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Abstract— We consider utility maximization problems in
the downlink cell-free massive multiple-input multiple-output
(MIMO) whereby a large number of access points (APs) simulta-
neously serve a group of users. Four fundamental maximization
objectives are of interest: (i) average spectral efficiency (SE),
(ii) proportional fairness, (iii) harmonic-rate, and (iv) minimum
SE of all users, subject to a sum power constraint at each
AP. As considered problems are non-convex, existing solutions
normally rely on successive convex approximation (SCA) and use
off-the-shelf convex solvers, which implement an interior-point
algorithm, to solve derived convex problems. The complexity of
such methods scales quickly with the problem size. Therefore,
we propose an accelerated projected gradient method to solve the
considered problems. Particularly, each iteration of the proposed
solution is given in a closed form and only requires the first
order oracle of the objective, rather than the Hessian matrix
as in known solutions, and thus is much more memory effi-
cient. Numerical results demonstrate that our proposed solution
achieves the same utility performance but with far less run-
time, compared to the SCA method. Simulation results show that
large-scale cell-free massive MIMO has the intrinsic user fairness,
i.e. the four utility functions can deliver nearly uniformed services
to all users.

Index Terms— Cell-free massive MIMO, sum-rate, power
control, gradient.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) is the
underlying technology in the physical layer of many

modern wireless communications standards. The use of multi-
ple antennas at transceivers can offer high data rates and high
reliability by exploiting spatial and diversity gains [2]–[4].
To meet a set of requirements for 5G networks, MIMO has
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evolved into so-called massive MIMO where a very large
number of antennas are deployed at each base station (BS)
to serve many users at the same time [5], [6]. In particular,
massive MIMO has been implemented in the first version
of 5G NR [7]. Since 5G still follows the conventional design of
a cellular network like its predecessors, inter-cell interference
remains a fundamental problem, and thus massive MIMO
cannot be unlocked to its full potential [8].

There are two types of massive MIMO in terms of the
service area: colocated massive MIMO and distributed massive
MIMO. For the former, all the antennas are placed in a small
area and therefore, the processing complexity requirement
is very low. For the latter, on the other hand, the antennas
are distributed to serve a relatively much larger area. These
systems are more diverse against the shadow fading and they
have a large coverage area [9]. There is no doubt that the
distributed massive MIMO is better than colocated massive
MIMO but due to the more processing complexity and high
cost requirements [10], the scalability remains an active area
of research in distributed systems.

Cell-free massive multiple-input multiple-output (MIMO)
was introduced in [11] as a major leap of massive MIMO
technology to overcome the inter-cell interference which
is the main inherent limitation of cellular-based networks.
In cell-free massive MIMO, many access points (APs) dis-
tributed over the whole network serve many users in the
same time-frequency resource. In practice, the APs are more
irregularly distributed rather than a uniform distribution [12].
There are no cells, and hence, no boundary effects. Unlike
colocated massive MIMO, each AP in cell-free massive
MIMO is equipped with just a few antennas. But an impor-
tant point is that when the number of APs is very large,
cell-free massive MIMO is still able to exploit the favorable
propagation and channel hardening properties, like colocated
massive MIMO. In particular, with favorable propagation,
APs can use simple linear processing techniques to com-
bine the signals in the uplink, and precode the symbols in
the downlink. With channel hardening, decoding the signals
using the channel statistics (large-scale fading coefficients)
can provide good performance. Note that in some propagation
environments, the level of channel hardening in cell-free
massive MIMO is lesser than that in colocated massive
MIMO [13].

The research on cell-free massive MIMO is still in its
infancy and thus deserves more extensive and thorough stud-
ies. We discuss here some of the important and related studies
in the literature. In [11], Ngo et al. considered the problem
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of minimum rate maximization to provide uniformly good
services to all users. The problem was then solved using
a bisection search and a sequence of second-order cone
feasibility problems. In [14], Nguyen et al. adopted zero-
forcing precoding and studied the energy efficiency maxi-
mization (EEmax) problem. In this work, an iterative method
based on successive convex approximation (SCA) was derived.
In [15], both the max-min fairness and sum-rate maximization
problems for user-centric cell-free massive MIMO were con-
sidered and solved by SCA. The SCA-based method was also
used in [16] and [17] to solve the EEmax and max-min fairness
power controls with different cell-free massive MIMO setups,
respectively. In [18], Alonzo et al. proposed an energy-efficient
power control algorithm for cell-free and user-centric mas-
sive MIMO at millimeter wave frequencies using a sequen-
tial optimization method. In [19], Bashar et al. investigated
the problem of max-min signal to interference plus noise
ratio (SINR) for the uplink of cell-free massive MIMO, which
is solved by an alternating optimization method. In [20],
spectral efficiency (SE) and energy efficiency were optimized
for full-duplex cell-free massive MIMO by a combination of
the inner approximation framework and Dinkelbach’s method.
In [21], dynamic resource allocation for the uplink of both
colocated and cell-free massive MIMO using Lyapunov opti-
mization techniques. Furthermore, the integration of cell-free
massive MIMO with other radio access techniques can bring
further advantages. For example, the integration of cell-free
massive MIMO with non-orthogonal multiple access can
support significantly more users compared to the orthogonal
multiple access counterpart [22].

A common feature of all the above mentioned pioneer
studies on cell-free massive MIMO is the use of a second-order
interior-point method for the optimization of several perfor-
mance measures in cell-free massive MIMO. This requires
the computation of the Hessian matrix of the objective, and
thus their computational complexity and memory requirement
makes them impossible to implement and investigate the per-
formance of large-scale cell-free massive MIMO. To motivate
our proposed method, let us consider an example where
2000 APs are deployed to serve 200 users over an area of
1 km2, which is typical for an urban area in our vision. The
power control problem arising from this scenario has 4× 105

optimization variables. Consequently, we would basically need
160 GB of memory to store the resulting Hessian matrix,
assuming a single-precision floating-point format. It is this
immense memory requirement of the existing power control
methods that only allows us to implement as well as to
characterize the performance of cell-free massive MIMO for
a relatively small-scale system. For example, the work of [11]
was able to consider an area of 1 km2, consisting of 100 APs
serving 40 users. Numbers with the same order of magnitude
were also observed in the above mentioned papers. The
performance of these scenarios fractionally represents the full
potential of cell-free massive MIMO.

In this paper, we consider the downlink of cell-free mas-
sive MIMO. Similar to many previous studies (e.g. [16]),
the conjugate beamforming (based on small-scale fading) is
adopted at each AP due to its simplicity. Under this setup,

we consider power control problems (based on large-scale fad-
ing) to maximize four system-wide utility functions: the total
SE, proportional fairness, harmonic-rate, and the minimum
rate.1 The considered power control problems are known to
be nonconvex and thus difficult to solve. To this end, we pro-
pose a novel low-complexity method, called the accelerated
projected gradient (APG) method, which is derived from a
gradient based method for nonconvex programming in [23].
A similar method has been used in [24] to solve the EEmax
problem. In particular, the proposed method can deal with
the four considered utility functions in a unified framework.
Being a first order method, the proposed method is memory
efficient. Specifically, referring to the motivating example in
the preceding paragraph, our proposed method only requires
a memory of 8 MB, which is affordable by most, if not all,
modern desktops. Consequently, the proposed method is more
practically feasible and also allows us to study the performance
limits of cell-free massive MIMO for large-scale settings that
have not been reported previously. In particular, our main
contributions are as follows

• We present the APG method, a special variant of an
accelerated proximal gradient method introduced in [23]
for nonconvex programming, to efficiently solve the con-
sidered utility maximization problems in a unified frame-
work. Particularly, each iteration of the proposed iterative
power control algorithms is given in closed form and can
be done in parallel. To achieve this, we reformulate the
considered problems so that the gradient of the objective
is Lipschitz continuous and the projection is still efficient
to compute.

• We provide a complexity and convergence analysis
of the proposed method. Specifically, the per-iteration
complexity of our proposed method is only O(K2M)
as compared to the per-iteration complexity of
O �√K + MM3K4

�
for the SCA-method in [16],

where M and K are the numbers of APs and users,
respectively. Accordingly, the proposed method takes
much reduced run time to return a solution as numerically
shown in Section V. As a result, the propose method
can lay the foundation to numerically analyze the
performance of large-scale cell-free massive MIMO.

• We carry out extensive numerical experiments to draw
useful insights into the performance of large-scale
cell-free massive MIMO regarding the four utility metrics
above. In particular we find that, in the domain of
large-scale cell-free massive MIMO, per-user rates are
quite comparable for the four above utility functions,
which means that large-scale cell-free massive MIMO

1Though our considered cell-free massive MIMO system follows a similar
transmission protocol as the one in colocated massive MIMO, there are many
differences between these two systems which have been well explained in
for example [11] such as the network topology and channel state informa-
tion (CSI) exchange. Most importantly, the large-scale fading coefficients from
a given user to different service antennas (APs for cell-free systems or BS
antennas for colocated systems) are different in cell-free massive MIMO, but
are reasonably assumed to be the same in colocated massive MIMO. As a
result, the downlink achievable rates of these systems have totally different
forms, and hence, the power control methods extensively studied in colocated
massive MIMO cannot be applied to our considered cell-free massive MIMO
systems.
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can deliver universally good services to all users. Also,
in terms of per-user rate, it is more beneficial to use a
higher number of APs with a fewer antenna per AP than
to use a smaller number of APs with more antennas per
APs.

Notations: Bold lower and upper case letters represent
vectors and matrices. CN (0, a) denotes a complex Gaussian
random variable with zero mean and variance a. X∗, XT

and X† stand for the conjugate, transpose and Hermitian of
X, respectively. xi is the i-th entry of vector x; [X]i,j is
the (i, j)-th entry of X. ∇f(x) represents the gradient of
f(x) and ∂

∂xi
f(x) is the partial gradient with respect to xi.

�x,y� � xTy is the inner product of vectors x and y. [x]+
denotes the projector onto the positive orthant, i.e., [x]+ =
[max(x1, 0); max(x2, 0); . . . ; max(xn, 0)]. In other words,
projecting x onto the positive orthant means setting the
negative entries of x to zero and keep the remaining entries
the same. ||·|| represents the Euclidean norm; |·| is the absolute
value of the argument.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink of a cell-free massive MIMO
system model as in [16]. In particular, there are M APs
serving K single-antenna users in time division duplex (TDD)
mode. Each AP is equipped with N antennas. All the APs
and the users are assumed to be distributed in a large area.
The APs cooperate through one or several central processing
units (CPUs) to deal with resource allocations (i.e. power con-
trol, user scheduling or AP selections) on the large-scale fading
time scale [16], [25]. However, each AP works independently
to cope with small-scale fading. More specifically, each AP
estimates the channels and applies a beamforming scheme
locally. There is no need to exchange the small-scale fading
coefficients between the APs, and between the APs and the
CPUs. As TDD operation is adopted, APs first estimate the
channels using pilot sequences from the uplink (commonly
known as uplink training) and then apply a beamforming
technique to transmit signals to all users in the downlink,
or use a matched filter technique to combine signals in the
uplink. Since this work focuses on the downlink transmission,
we neglect the uplink payload transmission phase. Let us
denote by Tc and Tp the length of the coherence interval
and the uplink training phase in data symbols, respectively.
The uplink training and downlink payload transmission phases
are summarized as follows. The interested reader is referred
to [16] for further details.

1) Uplink Training: We assume the channel is reciprocal,
i.e., the channel gains on the uplink and on the downlink
are the same. Consequently, APs can estimate the downlink
channel based on the pilot sequences sent by all users on the
uplink. Let

�
Tpψk ∈ CTp×1, where ||ψk||2 = 1, be the pilot

sequence transmitted from the k-th user, k = 1, . . . , K . Note
that Tp is the length of the pilot sequences, which is the same
for all users. The received signal at the m-th AP is given by

Rup,m =
�

ζpTp

K�
k=1

gmkψ
†
k + Wup,m, (1)

where ζp is the normalized transmit signal-to-noise ratio
(SNR) of each pilot symbol, and Wup,m ∈ CN×Tp is the
noise matrix whose entries are independent and identically
distributed (i.i.d.) drawn from CN (0, 1), and gmk ∈ CN×1 is
the channel between the m-th AP and the k-th user. As in [16],
we model gmk as

gmk = β
1/2
mk hmk, (2)

where βmk represents the large-scale fading (i.e. including
path loss and shadowing effects) and hmk ∈ CN×1 comprises
of small-scale fading coefficients between the N antennas of
the m-th AP and the k-th user. We further assume that the
entries of hmk follows i.i.d. CN (0, 1).

Next the m-th AP needs to estimate the channel gmk,
k = 1, 2, . . . , N , based on the received pilot signal Rup,m.
To do so, the m-th AP projects Rup,m onto ψk, producing

rmk = Rup,mψk =
�

ζpTp

K�
i=1

gmiψ
†
iψk + w̃mk, (3)

where w̃mk � Wup,mψk ∈ CN×1 has entries following i.i.d.
CN (0, 1). We remark that the pilot sequences are not necessar-
ily to be mutually orthogonal. Thus, from an algorithmic point
of view, our proposed solutions to be presented in following
section are applicable to both orthogonal and non-orthogonal
pilot sequences. However, when possible, it is desirable to
achieve orthogonal pilot sequences to mitigate the effect of
pilot contamination, thereby increasing the achievable data
rates.

Given rmk, the minimum mean-square error (MMSE) of
the channel estimate of gmk is [16]

ĝmk = E{gmkr
†
mk}
�
E{rmkr

†
mk}
�−1

rmk

=

�
ζpTpβmk

1 + ζpTp

�K
i=1 βmi

			ψ†
iψk

			2 rmk. (4)

Note that the expectations in the above equation are carried
out with respect to small-scale fading and also that elements
of ĝmk are independent and identical Gaussian distribution.
The mean square of any element of ĝmk is given by

νmk =
ζpTpβ

2
mk

1 + ζpTp

�K
i=1 βmi

			ψ†
iψk

			2 . (5)

2) Downlink Payload Data Transmission: For downlink
payload data transmission, the APs use the channel estimates
obtained in (4) to form separate radio beams to the K users.
As mentioned earlier we adopt conjugate beamforming in this
paper, which is due to two main reasons. First, conjugate
beamforming is computationally simple and can be done
locally at each AP. Second, conjugate beamforming offers
excellent performance for a large number of APs (relatively
compared to the number of users). Denote the symbol to be
sent to the k-th user by ck and the power control coefficient
between the m-th AP and the k-th user by ηmk. For conjugate
beamforming, the transmitted symbols from the m-th AP are
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contained in the vector xm given by

xm =
�

ζd

K�
k=1

√
ηmkĝ∗

mkck, (6)

where ζd is the maximum downlink transmit power at each
AP normalized to noise power. Note that the total power at
each AP is

E{||xm||2} = ζdN
K�

k=1

ηmkνmk. (7)

The received signal at the k-th user is written as

rk =
M�

m=1

gT
mkxm + wk =

�
ζd

M�
m=1

√
ηmkgT

mkĝ
∗
mkck

+
�

ζd

K�
i�=k

M�
m=1

√
ηmigT

mkĝ
∗
mici + wk, (8)

where wk is the white Gaussian noise with zero mean and unit
variance.

3) Signal Detection Based on Channel Statistics and Spec-
tral Efficiency: Ideally, to detect ck, the k-th user needs to
know the effective channel gain

√
ζd

�M
m=1

√
ηmkgT

mkĝ
∗
mk.

However this is impossible since there are no downlink pilots.
Instead, the k-th user will rely on the mean of the effective
channel gain to detect ck. To see this we rewrite (8) as

rk=
�

ζdE



M�

m=1

√
ηmkgT

mkĝ
∗
mk

�
ck

+
�

ζd

�
M�

m=1

√
ηmkgT

mkĝ
∗
mk−E



M�

m=1

√
ηmkgT

mkĝ
∗
mk

�
ck

+
K�

i�=k

�
ζd

M�
m=1

√
ηmigT

mkĝ
∗
mici + wk. (9)

In the above equation the second term in the right side
can be seen as the beamforming uncertainty, which is due
to treating the mean of the effective channel gain as the true
channel. We remark that by the law of large numbers which
holds for our system model, with high probability, this term is
much smaller compared to the mean of the effective channel
gain. By further treating this and the inter-user interference as
the Gaussian noise, we can express the SINR at the k-th user
as [16, Appendix A]

γk(η̄) =
ζdN

2
		νT

kkη̄k

		2
ζdN2

�K
i�=k

		νT
ikη̄i

		2 + ζdN
�K

i=1 ||Dikη̄i||22 + 1
,

(10)

where η̄k = [
√

η1k; . . . ;
√

ηMk] ∈ RM
+ consists of all

power control coefficients associated with user k, η̄ =
[η̄1; η̄2; . . . ; η̄K ] ∈ RMK

+ , Dik ∈ R
M×M
+ is a diagonal matrix

with [Dik]m,m =
√

νmiβmk, and

νik �
			ψ†

iψk

			 �ν1i
β1k

β1i
; ν2i

β2k

β2i
; . . . ; νMi

βMk

βMi

�
. (11)

Accordingly, the spectral efficiency of the k-th user is given
by

SEk(η̄) =
�
1 − Tp

Tc

�
log (1 + γk(η̄)) (nat/s/Hz). (12)

Note that for mathematical convenience we use the natural
logarithm in (12), and thus the resulting unit of the SE
is nat/s/Hz. However, for the numerical results presented in
Section V, we instead use the logarithm to base 2 to compute
the SE and the corresponding unit is bit/s/Hz.

B. Problem Formulation

To formulate the considered problem and to facilitate the
development of the proposed algorithm, we define μm ∈ RK

+

to be the vector of all power control coefficients associated
with the m-th AP as

μm � [μm1; μm2; . . . ; μmK ], (13)

where μmk =
√

ηmkνmk, m = 1, . . . , M, k = 1, . . . , K. We
also define μ � [μ1;μ2; . . . ;μM ] ∈ R

MK×1
+ to include the

power control coefficients of all APs. To express the spectral
efficiency in (12) as a function of μ, we denote by μ̄k =
[μ1k; μ2k; . . . ; μMk] the vector of power control coefficients
associated with user k. Thus we can write νT

ikηi as ν̄ikμ̄k,
where

ν̄ik �
			ψ†

iψk

			�√ν1i
β1k

β1i
;
√

ν2i
β2k

β2i
; . . . ;

√
νMi

βMk

βMi

�
. (14)

Similarly, we can write Dikη̄i as D̄iμ̄i, where D̄i is the
diagonal matrix with the m-th diagonal entry equal to

√
βmi.

Now the spectral efficiency of the k-th user (in nat/s/Hz) can
be expressed as

SEk(μ) =
�
1 − Tp

Tc

�
log
�
1 + γk(μ)

�
, (15)

where γk(μ) is the SINR of the k-th user given by

γk(μ) =
ζd(ν̄T

kkμ̄k)2

ζd

��K
i�=k(ν̄T

ikμ̄i)2 + 1
N

�K
i=1

��D̄iμ̄i

��2

2

�
+ 1

N2

.

(16)

The total spectral efficiency of the system is defined as

SE(μ) �
�K

k=1
SEk(μ). (17)

In this paper, we consider a power constraint at each
AP which is given by ||μm||2 ≤ 1

N , m = 1, 2, . . . , M ,
which follows from (7). For the problem formulation purpose,
we define the following set

S =
�
μ|μ ≥ 0;

��μm

��2 ≤ 1
N

, m = 1, 2, . . . , M

�
, (18)

which is nothing but the feasible set of the utility maximization
problems to be presented. In this paper, we consider the
following four common power control utility optimization
problems [26], namely

• The problem of average spectral efficiency maximization
(SEmax)

(P1) : maximize
µ

�
(1/K)

�K

k=1
SEk(μ) | μ ∈ S

�
.
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• The problem of proportional fairness maximization
(PFmax)

(P2) : maximize
µ

��K

k=1
log SEk(μ) | μ ∈ S

�
.

Note that the above problem is equivalent to maximizing��K
k=1 SEk(μ)

�1/K
over the set S. Thus it is also known

as the problem of geometric-rate maximization.
• The problem of the harmonic rate maximization (HRmax)

(P3) : maximize
µ

�
K
� K�

k=1

SEk(μ)−1
�−1 			 μ ∈ S

�
.

• The problem of maximizing the minimum rate (MRmax)
among all users (also known as max-min fairness maxi-
mization)

(P4) : maximize
µ

�
min

1≤k≤K
SEk(μ) | μ ∈ S

�
.

We note that the above four problems are noncovex and thus
difficult to solve. For such problems, a pragmatic goal is to
derive a low complexity high-performance solution, rather than
a globally optimal solution. To this end, SCA has proved to
be very effective and gradually become a standard mathemat-
ical tool [11], [16]. The idea of SCA is to approximate a
non-convex program by a series of convex sub-problems. In all
known solutions for the considered problems or related ones,
interior point methods (through the use of off-the-shelf convex
solvers) are invoked to solve these convex problems [15]–[17],
which do not scale favorably with the problem size. Thus the
existing solutions are unable to characterize the performance
limits of cell-free massive MIMO systems where the number
of APs can be in the order of thousands, even from an off-line
design perspective. In this paper, we propose methods that
can tackle this scalability problem. In particular, our proposed
methods are based on first order optimization methods which
are presented in the following section.

III. PROPOSED SOLUTIONS

In this section, we present the proposed APG method to
solve (P1) to (P4), which is a variant of the accelerated
proximal gradient method (AProxG) introduced in [23].
In general the four considered problems can be written in a
compact form as

maximize
µ

f(μ) (19a)

subject to μ ∈ S, (19b)

where f(μ) = (1/K)
�K

k=1 SEk(μ) for problem (P1),
f(μ) =

�K
k=1 log SEk(μ) for problem (P2),

f(μ) = K
��K

k=1 SEk(μ)−1
�−1

for (P3), and f(μ) =
min1≤k≤K SEk(μ) for (P4). We remark that the method
described in [23] concerns the following problem

minimize
x∈Rn

{F (x) ≡ f(x) + g(x)}, (20)

where f(x) is differentiable (but possibly nonconvex)
and g(x) can be both nonconvex and nonsmooth. Further
assumptions on f(x) are listed below:

• A1: f(x) is a proper function with Lipschitz continuous
gradients. A function f is said to have an L-Lipschitz
continuous gradient if there exists some L > 0 such that

||∇f(x) −∇f(y)|| ≤ L||x− y||, ∀x,y. (21)

• A2: f(x) is coercive i.e. f(x) is bounded from below
and f(x) → ∞ when x → ∞.

To solve the general nonconvex problem in (20), Li et al.
proposed the monotone AProxG [23, Algorithm 1]. In essence,
the AProxG method moves the current point, say yn, along
the gradient of the objective ∇f(yn) with a proper step size
(denoted by α). At the resulting point, the AProxG method
finds the proximal operator of g(cf. [23, Eqn. (10)]). This
step is repeated until some stopping criterion is met. More
specifically, the proximal operator of g at a given x is defined
as

proxαg(x) = argminu g(u) +
1
2α

x2 .

To customize the AProxG to solve the considered problems,
we let g(x) be the indicator function of S, defined as

δS(x) =



0 x ∈ S
+∞ x /∈ S,

(22)

then (20) is actually equivalent to (19). In this way, the proxi-
mal operator of δS(x) becomes the Euclidean projection onto
S. Specifically, the Euclidean projection of u onto S, denoted
by PS(u), is defined as PS(u) = argmin

�
||x−u|| | x ∈ S

�
.

We are now in a position to apply the AProxG method to
solve the considered problems. The details are given in the
subsequent subsections.

Remark 1: One may ask why we have made a change
of variables from η̄ to μ in Section II-B. The question is
relevant since the projection onto the feasible set expressed
in terms of η̄ can also be done efficiently. However, if the
objective function of the four considered problems is written as
a function of η̄, then there are two difficulties arising. Firstly,
the expression of the gradient of the objective becomes very
complicated. Secondly and more importantly, the gradient of
the objective is not Lipschitz continuous since the term

√
ηmk

would appear in the denominator of the gradient. Note that
ηmk can be zero, which can make the gradient unbounded.

A. Proposed Solution to (P1)

Since f(μ) for (P1) is differentiable, the proposed algo-
rithm for solving (P1) follows closely the monotone AProxG
method in [23], which is outlined in Algorithm 1. In Algo-
rithm 1, α > 0 is called the step size which should be
sufficiently small to guarantee its convergence, Lf is the
Lipschitz constant of ∇f(μ), and tn is an extrapolation
parameter recursively defined in Line 7, which determines how
the current and the past iterates are linearly combined to obtain
the next iterate to improve the convergence. The superscripts
in Algorithm 1 denote the iteration count. Note that we adapt
the monotone AProxG method in [23] for minimization to the
context of maximization for our problems.
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An intuitive description of the proposed APG method is as
follows. From the current iterate denoted by μn, we compute
the extrapolated point yn as in Line 3 of Algorithm 1, which
is used for convergence acceleration. From yn, we move along
its the gradient with the step size α, and then project the
resulting point (i.e., yn + α∇f(yn)) onto the feasible set to
obtain zn+1. However, unlike conventional APG methods for
convex programming, yn can be a bad extrapolation in the
sense that f(zn+1) does not improve the objective sequence.
To prevent this, a monitor and correction process is proposed
in [23]. Specifically, we also calculate an extra point vn+1 as
in Line 5 of Algorithm 1. The next iterate μn+1 is obtained
by comparing the objective values of vn+1 and zn+1 as done
in Line 6.

Algorithm 1 Accelerated Projected Gradient Algorithm for
Solving (P1)-(P4)

1: Input: μ0 >= 0, t0 = 0, t1 = 1, 1
Lf

> α > 0,μ1 = z1 =
μ0

2: for n = 1, 2, . . . do
3: yn = μn + tn−1

tn
(zn − μn) + tn−1−1

tn
(μn − μn−1)

4: zn+1 = PS(yn + α∇f(yn))
5: vn+1 = PS(μn + α∇f(μn))

6: μn+1 =



zn+1 f(zn+1) ≥ f(vn+1)
vn+1 otherwise

7: tn+1 = 0.5
��

4t2n + 1 + 1
�

8: end for
9: Output: μn

We now give the details for the two main operations of
Algorithm 1, namely: the projection onto the feasible set S
and the gradient of f(μ).

1) Projection Onto S: We show that the projection in Steps
4 and 5 in Algorithm 1 can be done in parallel and by
closed-form expressions. Recall that for given a x ∈ RMK×1,
PS(x) is the solution to the following problem

minimize
µ∈RMK×1

�
||μ− x||2

			 μ ≥ 0; ||μm||2 ≤ 1
N

,

m = 1, 2, . . . , M
�
. (23)

It is easy to see that the above problem can be decomposed
into sub-problems at each AP m as

minimize
µm∈RK×1

�
||μm − xm||2

			 μm ≥ 0; ||μm||2 ≤ 1
N

�
. (24)

The above problem is in fact the projection onto the
intersection of a ball and the positive orthant. Interestingly, the
analytical solution to this problem can be found by applying
[27, Theorem 7.1], which produces

μm =

�
1/N

max
��

1/N, ||[xm]+||
� [xm]+. (25)

The above expression means that we first project xm onto
the positive orthant and then onto the Euclidean ball of
radius

�
1/N . A simpler way to prove (25) is detailed in

Appendix A.

2) Gradient of f (μ) for (P1): To implement Algorithm 1,
we also need to compute ∇µf(μ), which is derived
in what follows. We know that the gradient of a
multi-variable function is the vector of all its partial
derivatives, i.e.

∇f(μ) =
�

∂

∂μ̄1

f(μ);
∂

∂μ̄2

f(μ), . . . ,
∂

∂μ̄K

f(μ)
�

, (26)

where ∂
∂µ̄i

f(μ) = (1/K)
�K

k=1
∂

∂µ̄i
SEk(μ). Thus,

it basically boils down to finding ∂
∂µ̄i

SEk(μ). Let
us define bk(μ) = ζd(ν̄T

kkμ̄k)2 and ck(μ) =
ζd

��K
i�=k(ν̄T

ikμ̄i)2 + 1
N

�K
i=1 ||D̄iμ̄i||22

�
+ 1

N2 . Then

we can rewrite SEk(μ) as

SEk(μ) = log
�
bk(μ) + ck(μ)

�− log ck(μ). (27)

The gradient of SEk(μ) with respect to μ̄i, i = 1, 2, . . . , K ,
is found as

∂

∂μ̄i

SEk(μ) =
∂

∂µ̄i
(bk(μ) + ck(μ))

bk(μ) + ck(μ)
−

∂
∂µ̄i

ck(μ)

ck(μ)
(28)

Now we recall the following identity ∇||Ax||2 = 2ATAx
for any symmetric matrix A, and thus ∇µ̄i

bk(μ) and
∇µ̄i

ck(μ) are respectively given by

∂

∂μ̄i

bk(μ) =



2ζdν̄kkν̄

T
kkμ̄k, i = k

0, i �= k
(29)

∂

∂μ̄i

ck(μ) =

⎧⎨
⎩

2(ζd/N)D̄2
kμ̄k, i = k

2ζdν̄ikν̄
T
ikμ̄i +

2ζd

N
D̄2

i μ̄i, i �= k.
(30)

B. Improved Convergence With Line Search

For (P1), from (28), (29), and (30), it easy to check that
∇f(μ) is Lipschitz continuous, or equivalently f(μ) has
Lipschitz continuous gradient. That is, there exists a constant
Lf > 0 such that

||∇f(x) −∇f(y)|| ≤ Lf ||x − y|| ∀x,y ∈ S. (31)

Further details are given in Appendix B.
In practice, we in fact do not need to compute a Lipschitz

constant of ∇f(μ) for two reasons. First, the best Lipschitz
constant of ∇f(μ) (i.e. the smallest L such that (31) holds)
is hard to find. Second, the conditions α < 1

Lf
is sufficient

but not necessary for Algorithm 1 to converge. Thus, we can
allow α to take on larger values to speed up the convergence
of Algorithm 1 by means of a linear search procedure. In
this paper we use line search with the Barzilai-Borwein (BB)
rule to compute step sizes for Algorithm 1. The APG method
with line search backtracking line search is summarized in
Algorithm 2. The step sizes αy and αμ computed in
Steps 5 and 7 can be viewed as local estimate of the opti-
mal Lipschitz constant of the gradient at yn−1 and μn−1,
respectively.
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Algorithm 2 APG Method With Line Search for Solving
(P1)-(P4)
1: Input: μ0 >= 0, t0 = 0, t1 = 1, αμ > 0, αy > 0, δ >

0, ρ < 1,μ1 = z1 = μ0

2: for n = 1, 2, . . . do
3: yn = μn + tn−1

tn
(zn − μn) + tn−1−1

tn
(μn − μn−1)

4: sn = zn − yn−1, rn = ∇f(zn) −∇f(yn−1)
5: αy = �sn, sn� / �sn, rn� or αy = �sn, rn� / �rn, rn�
6: sn = vn − μn−1, rn = ∇f(vn) −∇f(μn−1)
7: αμ = �sn, sn� / �sn, rn� or αμ = �sn, rn� / �rn, rn�
8: repeat
9: zn+1 = PS(yn + αy∇f(yn))

10: αy = αy × ρ
11: until F (zn+1) ≥ F (yn) + δ||zn+1 − yn||2
12: repeat
13: vn+1 = PS(μn + αμ∇f(μn))
14: αμ = αμ × ρ
15: until F (vn+1) ≥ F (μn) + δ||vn+1 − μn||2
16: μn+1 =

�
zn+1 F (zn+1) ≥ F (vn+1)
vn+1 otherwise

17: tn+1 = 0.5
��

4t2n + 1 + 1
�

18: end for
19: Output: μn

C. Customization for Solving (P2) and (P3)

We remark that Algorithms 1 and 2 are unified in the
sense that they can be easily modified to solve the remaining
considered problems. In this subsection we explain how to
apply Algorithms 1 and 2 to solve problems (P2) and (P3).
First note that the objective functions in (P2) and (P3) are
differentiable and the application of Algorithms 1 and 2
is straightforward. Specifically, for the PFmax problem (i.e.
(P2)), the objective is

f(μ) =
�K

k=1
log SEk(μ), (32)

and thus ∇f(μ) is given by (26), where ∇µ̄i
f(μ) is found as

∂

∂μ̄i

f(μ) =
K�

k=1

1
SEk(μ)

∂

∂μ̄i

SEk(μ), (33)

where ∂
∂µ̄i

SEk(μ) is provided in (28). For the HRmax prob-
lem (i.e. (P3)), the objective is

f(μ) = K
� K�

k=1

SEk(μ)−1
�−1

. (34)

The gradient of the function can be found similarly where
∇µ̄i

f(μ) is written as

∂

∂μ̄i

f(μ) = K
� K�

k=1

SEk(μ)−1
�−2

×
K�

k=1

1�
SEk(μ)

�2 ∂

∂μ̄i

SEk(μ). (35)

where ∂
∂µ̄i

SEk(μ) is again provided in (28).
Remark 2: For (P2) and (P3), the utility functions are

not Lipschitz continuous gradient in principle since the data
rate SEk(μ) can be zero for some user k. Consequently,
the gradient of the objective becomes unbounded due to the

term 1
SEk(µ) in (33) and (35). In practice, to fix this problem

we simply add a fixed regularization parameter � (say, � =
10−6) and consider f(μ) =

�K
k=1 log

�
� + SEk(μ)

�
for (P2)

and f(μ) = K
��K

k=1

�
� + SEk(μ)

�−1
�−1

for (P3). In this

way f(μ) is Lipschitz continuous gradient.

D. Proposed Solution to (P4)

Problem (P4) deserves further discussions since the objec-
tive is nonsmooth. We recall that for (P4) the objective
function is

f(μ) = min
1≤k≤K

SEk(μ), (36)

which is non-differentiable. Thus a straightforward application
of the APG method is impossible. To overcome this issue,
we adopt a smoothing technique. In particular, f(μ) is approx-
imated by the following log-sum-exp function given by [28]

fτ (μ) = −1
τ

log
� 1
K

�K

k=1
exp
�−τSEk(μ)

�
, (37)

where τ > 0 is the positive smoothness parameter.
To obtain (37), we have used the fact that min

1≤k≤K
SEk(μ) =

− max
1≤k≤K

(−SEk(μ)). It was proved in [28] that f(μ) +
log K

τ ≥ fτ (μ) ≥ f(μ). In other words, fτ (μ) is a differ-
entiable approximation of f(μ) with a numerical accuracy
of log K

τ . Thus, with a sufficiently high τ , we can find
an approximate solution to (P4) by running Algorithm 1
with f(μ) being replaced by fτ (μ) in (37). In this regard,
the gradient of fτ (μ) is easily found as ∇µ̄fτ (μ) =
[ ∂
∂µ̄1

fτ (μ), ∂
∂µ̄2

fτ (μ), . . . , ∂
∂µ̄K

fτ (μ)] where ∂
∂µ̄i

fτ (μ) is
given by

∂

∂μ̄i

fτ (μ) =

�K
k=1

�
exp
�−τSEk(μ)

�
∂

∂µ̄k
SEk(μ)

�
�K

k=1 exp
�−τSEk(μ)

� . (38)

IV. COMPLEXITY AND CONVERGENCE

ANALYSIS OF PROPOSED METHODS

A. Complexity Analysis

We now provide the complexity analysis of the proposed
algorithms for one iteration using the big-O notation. It is
clear that the complexity of Algorithm 1 is dominated by the
computation of three quantities: the objective, the gradient,
and the projection. It is easy to see that KM multiplications
are required to compute SEk(μ). Therefore, the complexity
of finding f(μ) =

�K
k=1 SEk(μ) is O(K2M). In a similar

way, we can find that the complexity of ∇f(μ) is also
O(K2M). The projection of μ onto S is given in (25), which
requires the computation of the l2-norm of K × 1 vector
xm at each AP, and thus the complexity of the projection
is O(KM). In summary, the per-iteration complexity of the
proposed algorithm for solving (P1) is O(K2M). Similarly,
the per-iteration complexity for solving (P2), (P3) and (P4)
is also O(K2M).

To appreciate the low-complexity of the proposed methods,
we now provide the per-iteration complexity of the SCA-based
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method for solving (P1) derived from [16]. Note that the
iterative method presented in [16] is dedicated to the problem
of total energy efficiency maximization but it can be easily cus-
tomized to solve (P1). Specifically, the convex sub-problem
at the iteration n + 1 of the SCA-based method reads

minimize
µ≥0,t≥0

�
t1t2 . . . tK

�1/K
(39a)

subject to F (μ, tk;μn, tnk ) ≥ ζdN
2

K�
i�=k

(ν̄T
ikμ̄i)

2

+ ζdN
K�

k=1

��D̄kμ̄k

��2

2
+ 1, k = 1, . . . , K (39b)

μm2 ≤ 1
N

, m = 1, . . . , M, (39c)

where

F (μ, tk;μn, tnk ) = f(μn, tnk ) + ∇µf(μn, tnk )T(μ− μn)
+ ∂tk

f(μn, tnk )(tk − tnk ), (40)

and

f(μ, tk)�
ζdN

2
�K

i=1(ν̄
T
ikμ̄i)2 + ζdN

�K
k=1

��D̄kμ̄k

��2

2
+1

tk
.

We remark that the objective admits a second order cone
reformulation and thus (39) is a second order cone program.
According to [29, Sect. 6.6.2], the complexity to solve (39)
is O�√K + MM3K4

�
, which is much larger than O(K2M)

for the proposed method, especially when M and K are large.

B. Convergence Analysis

We now discuss the convergence result of Algorithms 1
and 2 for solving (P1), which is stated in the following lemma.

Lemma 3: Let {μn} be the sequence produced by Algo-
rithms 1 or 2. Then the following properties hold.

• The sequence of the objective values {f(μn)} is nonde-
creasing and convergent.

• The sequence {μn} is bounded and any limit point of
{μn} is a critical point of (P1).

Proof: Please see Appendix C.
The same convergence result applies to Algorithms 1 and 2

for solving (P2), (P3) and (P4).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
methods in terms of computational complexity and achieved
spectral efficiency. All simulations results are obtained using
Algorithm 2 since it has a faster convergence rate. The users
and the APs are uniformly dropped over a D × D km2. The
large-scale fading coefficient between the m-th AP and the
k-th user is generated as

βmk = PLmk.zmk,

where PLmk and zmk represent the path loss and log-normal
shadowing with mean zero and standard deviation σsh, respec-
tively. In this paper, we adopt the three-slope path loss
model as in [16], in which PLmk (in dB) equals −L −

TABLE I

TABLE OF SIMULATION PARAMETERS

15 log10(d1) − 20 log10(d0) if dmk < d0, equals −L −
15 log10(d1) − 20 log10(dmk) if d0 < dmk < d1, and
equals −L − 35 log10(dmk) otherwise, where L is a constant
dependent on carrier frequency, dmk (in km) is the distance
between the m-th AP and the k-th user, and d0 and d1

(both in km) are reference distances. The pilot sequences
are generated as follows. First, note that we can create Tp

mutually orthogonal vectors of length Tp (in symbols), e.g
using the singular vectors resulting from the singular value
decomposition of a square complex random matrix of size
Tp. Thus, when K ≤ Tp, we simply select K out of these
Tp orthogonal vectors as pilot sequences for K users. In this
way, pilot sequences are mutually orthogonal and thus pilot
contamination does not occur. However, when K > Tp, it is
impossible to obtain orthogonal pilot sequences among all
users. In such a case, we randomly assign these Tp mutually
orthogonal vectors to K users. Similar to [16], we choose the
parameters given in Table I, if not stated otherwise.

In the first numerical experiment, we compare the conver-
gence rate of the proposed method with the SCA-based method
presented in [16] as explained in Section IV-A. To solve
(39), we use convex conic solver MOSEK [30] through the
modeling tool YALMIP [31]. In particular, Figs. 1(a) and 1(b)
show the convergence of Algorithm 2 and the SCA-based
method for the total spectral efficiency and the min-rate max-
imization problem, respectively. We can see that Algorithm 2
and SCA-based methods achieve the same performance but
the SCA-based method requires fewer iterations to return
a solution. However, the main advantage of Algorithm 2
over the SCA-based method is that each iteration of the
proposed method is very memory efficient and can be done
by closed-form expressions, and hence, is executed very fast.
As a result, the total run-time of the proposed method is far
less than that of the SCA-based method as shown in Table II.
In Table II, we report the actual run-time of both methods
to solve the SEmax problem. Here, we execute our codes on
a 64-bit Windows operating system with 16 GB RAM and
Intel CORE i7, 3.7 GHz. Both iterative methods are terminated
when the difference of the objective for the last 5 iterations is
less than 10−3.

We next take advantage of the proposed methods to explore
the spectral efficiency performance of large-scale cell-free
massive MIMO that can cover, e.g. a large metropolitan area
in our vision. In particular, we investigate the performance of
cell-free massive MIMO for two cases D = 1 and D = 10.
To obtain a fair comparison, we keep the AP density (defined
as the number of APs per square kilometer) same for both
cases. Note that the AP density of 1000 means there are 10 000
APs for the case of D = 10, which has not been studied in the
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Fig. 1. Total SE and minimum SE versus the number of iterations. The
values of M and K are given explicitly in the figure. Each AP is equipped
with a single antenna.

TABLE II

COMPARISON OF RUN-TIME (IN SECONDS) BETWEEN ALGORITHM 2
AND THE SCA-BASED METHOD FOR SOLVING THE SEMAX

PROBLEM. THE VALUES OF OTHER PARAMETERS

ARE TAKEN AS K = 40, N = 1 AND D = 1

literature previously. To appreciate the proposed method for
this large-scale scenario, we compare it with the SCA method
and the equal power allocation (EPA) method where the power
control coefficient ηmk is given by, ηmk = (

�k
i=1 νmi)−1.

The results in Fig. 2 are interesting. First, increasing the AP
density expectedly improves the total spectral efficiency of the
system. Second, for the same AP density, a larger area provides
a better sum spectral efficiency. The reason is that for a larger
area, the users that are served by the APs become far apart each
other. As a result, the inter-user inference becomes weaker,
leading to an improved sum spectral efficiency. On the other
hand, the EPA method yields smaller spectral efficiency as the

Fig. 2. Total spectral efficiency versus AP density. The number of users is
K = 40.

Fig. 3. Total spectral efficiency versus AP density and number of users.

coverage area is larger because more power should be to spent
to the users having small path loss. Although, the SCA-based
method produces the same spectral efficiency as the proposed
APG method for D = 1, it is unable to run for D = 10
on the system specifications mentioned above, for which the
proposed method is still viable. The above facts show that the
proposed scheme outperforms the SCA-based method in terms
of the required run time, and outperforms the EPA methods
in terms of the achieved utility performance.

In Fig. 3, we again investigate the spectral efficiency per-
formance of the AP density but for different number of users
(i.e. K = 100 and K = 40). It can be seen that for a given AP
density, the SE is increased if the number of users becomes
larger. The gain is more profound for larger AP density due
to the fact that more APs allow for more efficient exploitation
of multiuser diversity gains.

Next we plot the cumulative distribution function (CDF)
of the per-user SE obtained by the four considered utility
functions. Two settings are examined: M = 100, K = 20,
Tc = 200 symbols and Tp = 20 symbols (cf. Fig. 4(a)),
and M = 2000, K = 500, Tc = 1000 and Tp = 200
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Fig. 4. CDF of per-user spectral efficiency for (P1)-(P4) for small scale
and large-scale problems.

(cf. Fig. 4(b)). We can observe in Fig. 4 that the median
values of the total achieved SEs are more or less the same
for all the four utility functions. The 95%-likely achievable
downlink SE is decreasing from (P1) to (P4) which can
be explained by the fact that the following inequality holds:
SE(P1) > SE(P2) > SE(P3) > SE(P4), where SE(Pi) denotes
the per-user spectral efficiency obtained by solving (Pi) [26].
It is also known that the order is reversed in terms of fairness.
Consequently, the CDF of the per-user SE of (P4) (i.e. the
MRmax problem) has the steepest slope and that of the SEmax
problem is more spread. It is particularly interesting to see that
the difference on the CDF of the per-user SE of all four utility
metrics is marginal for large-scale cell-free massive MIMO.
This simulation result again confirms that cell-free massive
MIMO can deliver universally good services to all users in the
system. In the next experiment, we investigate how the average
SE varies as a function of the number of APs. In particular,
Fig. 5 shows the average spectral efficiency as a function of
the number of APs for K = 100 and K = 50 users in an area
of D = 1. We can see that the average SE increases quickly
when the number of APs is less 1000 for both K = 50 and
K = 100 users, and it starts to saturate when the number of
APs is larger. The reason is that for a given user, there should

Fig. 5. Average spectral efficiency versus number of APs for K = 100 and
K = 50 users for D = 1.

Fig. 6. Average spectral efficiency versus number of selected APs for
M = 500 and D = 1.

be a certain number of APs (i.e closest APs) that truly provides
macro diversity gains to that user in terms of SE. Thus, a
user may be served by a subset of APs to achieve similar SE
performance. This can help reduce the overhead in cell-free
massive MIMO. Further insights into this are discussed in the
next numerical experiment.

In Fig. 6, we consider a scenario with M = 500 APs
and study how many APs are effectively required for each
user. In particular, we plot the average spectral efficiency as a
function of the number of selected APs per user for two utility
functions: SEmax and MRmax. For a given user, a number
of APs is simply selected based on their large-scale fading
coefficients. From Fig. 6, we can observe that not all 500 APs
are needed to serve 25 or 50 users in an area of 1 km2. Instead
a smaller number of APs per user can can yield nearly the
same performance. For example, we only need to assign less
than 100 APs to a user to achieve 95% of the SE of the full
system.

Finally, we investigate the effect of increasing the number of
antennas per AP on the sum SE and minimum SE. Specifically,
we plot the average SE and minimum SE with respect to the
number of antennas for both M = 500 and M = 1000 APs.
The number of users is fixed to K = 50. Expectedly, the SE
increases with the increase in the number of antennas per APs
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Fig. 7. Average spectral efficiency with respect to the number of antenna at
each AP for K = 50, D = 1.

but the increase tends to be small when the number of antennas
is sufficiently large. The reason is that for a large number
of APs channel hardening and favorable propagation can be
achieved by a few antennas per AP. Specifically, we can see
that the SE for the case of 1000 APs and 4 antennas per AP
is larger than the SE for the case of 500 APs and 8 antennas
per AP. Therefore, for large-scale cell-free massive MIMO,
having more APs with a few antennas each seems to be more
beneficial than having fewer APs with more antennas each.

VI. CONCLUSION

We have considered the downlink of cell-free massive
MIMO and aimed to maximize four utility functions, subject
to a power constraint at each AP. Conjugate beamforming
has been adopted, resulting in a power control problem
for which an accelerated project gradient method has been
proposed. Particularly, the proposed solutions only requires
the first order information of the objective and, in particular,
each iteration of the proposed solutions can be computed by
closed-form expressions. We have numerically shown that the
proposed methods can achieve (nearly) the same SE as a
known SCA-based method but with much lesser run time.
For the first time, we have evaluated the SE performance of
cell-free massive MIMO for an area of 10 km2, consisting
of up to 10 000 APs, whereby the achieved SE can be up to
200 (bit/s/Hz). We have also found that the SE performance
of the four utility functions is quite similar for large-scale
cell-free massive MIMO, confirming again that cell-free mas-
sive MIMO can provide uniformed services to all users.

APPENDIX A
SOLUTION TO THE PROJECTION ONTO S

The solution of (24) can be found using the KKT conditions
given by

∇µm
L = 2(μm − xm) + 2λμm = 0, (41a)

λ(||μm||2 − 1
N

) = 0, (41b)

||μm||2 ≤ 1
N

, (41c)

λ ≥ 0. (41d)

Applying the constraint μm ≥ 0 to (41a), we get

xm = (1 + λ)μm ≥ 0. (42)

If λ = 0, the stationary condition in (41a) results in

μm = xm, (43)

and (41c) gives μm = xm ≤ 1
N , which corresponds to the case

where xm lies in S. If λ > 0, the complementary slackness
in (41b) implies that ||μm||2 = 1

N . The equality in (42) can
further be written as

μT
mxm = (1 + λ)μT

mμm = (1 + λ)
1
N

. (44)

Since λ > 0, we get NμT
mxm − 1 > 0 or μT

mxm > 1
N .

By using the Cauchy–Schwartz inequality, we can write
||μm|| ||xm|| > 1

N or ||xm||2 > 1
N , which refers to the

case where xm lies outside S. Furthermore, substituting
λ = NμT

mxm − 1 into (42), we get

xm = N(μT
mxm)μm, (45)

which means that μm is parallel to xm or μm = axm where a

is a constant. Next using (45) gives a = 1/
√

N
||xm||2 and therefore

μm =
1/

√
N

||xm||2 xm. (46)

Combining (42), (43) and (46) results in

μm =

�
1/N

max
��

1/N, ||[xm]+||
� [xm]+, (47)

which completes the proof.

APPENDIX B
LIPSCHITZ CONSTANT OF ∇f (μ)

Assessing the Lipschitz constant of ∇f(μ) for the four
problems discussed in the paper boils down to finding the
Lipschitz constant of ∇SEk(μ). A convenient way to do this
is to rewrite the function SEk(μ) in the form of single variable
μ which can be done by denoting Ai � IM⊗eT

i . Then, we can
write μ̄i as Aiμ, and thus γk(μ), the SINR of the k-th user,
can be rewritten as

γk(μ) =

bk(µ)� �� �
ζd(ν̄T

kkAkμ)2

ζd

⎛
⎝K�

i�=k

(ν̄T
ikAiμ)2 +

1
N

K�
i=1

||D̄kAiμ||22

⎞
⎠

� �� �
ck(µ)

+ 1
N2

.

(48)

The gradient of SEk(μ) with respect to μ is found as

∇SEk(μ) = ∇µ log(1 + γk(μ))

=
∇µ (bk(μ) + ck(μ))
bk(μ) + ck(μ) + 1

N2

− ∇µck(μ)
ck(μ) + 1

N2

, (49)
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where ∇µb(μ) and ∇µc(μ) are given by

∇µbk(μ) = 2ζdAT
kν̄kkν̄

T
kkAkμ, (50)

∇µck(μ) = 2ζd

⎛
⎝K�

i�=k

AT
i ν̄ikν̄

T
ikAi+

1
N

K�
i=1

AT
i D̄

2
kAi

⎞
⎠μ.

(51)

Now the Lipschitz continuity of ∇µbk(μ) and ∇µck(μ) is
obvious, and so is that of ∇SEk(μ). Although we can compute
the Lipschitz constant of ∇SEk(μ), this is quite involved and
not necessary since a line search is used to find a proper step
size.

APPENDIX C
CONVERGENCE PROOF OF ALGORITHM 1

The proof is due to [23]. First, we note that since ∇f(μ)
is Lipschitz continuous and a line search is used to find
a proper step size in Algorithm 2, it is sufficient to prove
the convergence Algorithm 1. We begin with by recalling an
important inequality of a L-smooth function. Specifically, for
a function f(x) has the Lipschitz continuous gradient with a
constant Lf , the following inequality holds

f(y) ≥ f(x) +
#∇f

�
x
�
,y − x

$− Lf

2
||y − x||2. (52)

The projection in Step 5 of Algorithm 1 can be written as

vn+1 = arg min
µ∈S

��μ− μn − α∇f
�
μn
���2

= arg max
µ∈S

#∇f
�
μn
�
,μ−μn

$− 1
2α

||μ−μn||2, (53)

where we have used the fact that ||a−b||2 = ||a||2 + ||b||2 +
2 �a,b�. Note that when μ = μn, the objective in the above
problem is 0, and thus we have#∇f

�
μn
�
,vn+1 − μn

$− 1
2α

||vn+1 − μn||2 ≥ 0. (54)

Applying (52) yields

f(vn+1) ≥ f
�
μn
�

+
#∇f

�
μn
�
,vn+1 − μn

$
− Lf

2

��vn+1 − μn
��2

≥ f
�
μn
�

+
� 1
2α

− Lf

2
����vn+1 − μn

��2
. (55)

It is easy to see that f(vn+1) ≥ f
�
μn
�

if α < 1
Lf

. From
Step 6, if f(zn+1) ≥ f(vn+1), then

μn+1 = zn+1, f
�
μn+1

�
= f(zn+1) ≥ f(vn+1). (56)

Similar if f(zn+1) < f(vn+1), then

μn+1 = vn+1, f
�
μn+1

�
= f(vn+1). (57)

From (55), (56), and (57) we have

f
�
μn+1

� ≥ f(vn+1) ≥ f
�
μn
�
. (58)

Since the feasible set of the considered problems is compact
convex, the iterates {vn} and {μn} are both bounded and
thus {μn} has accumulation points. As shown above, f

�
μn
�

is nondecreasing, f has the same value, denoted by f∗, at all
the accumulation points. From (55), we have

f
�
μn+1

�− f
�
μn
� ≥ f(vn+1) − f

�
μn
�

≥ � 1
2α

− Lf

2
����vn+1 − μn

��2
, (59)

which results in

∞ > f∗ − f
�
μ1
� ≥ ∞�

n=1

� 1
2α

− Lf

2
����vn+1 − μn

��2
. (60)

Since α < 1
Lf

, we can conclude that��vn+1 − μn
��→ 0 as n → ∞. (61)

The convergence proof of Algorithm 1 to a critical point of
(P1) follows the same arguments as those in [23] and thus,
is omitted for the sake of brevity.
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