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Capacity of a Lossy Photon Channel
With Direct Detection

Karol Łukanowski and Marcin Jarzyna

Abstract— We calculate numerically the capacity of a lossy
photon channel assuming photon number resolving detection at
the output. We consider scenarios of input Fock and coherent
states ensembles and show that the latter always exhibits worse
performance than the former. We obtain capacity of a discrete-
time Poisson channel as a limiting behavior of the Fock states
ensemble capacity. We show also that in the regime of a moderate
number of photons and low losses the Fock states ensemble
with direct detection is beneficial with respect to capacity limits
achievable with quadrature detection.

Index Terms— Blahut-Arimoto algorithm, discrete-time
Poisson channel, lossy photon channel.

I. INTRODUCTION

EVERY communication protocol is carried out by perform-
ing physical measurements on physical objects which are

fundamentally described by the laws of quantum mechanics.
For optical communication this means that in a regime in
which signal strength is low, on the level of few photons per
channel use, in order to analyze the communication perfor-
mance one has to properly utilize the quantum description of
light, which, at the fundamental level, is composed of photons.
In particular, it is necessary to consider quantum states of
light and quantum measurements [1], [2]. A standard optical
channel may be modeled by a Gaussian bosonic quantum
channel [3]. The ultimate information rates for such channels,
known as classical channel capacities, have been studied
extensively in the literature [4]–[6]. However, even though the
optimal ensembles of quantum states saturating the classical
capacity bound for Gaussian channels have been discovered,
the necessary measurement schemes remain largely unknown,
with the exception of a few particular scenarios [7]–[9]. These
involve regimes of very weak and very strong signal strengths,
quantified by the average number of photons per channel use
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received at the output, in which respectively a photon number
resolving (PNR) or a heterodyne detection become almost
optimal [4], [7], [8].

On the other hand it is known that under an average
power constraint for an ideal optical channel the optimal
ensemble of states is given by either a Gaussian coherent
states ensemble or a thermal Fock states ensemble [4], [10].
Importantly, the latter is composed of states |k� of exactly k
photons which can transmit information encoded only in the
energy. One may show that for such an ensemble the optimal
measurement, saturating the classical capacity bound, is given
by the PNR measurement. This is not the case for the coherent
states ensemble as they are reminiscent of classical states of
light and encode information not only in their energy but also
in the phase of the optical field. Since the PNR measurement
allows one to detect the number of photons in the signal,
an optical channel utilizing PNR detection at the output is
known as a photon channel.

Despite the same performance for a perfect scenario, when
one introduces losses into the channel, the Fock states ensem-
ble no longer remains optimal, whereas the coherent states
ensemble still allows to attain the classical capacity bound with
appropriately modified output mean photon number. However,
as in the ideal case, a physical realization of the optimal
measurement for the latter is unknown. For the Fock states
ensemble, on the other hand, the PNR measurement is always
optimal since they can carry information encoded only in the
Fock state number. One may show that this strategy allows
to obtain at most half of the classical capacity offered by the
coherent states ensemble in the large power limit [11]. At first
glance it seems therefore that the ability to transmit infor-
mation encoded in phase is crucial for optimal performance,
even if one deals with very small losses. However, since the
Fock states ensemble strategy approaches the classical capacity
in the weak signal regime [11] it may perform well also
for moderate powers. In particular, it is interesting how it
compares to protocols based on quadrature or PNR detection
performed on coherent states ensembles, the latter resulting in
what is known as a discrete-time Poisson channel [12].

In this paper we investigate the capacity of a lossy optical
channel without any kind of additive noise with PNR detection
at the output which together forms a so-called lossy photon
channel. We specifically consider input ensembles composed
of Fock and coherent states. In order to find the capacity we
employ the Blahut-Arimoto algorithm [13], [14] which allows
us to obtain also the optimal prior probability distributions
for both types of states. We recover results obtained earlier in
[11], [15], [16] in the asymptotic limit of large signal strength
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quantified by the average number of photons per channel use
n̄, while also optimizing the information rate numerically for
finite n̄. We show that the capacity attainable with the Fock
states ensemble in the limit of low channel transmission while
keeping the received average number of photons constant is
equal to the capacity of a discrete-time Poisson channel with
the optimal prior distributions being the same for both types
of channels.

II. INFORMATION THEORY

A classical communication channel is described by a set of
conditional probability distributions p(y|x) which characterize
how output symbols y depend on the input x. In a quantum
picture [17]–[19] this probability distribution arises through
the Born rule p(y|x) = Tr [Λ (ρx)Πy], where ρx denotes a,
possibly mixed, quantum state encoding an input symbol x,
Λ is a completely positive trace preserving map known as
quantum channel describing the evolution of states through
the channel and Πy is the positive operator-valued measure
(POVM) characterizing the measurement performed by the
receiver. Assuming respective input states are sent with prior
probability p(x) the maximal information rate per channel use
R is given by the mutual information

R ≤ I(X : Y ) = H(Y ) − H(Y |X), (1)

where H(Y ) = −∑
y p(y) log2 p(y) and H(Y |X) =

−∑
x,y p(x)p(y|x) log2 p(y|x) are Shannon entropy and con-

ditional entropy. Mutual information optimized over the prior
probability distribution is known as capacity

C = max
{p(x)}

I(X : Y ), (2)

which quantifies the best communication performance utilizing
a certain set of states {ρx} and a POVM {Πy}. In order to
further maximize the communication rate one can optimize (2)
over the ensemble of input states {ρx} or the POVM {Πy}.
Crucially, the latter optimization needs to include in princi-
ple collective measurements over an arbitrarily large number
of channel outputs, which makes the problem formidable.
Fortunately, it can be shown [20]–[22] that a saturable upper
bound on the transmission rate is given by the classical channel
capacity

Cclass = max
{ρx,p(x)}

{
S [Λ (ρ̄)] −

∑
x

p(x)S [Λ (ρx)]

}
, (3)

where S(ρ) = −Tr (ρ log2 ρ) denotes the von Neumann
entropy and ρ̄ =

∑
x p(x)ρx is the average state. Note that

in (3) one still needs to perform optimization over the input
ensemble, whereas the optimization with respect to POVMs is
already included. However, the tools used in the proof of (3)
do not allow to find any practical detection schemes saturating
the bound (3) in a straightforward way. The resulting POVM
may be highly unfeasible, with implementation requiring a
simultaneous collective measurement on a large number of
time slots. This means that even if one finds a solution to
(3), i.e., the optimal ensemble of input states, in order to
find a corresponding measurement that would be also practical

one still needs to refer to (1) and perform optimization over
POVMs by hand, which is usually mathematically or numer-
ically intractable.

Importantly, for optical channels one needs to specify some
constraints on the input signal, otherwise the information rate
may become infinite. A common choice is to fix an average
signal optical power P . For a signal with a central carrier
frequency fc and a bandwidth B this constraint is equivalent
to fixing the average number n̄ of signal photons per time
bin, as the latter is equal to n̄ = P/(2πB�fc), where � is
the Planck’s constant. Other constraints are also viable, e.g.,
a constraint on the maximal signal power in the link, but we
will not consider them here.

III. LOSSY BOSONIC QUANTUM CHANNEL

A basic example of a quantum optical communication
channel for which the information rate is known is the lossy
channel [4], [6]. For such a channel, assuming a given signal
average number of photons n̄, the classical capacity (3) reads

Cclass = g(ηn̄),
g(x) = (x + 1) log2(x + 1) − x log2 x, (4)

where the function g(x) denotes the von Neumann entropy of
a thermal state with an average number of photons x and η
denotes the optical transmission of the channel.

A particular case of η = 1 corresponds to an ideal noiseless
optical channel. As mentioned earlier, for such a case there
exist two optimal ensembles of input states known to saturate
(4): a Gaussian coherent states ensemble

ρα = |α��α|, p(α) =
1

πn̄
e−|α|2/n̄, (5)

where the amplitude α ∈ C, and a thermal Fock states
ensemble

ρn = |n��n|, p(n) =
n̄n

(n̄ + 1)n+1
. (6)

Importantly, coherent states are often regarded as classical
as they represent quantum states of light emitted by a well
stabilized laser and they can be represented as a superposi-
tion of Fock states |α� = e−|α|2/2

∑∞
n=0

αn√
n!
|n� [23], [24].

The average state ρ̄ of both ensembles (5) and (6) is a thermal
state with an average number of photons n̄. Since in the
absence of losses the output states of both ensembles are
pure, the only contribution to the capacity in (3) is given by
the entropy of the average state and equal to (4). A practical
scheme saturating the bound in (4), however, is known only
for the latter ensemble and is given by a PNR measurement.

Introducing losses into the channel, i.e., taking η < 1,
corresponds to decreasing the information rate. Interestingly,
in this case, even for infinitesimally small losses, only the
coherent states ensemble remains optimal and saturates the
bound in (4). This is because coherent states remain pure
under the influence of a lossy channel, only their amplitude
decreases |α� → |√ηα�. Therefore, the only contribution to
the information rate is given by the average state which, at the
channel output, is equal to a thermal state with an average
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number of photons ηn̄. On the other hand, Fock states become
mixed after propagation through a lossy channel

|k��k| → ρk =
k∑

l=0

(
k

l

)
ηl(1 − η)k−l|l��l|, (7)

which introduces an additional contribution in (3), reducing the
information rate and changing the optimal prior distribution
in (6). Despite of the above issues the PNR measurement
remains optimal for the Fock states ensemble, since they carry
information encoded only in the number of photons. On the
other hand a practical POVM saturating the classical capacity
bound in (4) for the coherent states ensemble still remains
unknown.

A number of early results in quantum communication theory
considered communication through a lossy channel with the
Fock states ensemble [11], [15]. In particular, Bowen [11]
identified approximate expressions for the capacity in the large
output number of photons regime ηn̄ � 1 and the photon
starved regime ηn̄ 	 1. In the latter case it was found that
the capacity asymptotically behaves like the ultimate bound
(4) ∼ ηn̄ log2 ηn̄ whereas in the former scenario one obtains

CFock
ηn̄�1≈ 1

2

[
log2 ηn̄ + log2

(
e

π

1
1 − η

)]
. (8)

Crucially, by (8), the highest information rate achievable with
the help of Fock states ensembles asymptotically attains in the
leading order only half of the classical capacity of the lossy
channel (4), irrespectively of η < 1. Note that for the ideal
lossless channel, η = 1, the approximation in (8) diverges,
which is consistent with the fact that the classical capacity
in (4), saturable with Fock states in the lossless case, has a
different asymptotic behavior for large average number of pho-
tons. An analysis of the capacity of a communication protocol
employing pulse position and pulse amplitude modulations
with Fock states was conducted in [25].

The capacity attainable with the coherent states ensemble
and PNR measurement has been extensively studied [12], [15],
[16], [26]–[31]. In such a scenario, the conditional probability
distribution of the detected number of photons depending on
the amplitude is given by a Poissonian distribution

p(l|α) = e−η|α|2
(
η|α|2)l

l!
, (9)

and hence the resulting classical communication channel
is usually called the discrete-time Poisson channel. It was
shown [15], [16], [31] that for such a scenario a non-Gaussian
ensemble of coherent states for a large average output number
of photons offers an information rate exhibiting a similar
behavior as in (8)

R ≈ 1
2

log2 ηn̄, (10)

with the exact equality holding in the asymptotic scenario.
Similarly, in the opposite regime of weak signals ηn̄ 	 1
one obtains in the first order rate scaling as ∼ ηn̄ log2 ηn̄,
the same as the ultimate bound (4) and as with the Fock
states ensemble. It seems therefore that when one considers
measurements of energy at the output both ensembles offer

close performance and it is the ability to encode information
in optical phase that makes coherent states more robust if one
allows for more general detection methods. Note, however,
that capacities under the assumption of PNR measurement for
both ensembles are known only approximately and in certain
regimes. In general, only various upper and lower bounds
are known, most notably those derived for coherent states
in [16], [31].

An important point of reference for communication with
coherent states is the capacity attainable with quadrature
detection. The paradigmatic examples in this scenario are
homodyne and heterodyne measurements in which respec-
tively one or two orthogonal quadratures of light are measured.
Both methods are limited by the quantum shot noise equal to
1/2 per quadrature. Capacities achievable by these methods
are given by the celebrated Shannon-Hartley theorem [32] as

Chom =
1
2

log2 (1 + 4ηn̄) , (11)

Chet = log2 (1 + ηn̄) , (12)

respectively. Importantly in the regime of large average
received number of photons ηn̄ heterodyne detection saturates
the quantum limit in (4) up to 1 nat difference, whereas
the homodyne detection, similarly as the PNR measurement,
attains just a half of the bound Chom ≈ 1

2 log2 ηn̄. On the other
hand in the opposite regime of small received average number
of photons it is the homodyne detection that outperforms the
heterodyne measurement by a factor of 2, offering capacity
Chom ≈ 2ηn̄ as opposed to Chet ≈ ηn̄. Note that in this regime
both methods do not attain the classical capacity bound (4).

IV. BLAHUT-ARIMOTO ALGORITHM

Our main goal is to calculate the capacities attainable with
the Fock and coherent states ensembles over the lossy channel
with PNR detection performed at the output. In order to find
the capacity offered by the former ensemble at the input one
needs to solve (2) for a classical information channel given
by a conditional probability distribution evaluated through the
Born rule on a state in (7)

p(l|k) = �l|ρk|l� =
(

k

l

)
ηl(1 − η)k−l. (13)

Therefore one needs to optimize the mutual information for
this channel over a discrete prior probability distribution p(k)
with a constraint on the average input signal number of
photons

∑
k p(k)k = n̄. Note that the input and output of

the classical channel defined in (13) are discrete. Despite this
fact, unfortunately, optimization cannot be done analytically
and one has to rely on numerical means.

We solve the problem of maximizing the rate by employing
the Blahut-Arimoto algorithm [13], [14], which is designed to
compute the capacity of memoryless, discrete channels. The
algorithm in each iteration provides a subsequent approxima-
tion of the actual value of the capacity and it is guaranteed
to converge. Below we present a modified version of the
algorithm which allows to apply arbitrary constraints on the
prior distribution [13].
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First of all, let us write the expression for the mutual
information (1) in an alternative form

I(X, Y ) = H(X) − H(X |Y ). (14)

The conditional entropy H(X |Y ) is equal to

H(X |Y ) = −
∑
x,y

p(x)p(y|x) log2 p(x|y), (15)

where we have used the Bayes’ formula p(x|y) =
p(x)p(y|x)/p(y). The conditional probability p(x|y) under the
logarithm can be interpreted as an example of a stochastic
matrix Φx|y = p(x|y). A stochastic matrix is defined to be
any matrix composed of nonnegative entries Φx|y ≥ 0 with
columns that sum up to 1, i.e.,

∑
x Φx|y = 1 for any y.

The expression in (15) can be generalized for an arbitrary
stochastic matrix Φ as

J(X |Y ; Φ) = −
∑
x,y

p(x)p(y|x) log2 Φx|y. (16)

One can show that the conditional entropy in (15) is the
minimal value of J(X |Y ; Φ)

J(X |Y ; Φ) ≥ H(X |Y ), (17)

with equality holding when Φ is of the form reproducing (15)

Φx|y = p(x|y) =
p(y|x)p(x)∑
x′ p(y|x′)p(x′)

. (18)

This observation allows one to write the capacity in (2) as

C = max
{p(x)}

max
Φ

[H(X) − J(X |Y ; Φ)] . (19)

In order to solve (19) one can perform alternating opti-
mization with respect to Φ and p(x). Constraints on the
input signal may be included in the above optimization
using the Lagrange multipliers method by adding a term∑n

i=1 λi (
∑

x p(x)fi(x) − Ki), where n is the number of
constraints, Ki denote the constrained values and fi(x) are
functions defining the constraints. Out of these one may single
out the constraint μ (

∑
x p(x) − 1) which ensures that the

probabilities sum up to 1 and always has to be satisfied. The
exact algorithm is shown in Algorithm 1.

Optimizing the information rate for the discrete-time Pois-
son channel, i.e., the coherent states ensemble measured with
PNR detector is a qualitatively different problem. This is
because the input random variable, which in this case is the
amplitude of the state, is a continuous random variable and
one should in principle optimize over a continuous distribution
{p(x)} in (19). This is a considerably more involved task as,
in order to use a Blahut-Arimoto-like algorithm, one has to
discretize the input alphabet and model the prior probability
distribution as a collection of delta functions located at points
that have to be optimized. In order to do so we used a
continuous version of the Blahut-Arimoto algorithm described
in [33, Sec. 7.3] modified such that it includes the constraint on
the average number of photons. The outline of the algorithm
is presented in Algorithm 2 while the details are described
in Appendix A.

Algorithm 1 Blahut-Arimoto Algorithm With Constraints∑
x p(x)fi(x) = Ki on the Input Distribution

1: Choose an initial prior distribution {p(0)}.
2: In step t, maximize H({p(t)}) − J(X |Y ; Φ(t)) +∑n

i=1 λi

[∑
x p(t)(x)fi(x) − Ki

]
+ μ

[∑
x p(t)(x) − 1

]
with respect to Φ(t), keeping {p(t)} constant. The result is
Φ(t+1)

x|y = p(y|x)p(t)(x)/
[∑

x′ p(y|x′)p(t)(x′)
]

according
to (17).

3: Maximize H({p(t)}) − J(X |Y ; Φ(t+1)) +∑n
i=1 λi

[∑
x p(t)(x)fi(x) − Ki

]
+ μ

[∑
x p(t)(x) − 1

]
with respect to {p(t)}, keeping Φ(t+1) constant. The
result is p(t+1)(x) = r(t)(x)/

∑
x′ r(t)(x′), where

r(t)(x) = exp
[∑

i λifi(x) +
∑

y p(y|x) log Φ(t+1)
x|y

]
.

4: Find λi from the constraints
∑

x p(x)fi(x) = Ki and use
them in the formula from step 3 in order to obtain p(t+1)(x)
for all x.

5: Repeat 2–4 until convergence.

Algorithm 2 Blahut-Arimoto algorithm for continuous input
alphabets

1: Choose an initial n-point sample x(0) = (x(0)
1 , . . . , x

(0)
n )

of input symbols which discretizes the continuous input
alphabet. The size n of the sample should be chosen large
to well approximate the continuous distribution.

2: In step t perform a discrete version of the Blahut-Arimoto
algorithm described in Algorithm 1. The result is the
optimal prior probability distribution p(t) = (p(t)

1 , . . . , p
(t)
n )

for the sample x(t).
3: Update the sample x(t) → x(t+1) keeping p(t) constant

in a way which increases the mutual information but also
maintains the constraint placed on the input, e.g., by a
projected gradient descent method:
a: Calculate g(t) = (g(t)

1 , . . . g
(t)
n ) where g

(t)
i =

∂

∂x
(t)
i

D[p(y|x(t)
i )  p(t)(y)] and D[p(y|x)  p(y)] is the

Kullback-Leibler divergence between distributions p(y|x)
and p(y). p

(t)
i are treated as constant values independent

of x
(t)
i and p(t)(y) =

∑n
i=1 p(y|x(t)

i )p(t)
i .

b: Normalize x̃
(t)
i =

√
p
(t)
i x

(t)
i and g̃

(t)
i =

√
p
(t)
i g

(t)
i for

i = 1, . . . , n.
c: Calculate ñ(t) = n̄g̃

(t)
⊥ /|g̃(t)

⊥ |, where g̃
(t)
⊥ = g̃(t) −(

g̃(t) · ˆ̃x(t)
)

ˆ̃x
(t)

and ˆ̃x
(t)

= x̃(t)/|x̃(t)|.
d: Set x(t+1)(φ) = (x̃(t) cosφ + ñ(t) sin φ)/

√
p
(t)
i .

e: Optimize mutual information I(x(t+1)(φ), p(t)) over φ,
the result is the optimal value φ∗.
f: Update x(t+1) = x(t+1)(φ∗).

4: Repeat 2–3 until convergence.

V. CAPACITY

In this section we present capacities attainable by both
Fock and coherent states ensembles in the lossy channel
detected by the PNR measurement. We performed optimiza-
tion of the information rate by an appropriate version of the
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Fig. 1. (a) Information rates as a function of the average number of photons at
the receiver side. The upper and lower gray regions denote values forbidden by
quantum physics and lower than the analytical bound found by Martinez [16]
respectively. The yellow shaded area indicates a region bounded from above
by an upper bound on the coherent states ensemble capacity found in [31] and
from below by the result for a Gamma distribution [16]. The black solid curve
represents capacities attainable with the coherent states ensemble. Capacities
for homodyne and heterodyne receivers are shown for comparison. Capacities
attainable with the Fock states ensemble are depicted for η = 1, 0.99, 0.9,
and 0.5. Note that Fock states ensembles saturate the classical capacity bound
(4) for η = 1. (b) Ratio of capacities obtained with Fock and coherent states
ensembles. White dashed lines depict curves of constant output number of
photons ηn̄. Note that CFock/Ccoh goes to 1 as n̄ increases and η decreases
while keeping ηn̄ constant.

Blahut-Arimoto algorithm in each case, that is the discrete
version for the former and continuous for the latter.

It is seen in Fig. 1(a) that irrespectively of the loss
parameter, capacities attainable by both Fock and coherent
states ensembles, CFock and Ccoh respectively, converge to
the ultimate capacity bound (4) in the limit of low output
average number of photons. In the opposite regime of large
output powers, these capacities all converge to a half of the
ultimate bound, as indicated in (8) and (10), the same value
as the one attained by an optimal ensemble of coherent states
measured by single homodyne detection. However, it is seen
that for all values of η the capacities offered by the Fock states
ensemble are higher than those obtained with coherent states.
Note that the latter depends only on the actual output power
ηn̄ since losses just decrease the amplitudes. The coherent
states ensemble capacity slightly outperforms the information

Fig. 2. Optimal prior probability distribution p(k) for lossy communication
with Fock states ensembles with the average number of photons at the input
n̄ = 30 for various levels of losses (a), (b). In (b) the large vacuum state
probability p(0) is omitted in order to visualize the behavior for higher Fock
state numbers. Prior distribution for the fixed value of losses η = 0.02 and
various input average numbers of photons is presented in (c), with omission
of large p(0). The curves of respective colors in (b) and (c) correspond to the
same value of the output average number of photons ηn̄.

rate obtained in [16] with a Gamma prior distribution but
it does not attain the upper bound derived in [31]. The
difference between capacities offered by both ensembles is
further seen in Fig. 1(b), where their ratio is shown. It is
seen that the Fock states ensemble offers an almost two-fold
advantage in the information rate for links with small losses
and moderate signal strength, and the advantage is larger than
1.4 for η ≥ 0.9. Importantly, in the regime of moderate output
number of photons, PNR communication with Fock states
outperforms also the one attained by the heterodyne detection
of the Gaussian coherent states ensemble, a protocol saturating
the classical capacity bound in the large signal strength regime.

The optimal prior probability distributions for a particular
value of the input average number of photons n̄ = 30 and
a few different values of the transmission coefficient η are
shown in Fig. 2(a). It is seen that by lowering the transmission,
the probability p(0) of sending zero photons raises rapidly
and the distribution becomes more peaked around this point.
Interestingly, for low transmission the tail of the probability
distribution exhibits a few local maxima, as shown in Fig. 2(b).
In the regime of very low transmission coefficients, there is
only one such maximum, except of p(0), and its location
moves to the higher number of photons the lower η one
considers. This indicates that in this regime it is optimal to
use a version of a generalized on-off keying modulation in
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which one sends either a vacuum state (empty pulse) or a
high-order Fock state [7], [34], [35]. Importantly, note that the
prior distribution is not a function of just the output average
number of photons ηn̄. This is seen in Fig. 2(c) in which the
optimal prior distribution is shown for a fixed η and a few
different average input numbers of photons. It is seen that
the resulting optimal prior distributions are different from the
ones presented in Fig. 2(b), even though ηn̄ is the same for
respective curves. Despite this difference, however, p(k) still
exhibits a single local maximum other than p(0). Note, that
by lowering the average number of photons, location of the
maximum moves closer to k = 0.

VI. POISSON CHANNEL

The capacity advantage obtained in Section V for Fock
states over the coherent ensemble may be easily understood
by using the data processing inequality [36]. This is because
the probability of detecting l photons when the received light
was in a state |√ηα� is equal to

p(l|α) = e−η|α|2 (η|α|2)l

l!
=

∞∑
k=l

e−|α|2 |α|2k

k!
p(l|k), (20)

where p(l|k) is the probability of detecting l photons when
the input was in a Fock state |k�, (7). Therefore p(l|α) is
obtained by mixing respective probabilities for the Fock states
ensemble. This means that the mutual information attainable
with this ensemble cannot be smaller than what is achievable
for coherent states i.e., the capacity of the Poisson channel.

Interestingly, the capacity for the Fock states ensemble in
the limit η → 0 while keeping ηn̄ constant is equal to the
one for the Poisson channel, i.e., attained by coherent states
which is seen in Fig. 1(b). This can be rigorously explained
with a following argument. For a given prior probability dis-
tribution and transmission coefficient η0, the average number
of photons at the output is equal to η0n̄0 = η0

∑∞
k=0 p(k)k =∑∞

k=1 ckp(k), where ck = η0 k. Let us write ck = ηfk, where
fk = kη0/η. If one fixes all ck, then for η → 0 one has
fk → ∞. Therefore, for very small η one also can approximate
all fk by natural numbers. Taking then an ensemble of Fock
states with the same probabilities p(k) and |fk� instead of |k�
one obtains the conditional probability distribution in (13) in
the limit η → 0 as

p(l|fk) = e−ck
cl
k

l!
, (21)

which is the Poisson distribution one would obtain for a
discrete ensemble of coherent states with amplitudes satisfying
η0|αk|2 = ck in (9). Note that the average number of photons
at the output for this scenario is still equal to η0n̄0. This
means that by optimizing the mutual information for the
Fock states ensemble {p(k), |fk�} over p(k) with a constraint
η

∑
k fkp(k) = η0n̄0 and going with η → 0 one obtains

the same result as by optimizing the mutual information
for the Poisson channel over p(k) and ck with a constraint∑

k p(k)ck = η0n̄0. Since, as shown above, the Fock states
ensemble capacity cannot be lower than what is achievable
with coherent states with the same output average number

of photons, the capacities attainable by both ensembles are
equal to each other in the limit η → 0 while keeping the
output average number of photons η0n̄0 constant. Note that
this means that not only the Poisson channel capacity can be
obtained as a limiting case of the result for Fock states but also
the optimal prior distributions for both cases are the same and
one obtains optimal values of coherent states amplitudes as
ck → ηfk for η → 0. This agrees with observations made
in [29], [30] in that capacity achieving distributions for the
Poisson channel exhibit similar behavior as the one described
in Section V for the Fock state ensemble. Interestingly, this
result shows also that, despite the fact that the amplitude α is
in principle a continuous parameter, the optimal distributions
for the Poisson channel are discrete which was conjectured
in [12] and then rigorously proved in [31].

VII. APPROXIMATION OF CAPACITY

The prior probability distributions optimizing the Fock
states ensemble capacity obtained through the Blahut-Arimoto
algorithm in Section V do not follow any simple closed-form
analytical formula. Therefore, in order to approximate the
optimal capacity we employ a prior distribution in the form
of a negative binomial distribution

p(k) =
Γ(k + r)
k!Γ(r)

pk(1 − p)r, (22)

where p = n̄/(n̄+r) is chosen such that the average number of
photons is equal to �k� = n̄ and r is a continuous parameter to
be optimized over. Note that the optimal distribution of Fock
states in the lossless case (6) is a special case of (22) with
r = 1.

Using integral expressions for the entropies of binomial
and negative binomial distributions derived in [37] it can be
shown (see appendix B) that for a given value of r the mutual
information for the prior distribution in (22) is equal to

INegBin(X : Y, r)

=
1

ln 2

∫ 1

0

dz

z ln(1 − z)

×
{

(1 − z)r−1

[(
r

r + ηn̄z

)r

+ ηn̄z − 1
]

+
(

r

r + (1 − η)n̄z

)r

−
(

r

r + n̄z

)r

− ηn̄z

}

+ (ηn̄ + r)h
(

ηn̄

ηn̄ + r

)
− n̄h(η) − ηn̄ log2 r, (23)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy. The information rate attainable with such input
distribution reads therefore

RNB = max
r

INegBin(X : Y, r) (24)

and is a lower bound to the true capacity of the Fock states
ensemble. It is seen in Fig. 3 that with the help of (24) one
is able to achieve information rates very close to the true
capacity for η � 0.1. The reason for this is that the negative
binomial distribution does not exhibit any sort of multimodal
behavior, characteristic for the optimal distribution in the high
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Fig. 3. Information rate attainable for a negative binomial prior probability
distribution (24) (dotted curves) and capacity CFock attainable in the lossy
channel with Fock states ensembles (solid curves). The value of parameter r
for negative binomial distribution optimizing the information rate is depicted
in the inset as a function of the average number of photons at the output.

losses scenario, and shown in Fig. 2. Nonetheless, for lower
transmission the information rate in (24) approximates the
lower bound on the capacity for the coherent states ensemble
attainable with a Gamma prior distribution found in [16].

VIII. CONCLUSION

In conclusion we have numerically found optimal prior
probability distributions and calculated the capacity for a
lossy photon channel with an input Fock states ensemble.
We showed that the capacity for such a strategy outperforms
the one attainable by an arbitrary coherent states ensemble
with PNR detection. The latter scenario is described by a
discrete-time Poisson channel, for which the capacity is equal
to the one obtained for the Fock states ensemble in the limit
of small transmission while keeping the output number of
photons constant. Crucially, our result allows not only to
evaluate the capacity for the Poisson channel but also identifies
the optimal prior probability distribution and amplitudes.

Our results indicate that in the regime of few photons at
the output and low losses the Fock states ensemble offers
information rate noticeably higher than the coherent ensemble
paired with the PNR detection or quadrature detection. Given
the recent progress in both PNR detectors [38]–[40] and the
production of multi photon Fock states [41], [42], they might
become relevant in communication scenarios over short dis-
tances like, e.g., optical interconnects. A crucial development
for this use, however, would be to design PNR detectors
characterized by high quantum efficiency which can operate in
regular conditions, e.g., without the need of cryogenic cooling.
The capacity advantage over the coherent ensemble paired
with PNR detection persists, although it is slightly lower, also
in the regime of low output number of photons ηn̄ ≤ 1. In this
regime PNR detection can be approximated by a single photon
detection which can be realized using existing technology [43].

On the other hand, our results show that in the absence
of high quantum efficiency photodetectors or in the presence

of large losses, the advantage offered by the Fock states
ensemble vanishes. This means that in such instances sophisti-
cated quantum states of light are of limited use [34]. However,
because of the connection between the Fock state ensemble
and the discrete-time Poisson channel in the limit of low trans-
mission and large average number of photons, our findings
may allow to increase the performance of communication in
various instances in which one can model transmission by the
discrete-time Poisson channel, like for example in long range
space optical links [44], [45].

APPENDIX A
CONTINUOUS VERSION OF

BLAHUT-ARIMOTO ALGORITHM

To find capacities for continuous alphabets one might imple-
ment an extension of the Blahut-Arimoto algorithm described
in [33, Sec. 7.3]. The algorithm aims at approximating the
capacity of a continuous channel by discretizing its input
alphabet and modeling the prior probability distribution as
a collection of delta functions located at points that have to
be optimized. Each iteration of the algorithm consists of two
parts. First, a discrete version of the Blahut-Arimoto algorithm
described in Algorithm 1 is performed on a discrete sample
chosen from the input alphabet in order to find the optimal
prior probability distribution of the input symbols in this
sample. Next, the symbols of the sample are moved within
the input space while their probability distribution is kept
fixed, in such a way as to increase the mutual information.
Unfortunately, since the optimization over the input sample
in the second step is non-convex and may lead to a local
maximum of the mutual information, there is no proof of
the convergence of this method to the true capacity. As such,
the values obtained by this procedure should be interpreted
only as lower bounds of the true capacity. Moving the sample
symbols can be performed in various ways, like for example
by a steepest ascent method applied in the original version
of the algorithm in [33]. Note that a special care needs to be
taken so that the potential constraints on the input alphabet
are satisfied in each step of the procedure. We present below
a modified version of the algorithm which accounts for the
latter problem for the discrete-time Poisson channel.

Consider a finite discrete n-point sample chosen from the
input alphabet x = {x1, x2, . . . , xn}. In the case of the
Poisson channel xi denotes the amplitude of a coherent state
|xi� and we assume xi ∈ R since PNR detection is insensi-
tive to optical phase. The conditional probability p(k|xi) of
detecting k photons if the state |xi� was sent is given by
the Poisson distribution in (9). The first step in the algorithm
is to perform a Blahut-Arimoto procedure for the sample x.
One obtains this way an optimal prior probability distribution
p = {p1, p2, . . . , pn} for x. This distribution satisfies the
constraint on the average input energy

n∑
i=1

pix
2
i = n̄, (25)

as the average number of photons in a state |xi� is
equal to x2

i .
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The next step is to update the sample x → x′ by moving the
elements of x without changing p in a way which increases
the mutual information I(X, Y ). The latter can be expressed
as a function of x and p

I(X, Y ) = I(x, p) =
n∑

i=1

piD[p(k|xi)  p(k)], (26)

where

D[p(k|xi)  p(k)] =
∑

k

p(k|xi) log2

(
p(k|xi)
p(k)

)
. (27)

is the Kullback-Leibler divergence [46] between probability
distributions p(k|xi) and p(k) and the latter is the distribution
of photocounts at the output p(k) =

∑n
i=1 p(k|xi)pi. For a

fixed probability distribution p one may obtain

I(x′, p ) ≥ I(x, p), (28)

by moving x → x′ in such a way that for each i the Kullback-
Leibler divergence is either increased or stays the same, i.e.,

D[p(k|x′
i)  p(k)] ≥ D[p(k|xi)  p(k)]. (29)

This task can be performed by means of a steepest ascent
method [47, Sec. 1.2], in which one moves x in the direction
of the gradient of D[p(k|xi)  p(k)]:

x′
i = xi + λ

∂

∂xi
D[p(k|xi)  p(k)] = xi + λgi, (30)

where λ is a (typically small) step size, selected such that (29)
holds, and we define the gradient g = {g1, g2, . . . , gN} where
gi = ∂

∂xi
D[p(k|xi)  p(k)]. One has

gi =
∂

∂xi
D[p(k|xi)  p(k)]

=
∑

k

1
ln 2

∂p(k|xi)
∂xi

×
(

1 + ln
p(k|xi)
p(k)

− pi
p(k|xi)
p(k)

)
, (31)

where pi are treated as constants since one wants the proba-
bilities of the sample to remain unchanged in this step of the
procedure.

However, note that the update rule defined in (30) may lead
to a violation of the energy constraint (25), i.e., in general
one has

n∑
i=1

pix
′2
i �=

n∑
i=1

pix
2
i = n̄. (32)

Therefore, if one would naively treat x′ obtained from
(30) as a new sample of input symbols, it could result in
an unstable and nonconvergent procedure. This is because
the Blahut-Arimoto algorithm guarantees an increase of the
mutual information in each iteration only if the ensemble
from the previous iteration is proper and satisfies the energy
constraint (25). On the other hand, if the Blahut-Arimoto
algorithm is run on an improper ensemble violating (25),
such as the one resulting from (30), the obtained value of the
capacity may be in general lower than the one attained by the
ensemble found in the previous step of the full procedure.

Consequently, one may end up moving away from the
capacity-achieving distribution, as after each application of
the symbol update rule and the Blahut-Arimoto algorithm the
mutual information may decrease.

In order to remedy the above issue one has to modify the
update rule defined in (30) so that the new sample x′ satisfies
the energy constraint. This can be accomplished for example
by a projected gradient descent method [47, Sec. 2.3], in which
one projects the gradient g onto a hypersurface defined by
the constraint (25) in the space of input symbols. For the
discrete-time Poisson channel one can simplify the resulting
expressions by rescaling the respective variables by

√
pi which

is kept constant in this step of the procedure

x̃i =
√

pi xi, g̃i =
√

pi gi, (33)

so that the energy constraint reads

n∑
i=1

x̃2
i = n̄, (34)

and defines an n-dimensional constant energy sphere of radius√
n̄. The rescaled vectors x̃ and g̃ define respectively a

point on the constant energy sphere and the direction of the
fastest growth of the Kullback-Leibler divergence at this point.
To update the sample without leaving the constant energy
sphere one may first project the gradient g̃ in the direction
perpendicular to x̃ resulting in

g̃⊥ = g̃ −
(
g̃ · ˆ̃x

)
ˆ̃x (35)

where ˆ̃x = x̃/|x̃| is the normalized rescaled sample vector,
and then normalize it such that is has length n̄

ñ =
g̃⊥
|g̃⊥|

n̄. (36)

One can now define the new update rule as

x̃′ = x̃ cosφ + ñ sin φ, (37)

where the parameter φ can be additionally optimized. It can be
seen that x̃′ obtained that way stays on the constant energy
sphere, i.e. |x̃′| = n̄ and for small φ it follows locally the
direction of the gradient g̃. Finally, in order to determine the
new sample vector x′ one needs to rescale back

x′
i =

1√
pi

x̃′
i (38)

and optimize the resulting I(x′, p) over parameter φ. The
latter optimization can be easily performed numerically and
is akin to the optimization over parameter λ from (30)
in a typical steepest ascent algorithm. Note, however, that
(37) actually defines a great circle of the constant energy
sphere, being an intersection of the sphere with the plane
spanned by vectors x̃ and g̃. Thus, even though the optimal
parameter φ is anticipated to be small as g̃ points in the
direction of increasing divergence only in the vicinity of x̃,
the update rule (37) allows to optimize over the whole range of
φ ∈ [0, 2π[.
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APPENDIX B
DERIVATION OF (23)

For a negative binomial prior probability distribution of
Fock states in (22) the photon number statistics at the output
is given by

P (l) =
∞∑

k=l

p(l|k)p(k) (39)

where p(l|k) is the conditional probability in (13). One obtains

P (l) =
∞∑

k=l

(
k

l

)
ηl(1 − η)k−l Γ(k + r)

k! Γ(r)
pk(1 − p)r

=
plηl(1−p)r

l! Γ(r)

∞∑
k=l

Γ[(k − l) + l + r]
(k − l)!

[p(1−η)]k−l. (40)

The sum in (40) may be computed using the fact that∑∞
n=0

Γ(n+m)
n! xn = Γ(m)

(1−x)m and substituting n = k − l,
m = l + r and x = p(1 − η). The result reads

P (l) =
plηl(1 − p)r

[1 − p(1 − η)]l+r

Γ(l + r)
l! Γ(r)

=
Γ(l + r)
l! Γ(r)

P l(1 − P )r, (41)

where P = pη/(1−p(1−η)) = ηn̄/(ηn̄+r). As seen in (41)
the probability distribution of the photocounts is also negative
binomial with the same value of r as at the input but with a
different probability of success P .

The mutual information may be written as

I(X : Y, r) = H [P (l)] −
∞∑

k=0

p(k)H [p(l|k)], (42)

where H [P (l)] denotes the entropy of the output negative
binomial distribution and H [p(l|k)] is the entropy of the
conditional probability distribution in (13). These entropies
can be written using integral formulas derived in [37] as

H [P (l)] =
r (h(P ) − P log2 r)

1 − P
+

1
ln 2

∫ 1

0

dz

z ln(1 − z)
× [

(1 − z)r−1 − 1
]

×
[(

1 +
Pz

1 − P

)−r

+
Prz

1 − P
− 1

]
, (43)

H [p(l|k)]

= kh(η) +
1

ln 2

∫ ∞

0

dt

t(et − 1)

×
[(

1 − η + ηe−t
)k +

(
η + (1 − η)e−t

)k

− (
e−t

)k − 1
]
. (44)

In order to find the conditional entropy in [44] let us denote
A1 = 1− η + ηe−t, A2 = η + (1− η)e−t, A3 = e−t. One has

H(Y |X) =
∞∑

k=0

p(k)H [p(l|k)] =
∞∑

k=0

Γ(k + r)
k!Γ(r)

pk(1 − p)r

×
[
kh(η) +

1
ln 2

∫ ∞

0

Ak
1 + Ak

2 − Ak
3 − 1

t(et − 1)
dt

]

=
(1 − p)r

Γ(r)

{ ∞∑
k=0

Γ(k + r)
k!

h(η)pkk

+
1

ln 2

∫ ∞

0

dt

t(et − 1)

×
[ ∞∑

k=0

Γ(k + r)
n!

pkAk
1 +

∞∑
k=0

Γ(k + r)
k!

pkAk
2

−
∞∑

k=0

Γ(k + r)
k!

pkAk
3 −

∞∑
k=0

Γ(k + r)
k!

pk

]}

=
h(η)pr

1 − p
+

1
ln 2

∫ ∞

0

dt

t(et − 1)

×
{

(1 − p)r

(1 − pA1)r
+

(1 − p)r

(1 − pA2)r

− (1 − p)r

(1 − pA3)r
− 1

}
, (45)

where in the last two lines we have used the fact
that

∑∞
k=0

Γ(k+r)
k! pkk = p

(1−p)r+1 Γ(r + 1) and∑∞
k=0

Γ(k+r)!
k! pkAk = Γ(r)

(1−pA)r . Changing the integration
variable to z = 1 − e−t one obtains

H(Y |X) =
h(η)pr

1 − p
− 1

ln 2

∫ 1

0

dz

z ln(1 − z)

×
{

(1 − p)r

(1− p(1 − ηz))r
+

(1 − p)r

(1− p(1− (1 − η)z))r

− (1 − p)r

(1 − p(1 − z))r
− 1

}
. (46)

Plugging the results in (43) and (46) to (42) and using the
expressions p = n̄/(n̄ + r) and P = ηn̄/(ηn̄ + r) one ends
up with the formula in (23).
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