.4+20 log10 (f/1 GHz)+30 log10(d3D/1 m),
where d3D =

√
d2 + (hBS − hUT )2 m, f is the carrier

frequency, hBS is the height of a BS in m, and hUT is the
height of a UE in m. Therefore, the mean received SNR,
in dB, is given by SNR = PT−PL−10 log10(kToB)−NF ,
where PT is the transmit power, k is the Boltzmann constant,
T0 = 290 K is the nominal temperature, B is the signal
bandwidth, and NF is the noise figure in dB. In this setup,
we consider f = 3.4 GHz, PT = 6 dBm, B = 40 MHz,
NF = 10 dB, hBS = 25 m, and hUT = 1.5 m which results
in the mean SNR of the received signal from a user that is at
a distance d from the BS to be given by 46.93−30 log10 d3D.

The number of symbols that are dedicated for UL transmis-
sion within each coherence block is chosen to be Cu = 100
symbols. We choose the number of symbols used for the
ChEst (and also the CovEst) pilot to be P = 10. Second-order
statistics of the channel are assumed to be constant for τs =
25000 coherence blocks, and the UL transmit power is μ = 1,
and the DL transmit power is λ = 10. Additionally, we choose
αR = 0.95, and Rb = I. Sample averaging for all the
expectation terms is computed using 2000 trials for different
values of NR = {125, 250, 500, 1000, 2000, 4000, 8000}.

A. Uplink Spectral Efficiency

For this simulation example, we consider the UL SE
expressions that correspond to the two channel estimation
techniques: LMMSE-type channel estimation and the element-
wise LMMSE-type channel estimation, each in combination
with two beamforming techniques, which are MRC and ZF
combining.5 In Fig. 3, we plot the SE as a function of NR

for the two aforementioned channel estimation techniques and
beamforming techniques. Fig. 3(a) depicts the SE values for
NQ = 125 and Fig. 3(b) shows SE values for NQ = 4000.
In both the subplots, we present SE values corresponding to
known covariance matrices and theoretical SE values (only
for the MRC combining case) as well as simulated SE values

5In practice, ZF is a good choice for beamforming [21].

corresponding to the two channel estimation techniques that
use the estimated covariance matrices.

In Fig. 3, it can be noticed that the theoretical SE, cor-
responding to LMMSE-type channel estimation and MRC
combining, initially rises with NR to approach the SE that
corresponds to LMMSE channel estimation, followed by a
drop in the theoretical SE at NR = 8000. In contrast,
the theoretical SE, corresponding to element-wise LMMSE-
type channel estimation and MRC combining, approaches the
SE corresponding to element-wise LMMSE channel estima-
tion for NR value as low as 125 and reaches its maximum at
NR = 500. Then, the theoretical SE reduces linearly with
a further increase in NR as the pilot overhead increases.
Moreover, the simulated SEs match the theoretical values
for both the channel estimation techniques tested, thereby
validating the derivations presented in the paper.

The initial rise of the theoretical SEs is due to the improve-
ment in the covariance estimates caused by the increase in
the number of samples for estimation. However, a further
increase in NR results in a drop in UL SEs due to the pre-log
factor. Despite the improvement in estimation quality of the
covariance matrices, the SEs drop because of the consumption
of UL resources for the additional CovEst pilots. This validates
the theoretical analysis done in Section IV. Moreover, it should
be noted that the LMMSE should always perform better than
element-wise LMMSE as the correlation between antenna
elements’ channels are ignored in element-wise LMMSE.
However, due to imperfect covariance information, element-
wise LMMSE-type is not necessarily better than LMMSE-
type. Specifically, element-wise LMMSE-type is expected to
outperform the LMMSE-type when NR ≤ N̄R.

It can be seen from Fig. 3(a) and Fig. 3(b) that using
element-wise LMMSE channel estimation instead of LMMSE
channel estimation leads to a drop in SE. However, it is evident
that the element-wise LMMSE-type channel estimation com-
pletely outperforms the LMMSE-type channel estimation for
all the NR values and for NQ = 125. It can also be noted that
even for NQ = 4000, the element-wise LMMSE-type channel
estimation outperforms the LMMSE-type channel estimation

b = κ1tr(W̄juQjuW̄H
juR̄s) +

L∑
l=1

{
κ2|tr(W̄H

juRjlu)|2 +
κ1

NQ
tr(W̄H

juW̄juQjuWH
luWluQju)

}
−a + d

c =
α2

Rκ1

2
{
Mtr(R̄sQju) + tr(Wju)tr(R̄sRjju)

}
+

α2
Rκ2

2

L∑
l=1

{
tr(WluQjuWH

luQju) + tr(WluRjjuWH
luRjju)

}

+
α2

Rκ1

2NQ

L∑
l=1

{
Mtr(W2

jluQ2
ju) + tr(Wju)tr(W2

jluQjuRjju)
}

g = κ3

{
tr(W̄juQjuW̄H

juR̄s) +
L∑

l=1

|tr(W̄H
juSjlu)|2

}
+ κ4

{
tr(W̄juPjuW̄H

juS̄s) +
L∑

l=1

tr(W̄2
juS

2
jlu)

}
− f + d

h =
α2

Rκ3

2
tr

(
P−1

ju QjuP−1
ju {R̄s ◦ Qju ◦ Qju} + P−1

ju QjuP−1
ju {R̄s ◦ Rjju ◦ Rjju}

)
+

α2
Rκ4

2

{
tr(S̄sPju) + tr(WjuS̄sSjju)

+
L∑

l=1

tr(W2
luP

2
ju) +

L∑
l=1

tr(W2
luS

2
jju)

}
+

α2
Rκ3

2

M∑
p=1

M∑
q=1

{
[Wlu(Qju ◦ Qju)Wlu]pq + [Wlu(Rjju ◦ Rjju)Wlu]pq

}
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Fig. 3. UL SE for different channel estimation techniques.

for NR = 125. Moreover, for NQ = 4000, N̄R given in
Section IV matches exactly with the NR value for which the
LMMSE-type and element-wise LMMSE-type channel esti-
mations have the same performance. Therefore, the minimum
SE guaranteed for a massive MIMO system with imperfect
covariance information is the SE provided by the element-wise
LMMSE channel estimator.6 This SE can be achieved by using
element-wise LMMSE-type channel estimation with very low
values of NR and NQ, and with low computational complexity.
From simulations, we also observe the threshold value for NQ

to be 263, such that for NQ < 263, element-wise LMMSE-
type channel estimation always outperforms LMMSE-type
channel estimation.

In Fig. 3, it can also be seen that the SE simulation curves
corresponding to ZF combining behave similarly to the case
of MRC combining. ZF combining performs well only for

6Note that the objective is to have NR and NQ as low as possible for
guaranteeing a desired SE.

the larger number of pilots (NQ = 4000 and NR ≥ 500)
and needs additional computational complexity, but it does
not significantly improve the performance of element-wise
LMMSE channel estimation and it gives only marginally better
performance than that corresponding to MRC combining.
Moreover, for NQ = 4000, the SE curve for LMMSE-type
channel estimation crosses the SE for element-wise LMMSE-
type channel estimation closer to the N̄R value theoretically
computed for MRC combining (44). For large NR and NQ

values, ZF combining outperforms MRC combining. This is
due to better covariance estimates. Therefore, the SE expres-
sions derived in this paper serve as conservative bounds for
an achievable spectral efficiency of the system considered.

B. Downlink Spectral Efficiency

Similar to the UL example, in this simulation example,
we consider the DL SE expressions that correspond to the two
channel estimation techniques: LMMSE-type channel estima-
tion and the element-wise LMMSE-type channel estimation,
each in combination with two beamforming techniques, which
are matched filter precoding and ZF precoding. In Fig. 4,
we plot the SE as a function of NR for the two aforementioned
channel estimation techniques. Fig. 4(a) depicts the SE values
for NQ = 125, and Fig. 4(b) shows SE values for NQ = 4000.
We perform a study on these plots similar to the study done
in Subsection V-A.

It can be observed from Fig. 4 that the DL SE plots are
similar to the plots in Subsection V-A. However, unlike in
UL SE, an increase in NR does not result in a drop in
SE as there is no pilot overhead in DL. The simulated SEs
match the theoretical values for both the channel estimation
techniques used, thereby validating the derivations presented in
the paper. Moreover, for NQ = 4000, N̄R given in Section IV
matches exactly with the NR value for which LMMSE-type
and element-wise LMMSE-type channel estimations have the
same performance. From Fig. 4(a) and Fig. 4(b), the minimum
DL SE guaranteed for a massive MIMO system with imperfect
covariance information is the SE provided by element-wise
LMMSE channel estimator. This SE can be achieved by using
element-wise LMMSE-type channel estimation with very low
values of NR and NQ, with low computational complexity.
From simulations, we also compute the threshold value for NQ

to be 272, such that for NQ < 272, element-wise LMMSE-
type channel estimation always outperforms LMMSE-type
channel estimation.

It can also be noticed from Fig. 4 that the SE simulation
curves corresponding to ZF precoding behave similarly to the
case of matched filter precoding. ZF precoding performs well
only for the larger number of pilots (NQ = 4000 and NR ≥
500) and needs additional computational complexity, but it
does not significantly improve the performance corresponding
to element-wise LMMSE channel estimation, and it gives
only marginally better performance than that corresponding
to matched filter precoding. Moreover, for NQ = 4000,
the SE curve for LMMSE-type channel estimation crosses the
SE for element-wise LMMSE-type channel estimation closer
to the N̄R value theoretically computed for matched filter
precoding (44). For large NR and NQ values, ZF precoding



KOCHARLAKOTA et al.: IMPACT OF PILOT OVERHEAD AND CHANNEL ESTIMATION 8253

Fig. 4. DL SE for different channel estimation techniques.

outperforms the matched filter precoding. This is due to better
covariance estimates. Therefore, the SE expressions derived
in this paper serve as conservative bounds for an achievable
spectral efficiency of the system considered.

VI. CONCLUSION

We have derived closed-form expressions for average UL
and DL SEs of a massive MIMO system that implements
MRC and matched filter precoder, respectively, as a function
of NR and NQ, which represent the UL pilot overhead.
These combiners use channel estimates that utilize estimated
covariance matrices in addition to channel observations. The
LMMSE-type and element-wise LMMSE-type channel esti-
mates have been considered. Using theoretical analysis of
these closed-form expressions as well as simulation results,
we have demonstrated the impact of different values of NR

and NQ on SEs of a user in a massive MIMO system,

thereby presenting the closed-form expressions as the tools for
solving the problem of choosing these parameters optimally.
Based on numerical study, we have demonstrated that the
ZF beamforming does not significantly improve the SE for
the case of element-wise LMMSE-type channel estimation.
It is useful for the case of LMMSE-type channel estimation
but at the cost of large pilot overhead and computational
complexity. Furthermore, we have shown that the choice of
pilot overhead made based on the LS beamforming serves as
a more conservative result than for the ZF beamforming case,
but accurate and very useful estimate of the pilot overhead.
Finally, we have shown that the element-wise LMMSE-type
channel estimator with very low NR and NQ and with simple
LS combiner provides the minimum SE guarantee with low
computational complexity.

APPENDIX A
PROOF OF LEMMA 1

Let us start with a proof of (17). Let the rank of the covari-
ance matrix of h, R, be K . Then, we denote Λ ∈ RK×K is a
diagonal matrix containing positive eigenvalues of R and U ∈
RM×K is a matrix containing K eigenvectors corresponding
to eigenvalues. Now, let us also define B � UΛ1/2 ∈ CM×K .
Then, there exists a unique g ∈ CK such that h = Bg
and E{ggH} = I. Therefore, we have E{hhHAhhH} =
BE{ggHÃggH}BH where Ã � BHAB. However, since g
is distributed as CN (0, I), the term E{ggHÃggH} can be
evaluated as follows

E{[ggHÃggH ]ij} =
K∑

p=1

K∑
q=1

E{[g]i[g]∗p[g]q[g]∗j}[Ã]pq

=

{
[Ã]ij if i = j

[Ã]ii + tr(Ã) otherwise

and E{ggHÃggH} = Ã + Itr(Ã). Therefore,
E{hhHAhhH} = RAR + Rtr(AR).

Proof of (18) is as follows. We first compute
that E{|hHAh|2} = E{hHAhhHAHh} =
E{tr(AhhHAHhhH)}. Using (17), we have E{|hHAh|2} =
|tr(AHR)|2 + tr(ARAHR).

APPENDIX B
PROOF OF LEMMA 2

Proof of (19) and (20) is given in [22].
Using the eigenvalue decomposition of C = UΛUH ,

let us define X̃ � UHXU. It should be noted that X̃ is
distributed as W(N, I). Then, (21) can be proved as follows.
First, we compute the following expectation term.

E{tr(X−2C)} = E{tr(X̃−2Λ)} =
M∑
i=1

[E{X̃−2}]ii[Λ]ii

But from (20), we have

E{tr(X−2C)} =
M∑
i=1

N

(N − M)3 − (N − M)
[Λ]ii

=
N

(N − M)3 − (N − M)
tr(C)
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For (21), we expand E{|tr(X−1A)|2} using (20) as follows.

E{|tr(X−1A)|2}

=
M∑

p=1

M∑
q=1

M∑
r=1

M∑
s=1

E{[X−1]pp[X−1]ss}[A]pp[AH ]ss

=
M∑

p=1

E{[X−1]pp[X−1]pp}[A]pp[AH ]pp

+
M∑

p=1

M∑
s=1,s�=p

E{[X−1]pp[X−1]ss}[A]pp[AH ]ss

+
M∑

p=1

M∑
s=1,s�=p

E{[X−1]ps[X−1]sp}[A]sp[AH ]ps

Using (20), the above equation can be further simplified
to (22).

APPENDIX C
PROOF OF LEMMA 3

Let us define a pair of mutually independent random vectors
as follows.

g(1)
jju[n] � ĥ(1)

jju[n] − hjju, g(2)
jju[n] � ĥ(2)

jju[n] − hjju

The covariance matrices for g(1)[n] and g(2)[n] are iden-
tically equal to Qju − Rjju. Additionally, we also define
mutually independent set of matrices

R̆jju[n] � ĥ(1)
jju[n](ĥ(2)

jju[n])H + ĥ(2)
jju[n](ĥ(1)

jju[n])H

for all n ∈ {1 . . .NR} such that R̈jju = 1
NR

∑N
n=1 R̆jju[n]

by definition (i.e., (10)).
Using the definition of g(1)

jju[n] and g(2)
jju[n], and also using

Lemma 1, it can be shown that, for all n = {1 . . .NR},
we have

E{R̆jju[n]AR̆jju[n]} = RjjuARjju +
1
2
Qjutr(AQju)

+
1
2
Rjjutr(ARjju) (45)

E{|tr(R̆jju[n]A)|2}= |tr(RjjuA)|2+
1
2
tr(AQjuAHQju)

+
1
2
tr(ARjjuAHRjju). (46)

Finally, along with the equation R̈jju =
1

NR

∑N
n=1 R̆jju[n], (45) and (46) will result in (23)

and (24), respectively.

APPENDIX D
PROOF OF LEMMA 5

Since Y = Z/2, and the elements of the diagonal matrix
Z are χ2 distributed with 2N degrees of freedom, we have
E{[Y−1]pp} = 2E{[Z−1]pp} = 1/(N−1) and E{[Y−1]2pp} =
4E{[Z−1]2pp} = 1/(N − 1)(N − 2).

Using the above results, (31) can be derived as follows

E{tr(Y−1A1Y−1A2)}

=
(

1
N − 1

)2 M∑
p=1

∑
q �=p

[A1]pq[A2]qp

+
1

(N − 1)(N − 2)

M∑
p=1

[A1]pp[A2]pp

= τ1tr(A1A2) + τ2tr(A1dA2d)

where τ1 � 1/(N − 1)2, τ2 � 1/((N − 1)2(N − 2)),
A1d � diag(A1), and A2d � diag(A2).

In what follows, proof of (32) is presented

E{|tr(Y−1A)|2} =
1

(N − 1)2

M∑
p=1

∑
q �=p

[A]pp[A]∗qq

+
1

(N − 1)(N − 2)

M∑
p=1

|[A]pp|2

= τ1|tr(A)|2 + τ2tr(AH
d Ad)

where Ad � diag(A).

APPENDIX E
PROOF OF LEMMA 6

Let us define a pair of mutually independent random vectors
as follows.

g(1)
jju[n] � ĥ(1)

jju[n] − hjju, g(2)
jju[n] � ĥ(2)

jju[n] − hjju

The covariance matrices for g(1)
jju[n] and g(2)

jju[n]
are identically equal to Qju − Rjju. Additionally,
we also define mutually independent set of matrices as
S̆jjk[n] � diag(ĥ(1)

jju[n](ĥ(2)
jju[n])H + ĥ(2)

jju[n](ĥ(1)
jju[n])H) for

all n ∈ {1 . . .NR} such that S̈jju = 1
N

∑N
n=1 S̆jju[n] by

definition (i.e., (12)).
Using the definitions of g(1)

jju[n] and g(1)
jju[n] together with

Lemma 1 (for scalar case), and Lemma 4, it can be shown
that

E{[S̆jju]pp[S̆jju]qq}
= E{|[hjju]p|2|[hjju]q|2}

+
1
2
[Rjju]pq[Qju − Rjju]qp +

1
2
[Qju − Rjju]pq[Rjju]qp

+
1
2
[Qju − Rjju]pq[Qju − Rjju]qp

= [Sjju]pp[Sjju]qq +
1
2
[Qjju]pq[Qjju]pq

+
1
2
[Rjju]pq[Rjju]pq.

Therefore, we have

E{[S̆jjuAS̆jju]pq}
= [A]pq

{
[Sjju]pp[Sjju]qq +

1
2
[Qjju]pq[Qjju]pq

+
1
2
[Rjju]pq[Rjju]pq

}
(47)

E{|tr(S̆jjuD)|2}

=
M∑

p=1

M∑
q=1

{
[Sjju]pp[Sjju]qq +

1
2
[Qju]pq[Qju]pq

+
1
2
[Rjju]pq[Rjju]pq

}
[D]pp[D]qq
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= |tr(SjjuD)|2 +
1
2

M∑
p=1

M∑
q=1

[D(Qju ◦ Qju)D]pq

+
1
2

M∑
p=1

M∑
q=1

[D(Rjju ◦ Rjju)D]pq. (48)

Finally, along with the equation S̈jju =
1
N

∑N
n=1 S̆jju[n], (47) and (48) will result in (33) and (34),

respectively.
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