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The κ-μ / Inverse Gamma and η-μ / Inverse
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Abstract— The κ-μ / inverse gamma and η-μ / inverse gamma
composite fading models are presented and extensively investi-
gated in this paper. We derive closed-form expressions for the fun-
damental statistics of the κ-μ / inverse gamma composite fading
model, such as the probability density function (PDF), cumulative
distribution function (CDF). Additionally, we solve the associated
integral that is commonly used to obtain the moment generating
function (MGF) of statistical distributions to provide an MGF-
type function which is valid for performance analysis over the
specified parameter space. Analytic expressions for the PDF,
higher order moments and AF are also derived for the η-μ /
inverse gamma composite fading model, while infinite series
expressions are obtained for the corresponding CDF and MGF-
type function. The suitability of the new models for characterizing
composite fading channels is demonstrated through a series
of extensive field measurements for wearable, cellular, and
vehicular communications. For all of the measurements, two
propagation geometry problems with special relevance to the
two new composite fading models, namely the line-of-sight (LOS)
and non-LOS (NLOS) channel conditions, are considered. It is
found that both the κ-μ / inverse gamma and η-μ / inverse
gamma composite fading models provide an excellent fit to fading
conditions encountered in the field. The goodness-of-fit of these
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two composite fading models is also evaluated and compared
using the resistor-average distance. As a result, it is shown that
the κ-μ / inverse gamma composite fading model provides a better
fit compared to the η-μ / inverse gamma composite fading model
when strong dominant signal components exist. On the contrary,
the η-μ / inverse gamma composite fading model outperforms
the κ-μ / inverse gamma composite fading model when there is
no strong dominant signal component and/or the parameter η
is not equal to unity, indicating that the scattered wave power
of the in-phase and quadrature components of each cluster of
multipath are not identical.

Index Terms— Channel modeling, composite fading channel,
η-μ fading model, inverse gamma distribution, κ-μ fading model,
resistor-average distance.

I. INTRODUCTION

IN WIRELESS communications, fading mainly occurs due
to the interaction of signal components generated by mul-

tipath and shadowing phenomena. In reality, both multipath
and shadowing co-exist and affect the wireless communica-
tions channel simultaneously, causing the random fluctuation
of the received signal which can deteriorate the quality of
radio links. Therefore, it is crucial to characterize fading
behavior accurately in order to analyze wireless systems and
improve their performance [1]. To this end, a number of
studies have proposed the use of composite fading models,
also called shadowed fading models, for both conventional
and emerging communications scenarios. The main advantage
of using composite fading models is that they provide means
for more realistic channel modeling as they take into account
the simultaneous impact of multipath and shadowing. Another
advantage is that they circumvent the requirement to determine
an appropriate smoothing window size for the computation
of the local mean signal which can fundamentally affect the
parameter estimation process and any inference made from the
channel data. Existing composite fading models can be broadly
divided into two different types according to the condition of
shadowing. The first one is line-of-sight (LOS) shadowing,
where the dominant signal component of the envelope is
shadowed, whereas the second one is multiplicative shadowing
in which the total power of the dominant (if present) and
scattered signal components are shadowed [2].

Traditionally, several composite fading models have been
developed based on classical fading models such as Rayleigh,
Rice (Nakagami-n) and Nakagami-m, in which either the
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TABLE I

SPECIAL CASES OF THE κ -μ / INVERSE GAMMA AND η-μ / INVERSE GAMMA COMPOSITE FADING MODELS

LOS or multiplicative shadowing is assumed to follow the
lognormal distribution [3]–[7]. However, the mathematical
form of the lognormal distribution renders it relatively
intractable for the analytical calculations associated with the
performance evaluation of communications systems. This is
largely based on the fact that the probability density func-
tions (PDFs) of the lognormal-based composite fading models
involve an infinite integral, which restricts the derivation of
tractable analytical expressions for the performance measures
of interest.

Due to the aforementioned intractability of the lognormal
distribution, the gamma distribution, which can exhibit ade-
quate semi heavy-tailed behavior, has been proposed as an
alternative to the lognormal distribution [8]. The use of the
gamma distribution has led to closed-form expressions for the
PDFs of a number of composite fading models [9], [10]. For
example, in [9], the Nakagami-m / gamma composite fading
model, also known as the generalized K distribution (KG )
was proposed and closed-form expressions for its PDF, outage
probability and average BER for the differential phase shift
keying (DPSK) modulation scheme were derived. As alter-
native to the lognormal distribution, the inverse Gaussian
distribution, also known as the Wald distribution, has been
utilized due to its ability to closely approximate the lognormal
distribution [11]. Using the inverse Gaussian distribution,
closed-form expressions for a set of composite fading mod-
els have been obtained in [12]–[14]. For example, in [12],
the Rayleigh / inverse Gaussian composite fading model was
obtained while in [14], the Nakagami-m / inverse Gaussian
model, which is also referred to as the G distribution, was
proposed.

More recently, there have been a number of stu-
dies [15]–[22] which have proposed the use of the more gen-
eral fading models such as κ-μ, α-μ and η-μ to describe the
envelope fluctuations. Subsequently, the authors of [15], [16]
proposed the κ-μ / inverse Gaussian and η-μ / inverse
Gaussian composite fading models, respectively, and derived
general expressions for their PDFs in terms of exact infinite
series representations and closed-form expressions for specific
cases. In [17], the κ-μ / lognormal shadowed fading model was

derived under the assumption that the scattered components are
subject to κ-μ fading and the resultant dominant component is
shadowed and lognormally distributed. Unfortunately, it was
not possible to obtain a closed-form expression for the PDF
and thus it has to be computed numerically. The author of
[18] proposed the κ-μ shadowed fading model which assumes
that the dominant component is weighted by a Nakagami-m
random variable (RV). Based on this, closed-form expressions
for the corresponding PDF, cumulative distribution function
(CDF) and moment generating function (MGF) were provided.
In [19], the κ-μ / gamma composite fading model was
proposed, which assumes that the mean signal power of a κ-μ
fading signal varies according to the gamma distribution. Here,
due to the inherent mathematical complexity of the resulting
integral, the derivation of a closed-form expression for the
corresponding PDF was infeasible. Instead, an approximation
was provided using an infinite series expansion. Additionally,
in [20], the κ-μ / gamma model was empirically validated
using wearable off-body channel measurements conducted in
indoor environments. In the same context, an approximation
for the PDF of the η-μ / gamma composite fading model was
provided in [21] whereas a closed-form expression was derived
in [22]. However, the resulting formulation is only valid for
integer values of the μ parameter [22].

As an alternative, the κ-μ / inverse gamma [23] and
η-μ / inverse gamma [24] models have been proposed by
considering the use of the inverse gamma distribution for
characterizing shadowing.1 As shown in Table I, they are
extremely flexible models which contain as special cases
many of the existing fading models proposed in the open
literature. In these studies, the PDFs of both models have
been presented in simple closed-form expressions and were
shown to exhibit great promise for modeling the composite
fading signal observed in wearable communications channels.
Motivated by these results, we extend this empirical validation
to include a diverse range of emerging wireless applications,

1Similar to the lognormal and gamma distributions, the inverse gamma
distribution can also exhibit the semi heavy-tailed characteristics necessary
to accurately characterize shadowing. As well as this, it also offers much of
the analytical tractability available from using the gamma distribution.
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such as wearable, cellular and vehicular communications.
Furthermore, we provide additional physical and techni-
cal insights into the properties of the proposed composite
fading models, as well as deriving the fundamental statistics of
the κ-μ / inverse gamma and η-μ / inverse gamma composite
fading models. Accordingly, the main contributions of this
paper can be summarized as follows:

• We derive novel, closed-form expressions for the PDF,
CDF, a useful MGF-type function, higher order moments
and amount of fading (AF) of the κ-μ / inverse gamma
composite fading model.

• We derive the PDF, higher order moments and AF of
the η-μ / inverse gamma composite fading model in
closed-form while infinite series representations, that are
shown to be analytically convergent, are obtained for the
corresponding CDF and MGF-type function.

• These fundamental statistics are essential for the accu-
rate characterization of fading channels, as well as for
the computation of several communications performance
metrics of interest.

• The generality of the κ-μ / inverse gamma and η-μ /
inverse gamma models is highlighted through reduc-
tion to some special cases which coincide with exist-
ing well-known distributions, as well as their ability to
approximate other composite fading models commonly
encountered in the literature.

• An important empirical validation of the κ-μ / inverse
gamma and η-μ / inverse gamma models is demonstrated
using field measurements for three different emerg-
ing wireless applications, namely wearable, cellular and
vehicular communications. The goodness-of-fit of the
proposed models is also evaluated using the resistor-
average distance (RAD).

The remainder of this paper is organized as follows.
In Section II, we introduce the fundamental statistics of the
κ-μ / inverse gamma and η-μ / inverse gamma models.
Then, the utility of the proposed models is validated using a
diverse range of field measurements in Sections III, IV and V.
Finally, Section VI concludes the paper with some closing
remarks.

II. THE NEW COMPOSITE FADING MODELS

A. κ-μ / Inverse Gamma Composite Fading Model

Similar to the physical signal model proposed for the
κ-μ fading channel [25], the received signal in a κ-μ / inverse
gamma composite fading channel is composed of separable
clusters of multipath waves propagating in a homogeneous
environment. The power of the scattered waves from the
multipath clusters is assumed to be identical whereas the
power of the dominant wave within each cluster is assumed to
be arbitrary. Unlike the κ-μ fading channel, however, in the
κ-μ / inverse gamma fading channel, the mean power of
the multipath waves (i.e. both the dominant and scattered
waves) is randomly fluctuated due to shadowing. Therefore,
the composite signal envelope, R, in a κ-μ / inverse gamma
composite fading channel can be expressed in terms of the

in-phase and quadrature components as

R =
√√√√ ns∑

i=1

A(Ii + pi )
2 + A(Qi + qi )

2 (1)

where ns represents the number of clusters of multipath,
Ii and Qi are mutually independent Gaussian RVs with
E [Ii ] = E [Qi ] = 0 and E

[
I 2
i

] = E
[
Q2

i

] = σ 2, with
E[·] denoting statistical expectation, while pi and qi are the
mean values of the in-phase and quadrature components of the
multipath cluster i , respectively. In (1), A denotes a normalized
inverse gamma RV where ms is the shape parameter and
E[A] = 1. To this effect, the PDF of A can be written as
follows

fA(α) = (ms − 1)ms

� (ms) αms +1 exp

(
−ms − 1

α

)
(2)

where � (·) denotes the gamma function [26, eq. (8.310.1)].
Theorem 1: For κ,μ, ms,�, r ∈ R

+, the PDF of the
composite signal envelope in a κ-μ / inverse gamma composite
fading channel can be expressed as

fR(r) = exp (−μκ) 2μμ(κ + 1)μ(ms −1)ms �ms r2μ−1

B (ms, μ)
[
μ (κ + 1) r2 + (ms − 1)�

]ms+μ

×1 F1

(
ms + μ; μ; μ2κ (κ + 1) r2

μ (κ + 1) r2 + (ms − 1)�

)
(3)

which is valid when ms > 1. In (3), B (·, ·) and 1 F1 (·; ·; ·)
denote the Beta function [26, eq. (8.384.1)] and the
Kummer confluent hypergeometric function [26, eq. (9.210.1)],
respectively.

Proof: See Appendix A-A.
Remark 1: In terms of its physical interpretation, κ > 0

is the ratio of the total power of the dominant components
(δ2 = ∑ns

i=1 p2
i + q2

i ) to the total power of the scattered
waves (2μσ 2), while μ is related to the number of multipath
clusters, with 2σ 2 denoting the power of the scattered waves
in each cluster. In this model, the mean signal power is given
by E

[
R2

] = � = δ2 + 2μσ 2.
The corresponding PDF of the instantaneous SNR of the

κ-μ / inverse gamma composite fading model is also readily
obtained by letting γ = γ̄ r2/�, where γ̄ = E[γ ], such that

fγ (γ ) = exp (−μκ) μμ(κ + 1)μ(ms − 1)ms γ ms γ μ−1

B (ms, μ)
[
μ (κ + 1) γ + (ms − 1)γ

]ms+μ

×1 F1

(
ms +μ; μ; μ2κ (κ+1) γ

μ (κ+1) γ +(ms − 1)γ

)
. (4)

It is worth highlighting that the resultant PDF in (4) is func-
tionally equivalent to the singly non-central F distribution2

that arises as a result of the ratio of a non-central chi-squared
variable and a central chi-squared variable [28].

Theorem 2: For κ,μ, ms , γ , γ̄ ∈ R
+ and ms > 1, the CDF

of the instantaneous SNR of the κ-μ / inverse gamma model

2Using [27, eq. (2.312)], i.e. fX (x) = γ̄ fγ (γ̄ γ ), letting γ (1 + κ) = x
and then performing the requisite transformation along with the following
substitutions μ = d1/2, ms = d2/2, μκ = λ/2 and � = d2(d1 + λ)/
d1(d2 − 2), we can obtain the singly non-central F distribution, fx (x), with
parameters d1, d2 and λ.
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can be obtained as

Fγ (γ ) =
∞∑

i=0

exp (−μκ) (μκ)i

i ! (μ + i)B(ms , μ+ i)

[
μ (κ+1) γ

(ms − 1)γ

]μ+i

×2 F1

(
ms + μ + i, μ + i ; μ + i + 1; −μ (κ + 1) γ

(ms − 1)γ

)
(5)

where 2 F1 (·, ·; ·; ·) denotes the Gauss hypergeometric func-
tion [26, eq. (9.111)]. For the case of (ms − 1)γ̄ > μ(κ+1)γ ,
(5) can be rewritten in closed-form as follows

Fγ (γ ) = exp (−μκ)

μB (ms, μ)

[
μ (κ + 1) γ

(ms − 1)γ̄

]μ

×F2,0,0
1,1,0

(
ms+μ,μ;

μ+1;
−;
μ;

−;
−;

μ2κ (κ+1)γ

(ms − 1)γ̄
,−μ (κ+1)γ

(ms − 1)γ̄

)
(6)

where

FA,B,C
P ,Q ,S

(
a1, . . . , aA;
p1, . . . , pP ;

b1, . . . , bB;
q1, . . . , qQ ;

c1, . . . , cC ;
s1, . . . , sS; · , ·

)

represents the Kampé de Fériet function [29]. On the con-
trary, for the case of (ms − 1)γ̄ ≤ μ(κ + 1)γ , Fγ (γ ) can be
expressed in closed-form as

Fγ (γ ) = exp(−μκ)�1

(
μ;0;1−ms,μ,− (ms − 1)γ̄

μ(κ+1)γ
,μκ

)

−
[

exp (−μκ)

ms B(ms, μ)

(
(ms − 1)γ̄

μ(κ + 1)γ

)ms

×�1

(
ms +μ; ms; 1+ms, μ,−(ms − 1)γ̄

μ(κ + 1)γ
, μκ

)]
(7)

where �1(·; ·; ·, ·, ·, ·) denotes the Humbert �1 function [30].
Proof: See Appendix A-B.

Theorem 3: For κ,μ, ms, γ̄ ∈ R
+ and n ∈ N, the higher

order moments of the instantaneous SNR of the κ-μ / inverse
gamma model can be expressed as

E
[
γ n]=

[
(ms −1)γ

μ(κ+1)

]n B(ms −n, μ+n)1 F1 (μ+n; μ; μκ)

exp (μκ) B (ms, μ)
(8)

which is valid when ms > n.
Proof: See Appendix A-C.

It is recalled here that the AF is often used as a relative
measure of the severity of fading encountered in wireless
transmission over fading channels.

Corollary 1: For κ,μ, ms ∈ R
+ and ms > 2, the AF for

the case of a κ-μ / inverse gamma composite fading channel
is given by

AF = μ(κ + 1)2 + (ms − 1) (2κ + 1)

μ(κ + 1)2 (ms − 2)
. (9)

Proof: See Appendix A-D.
Theorem 4: For κ,μ, ms , γ̄ , s ∈ R

+, ms + μ + i �= N and
ms �= N > 1, an MGF-type function for the κ-μ / inverse

gamma distribution can be expressed as follows3

Mγ (−s) = exp (−μκ)�2

(
μ; μ, 1 − ms, μκ,

s(ms − 1)γ̄

μ(κ + 1)

)

+
[

exp (−μκ)

B(ms, μ)

(
s(ms − 1)γ̄

μ(κ + 1)

)ms

�(−ms)

×�2

(
ms +μ; μ, 1+ms, μκ,

s(ms −1)γ̄

μ(κ+1)

)]
(10)

where �2(·; ·, ·, ·, ·) denotes the Humbert �2 function [30].
Proof: See Appendix A-E.

B. η-μ / Inverse Gamma Composite Fading Model
Similar to the physical signal model proposed for the

η-μ fading channel [25], the received signal in an η-μ /
inverse gamma composite fading channel is composed of
separable clusters of multipath waves propagating in a non-
homogeneous environment. In Format 1, the in-phase and
quadrature components of the fading signal within each cluster
are assumed to be statistically independent from each other
and to have different power. On the other hand, in Format 2,
the in-phase and quadrature components of the fading signal
within each cluster are assumed to be correlated with each
other and to have identical power. Unlike the η-μ fading
model, in the η-μ / inverse gamma model, the mean power of
the scattered waves is randomly fluctuated due to shadowing.
Following this definition, the composite signal envelope, R,
in an η-μ / inverse gamma composite fading channel can be
expressed as

R =
√√√√ ns∑

i=1

AI 2
i + AQ2

i (11)

where ns denotes the number of clusters of multipath and
A represents an inverse gamma RV which follows the PDF
given in (2). In Format 1, Ii and Qi are mutually independent
Gaussian RVs with E [Ii ] = E [Qi ] = 0, E

[
I 2
i

] = σ 2
I and

E
[
Q2

i

] = σ 2
Q , while in Format 2, Ii and Qi are mutually

correlated Gaussian RVs with E [Ii ] = E [Qi ] = 0, and
E

[
I 2
i

] = E
[
Q2

i

] = σ 2. In what follows, we derive the
PDF and CDF of the η-μ / inverse gamma composite fading
model.

Theorem 5: For η, μ, ms , �, r ∈ R
+ and ms > 1, the PDF

of the composite signal envelope in an η-μ / inverse gamma
composite fading channel can be expressed as

fR(r)= 22μ+1μ2μ hμ(ms −1)ms �ms r4μ−1

B (ms, 2μ)
[
2μhr2 + (ms −1)�

]ms+2μ

×2 F1

(
ms+2μ

2
,
ms+2μ+1

2
;2μ+1

2
;

(
2μHr2

)2[
2μhr2+(ms −1)�

]2

)
.

(12)

Proof: See Appendix B-A.

3Note, although (10) was deduced using the standard statistical procedure,
axiomatically it cannot be referred to as a true MGF because it cannot be
guaranteed that the moments of the κ-μ / inverse gamma distribution are
defined over the entire range of values of the ms term. Nonetheless, for ms +
μ + i �= N and ms �= N > 1, (10) appears stable and useful in the analytic
evaluation of several performance measures associated with κ-μ / inverse
gamma composite fading channels. Hence we refer to it as an MGF-type
function.
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Remark 2: In terms of its physical interpretation, η is
defined as η = σ 2

I /σ 2
Q (i.e. the scattered wave power ratio

between the in-phase and quadrature components of each
cluster of multipath) in Format 1, and η = E[Ii Qi ]/σ 2

(i.e. the correlation coefficient between the in-phase and
quadrature components) in Format 2. Accordingly, h =
(2 + η−1 + η)/4 and H = (η−1 − η)/4 in Format 1, while
h = 1/(1 − η2) and H = η/(1 − η2) in Format 2. Based
on this, Format 1 can be obtained from Format 2 and
vice versa by using the following relationship ηFormat1 =
(1 − ηFormat2)/(1 + ηFormat2) or, equivalently by ηFormat2 =
(1 − ηFormat1)/(1 + ηFormat1), where 0 < ηFormat1 < ∞ in
Format 1 and −1 < ηFormat2 < 1 in Format 2. In this
model, the mean signal power is given by E

[
R2

] = � =
μ

(
1 + η−1

)
σ 2

I = μ (1 + η) σ 2
Q in Format 1 whereas it is

given by E
[
R2

] = � = 2μσ 2 in Format 2.
Based on the above, the PDF of the instantaneous SNR of the
η-μ / inverse gamma composite fading model can be easily
expressed with the aid of γ = γ̄ r2/� as follows

fγ (γ )= 22μμ2μ hμ (ms −1)ms γ ms γ 2μ−1

B(ms, 2μ)
[
2μhγ +(ms −1)γ

]ms+2μ

×2 F1

(
ms +2μ

2
,
ms +2μ+1

2
;2μ+1

2
; (2μHγ )2[

2μhγ +(ms −1)γ
]2

)
.

(13)

Theorem 6: For η, μ, ms, γ , γ̄ ∈ R
+ and ms > 1, the CDF

of the instantaneous SNR of the η-μ / inverse gamma model
can be obtained as follows

Fγ (γ )= 22μ−1hμ

�(ms)�(2μ)

∞∑
i=0

� (ms +2μ+2i) H 2i(μγ )2μ+2i

i !
(

2μ+1
2

)
i
(μ+i)

[
(ms − 1)γ

]2μ+2i

×2 F1

(
ms +2μ+2i, 2μ+2i ; 2μ+2i +1; − 2μhγ

(ms − 1)γ

)
(14)

where (·)i denotes the Pochhammer symbol [31,
eq. (06.10.02.0001.01)].

Proof: See Appendix B-B.
The truncation error, T , for the infinite series in (14) if T0 − 1
terms are used is expressed as

T =
∞∑

i=T0

� (ms + 2μ + 2i) H 2i

i !
(

2μ+1
2

)
i
(μ + i)

[
μγ

(ms − 1)γ̄

]2μ+2i

×2 F1

(
ms +2μ+2i, 2μ+2i ; 2μ+2i +1;− 2μhγ

(ms−1)γ̄

)
.

(15)

Since the Gauss hypergeometric function in (15) is monoton-
ically decreasing with respect to i , T can be bounded as

T ≤2 F1

(
ms +2μ+2T0, 2μ+2T0; 2μ + 2T0+1;− 2μhγ

(ms−1)γ̄

)

×
∞∑

i=T0

�(ms + 2μ + 2i) H 2i

i !
(

2μ+1
2

)
i
(μ + i)

[
μγ

(ms − 1)γ̄

]2μ+2i

. (16)

Since we add up strictly positive terms, the summation limits
in (16) can be re-written as
∞∑

i=T0

� (ms + 2μ + 2i)

i !
(

2μ+1
2

)
i

[
μγ H

(ms − 1)γ̄

]2i

≤
∞∑

i=0

� (ms + 2μ + 2i)

i !
(

2μ+1
2

)
i

[
μγ H

(ms − 1)γ̄

]2i

. (17)

For the case of (ms − 1)γ̄ > 2μγ H , using the
Legendre duplication formula [31, eq. (06.05.16.0006.01)] on
� (ms +2μ+2i), simplifying the resultant expression and then
using [31, eq. (07.23.02.0001.01)], (16) can be expressed in
closed-form as (18), as shown at the bottom of this page. It
is worth remarking that similar conditions (i.e. (ms − 1)γ̄ >
2μγ H ) for the convergence of the infinite series in (16) can
be drawn by computing the corresponding convergence ratio.

Theorem 7: For η, μ, ms, γ̄ ∈ R
+ and n ∈ N

+, the higher
order moments of the instantaneous SNR of the proposed η-μ
/ inverse gamma composite fading model can be expressed as

E
[
γ n] = B (ms − n, 2μ + n)

B (ms, 2μ) hμ

[
(ms − 1)γ

2μh

]n

× 2 F1

(
μ + n

2
, μ + n

2
+ 1

2
; μ + 1

2
; H 2

h2

)
(19)

which is valid when ms > n.
Proof: See Appendix B-C.

Corollary 2: For η, μ, ms ∈ R
+ and ms > 2, the corre-

sponding AF of the instantaneous SNR of the proposed η-μ /
inverse gamma composite fading model can be expressed as

AF =
(
h2 − H 2

)μ (
H 2 + 2μh2 + h2

)
(ms − 1)

2μh(μ+2) (ms − 2)
− 1. (20)

Proof: See Appendix B-D.
Theorem 8: For η,μ, ms , γ̄ , s ∈ R

+, ms + 2μ + 2i �= N

and ms �= N> 1, an MGF-type function for the η-μ / inverse
gamma distribution can be expressed as

Mγ (−s) =
∞∑

i=0

� (μ + i) � (2μ + 2i + ms) H 2i

i ! � (μ)� (ms) hμ+2i

× U

(
2μ + 2i ; 1 − ms; s(ms − 1)γ

2μh

)
(21)

T ≤
2 F1

(
ms + 2μ + 2T0, 2μ + 2T0; 2μ + 2T0 + 1; − 2μhγ

(ms − 1)γ̄

)
(μ + T0)

[
(ms − 1)γ̄

]2μ
(μγ )−2μ

×� (ms + 2μ) 2 F1

(
ms + 2μ

2
,

ms + 2μ + 1

2
; 2μ + 1

2
;
(

2μγ H

(ms − 1)γ̄

)2
)

. (18)
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Fig. 1. PDFs of (a) the κ-μ / inverse gamma composite model (continuous lines) for the special cases: κ-μ (circles), Nakagami-m (squares), Rice (triangles) and
Rayleigh (asterisks) fading models; (b) the η-μ / inverse gamma composite model (continuous lines) for the special cases: η-μ (circles), Nakagami-q (squares),
Rayleigh (triangles) and Nakagami-m (asterisks) fading models.

where U(·; ·; ·) denotes the confluent hypergeometric function
of the second kind.

Proof: See Appendix B-E.
In a similar manner to (14), the truncation error for the infinite
series in (21) can be represented by the following inequality

T ≤ � (ms + 2μ)

hμ� (ms)
U

(
2μ + 2 T0; 1 − ms; s(ms − 1)γ

2μh

)

× 3 F0

(
μ,

ms + 2μ

2
,

ms + 2μ + 1

2
; −;

(
2H

h

)2
)

(22)

where 3 F0(·, ·, ·; −; ·) denotes a specific case of the general-
ized hypergeometric function.

C. Numerical Results

As shown in Table I, the κ-μ / inverse gamma and η-μ /
inverse gamma models are extremely versatile as they inherit
all of the generality of the κ-μ and η-μ models, respectively.
In both models, the ms parameter controls the amount of the
shadowing of the mean signal power. Thus, as ms → 1,
the dominant component (if applicable) and scattered sig-
nal component are completely shadowed. On the contrary,
as ms → ∞, there is no shadowing present in the channel
and thus the mean signal power becomes deterministic. In this
case, the κ-μ / inverse gamma and η-μ / inverse gamma
models coincide with the κ-μ and η-μ models respectively,
as illustrated in Fig. 1. Likewise, for the κ-μ / inverse gamma
model as shown in Fig. 1(a), by setting μ = 1 and again
letting ms → ∞, the Rice fading model is deduced where κ
becomes equivalent to the Rice K factor. Based on this,
the Rayleigh fading model can be readily obtained by setting
κ = K = 0. Similarly, the Nakagami-m fading model
can be obtained by letting ms → ∞ and κ → 0 with
the μ parameter becoming equivalent to the m parameter
of Nakagami-m fading model. For the η-μ / inverse gamma
model as shown in Fig. 1(b), by setting μ = 0.5 and again
letting ms → ∞, the Nakagami-q (or Hoyt) fading model
is deduced where η becomes equivalent to the square of the
q parameter of Nakagami-q fading model (i.e. η = q2).
The Nakagami-m fading model can be obtained by letting
ms → ∞ and η → 0 with the μ parameter becoming

equivalent to the m parameter of Nakagami-m fading model.
Based on this, the Rayleigh fading model can also be readily
obtained by setting η = m = 1. It should be noted that
Format 1 is utilized for the η-μ / inverse gamma composite
fading model, however extensions to the case of Format 2 are
straightforward.

It is worth highlighting that they can be also used to provide
an accurate approximation of other lognormal- and gamma-
based composite fading models. For example, Fig. 2 shows
that both the κ-μ / inverse gamma (κ , μ, ms , �) and η-μ /
inverse gamma (η, μ, ms , �) composite fading models provide
a good match to the Rayleigh / lognormal (u, σ ) [5], Rayleigh /
gamma (a, b) [10] and Nakagami-m / gamma (m, a, b) [9]
composite fading models. For this comparison, the ms and
� parameters of the κ-μ / inverse gamma and η-μ / inverse
gamma composite fading models were estimated from the
u and σ parameters of the Rayleigh / lognormal model
and from the a and b parameters of the Rayleigh / gamma
and Nakagami-m / gamma models by matching their first
and second moments, such that

ms = 2 exp(σ 2) − 1

exp(σ 2) − 1
, (23)

� = exp(u + 3
2σ 2)

(ms − 1)(exp(σ 2) − 1)
(24)

and

ms = a + 2, (25)

� = ab(a + 1)

(ms − 1)
. (26)

Fig. 3 shows the estimated AF values for different val-
ues of the respective parameters of the κ-μ / inverse
gamma and η-μ / inverse gamma composite fading models,
i.e. 0 ≤ κ ≤ 10, 0 < η ≤ 10, 0 ≤ μ ≤ 10 and 3 ≤ ms ≤ 20.
It is clear that for the κ-μ / inverse gamma model the
greatest AF occurs when the channel is subject to simultaneous
heavy shadowing (ms → 3), no dominant signal component
(κ → 0) and fewer numbers of multipath clusters (μ → 0).
On the contrary, the value of the AF approaches zero as the
κ , μ and ms parameters become large. For the η-μ / inverse
gamma model, large AFs appear when there exists heavy
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Fig. 2. PDFs of (a) the κ-μ / inverse gamma composite fading model (continuous lines) and (b) the η-μ / inverse gamma composite fading model (continuous
lines) compared with the Rayleigh / gamma (circles), Rayleigh / lognormal (squares) and Nakagami-m / gamma (triangles) composite fading models.

Fig. 3. AF in (a) a κ-μ / inverse gamma composite fading channel and (b) an η-μ / inverse gamma composite fading channel as a function of their key
parameters.

shadowing (ms → 3), a lesser number of multipath clusters
(μ → 0) and there is a difference between scattered wave
power of in-phase and quadrature components (i.e. η �= 1).

III. APPLICATION I - WEARABLE

COMMUNICATIONS CHANNELS

In the sequel, we demonstrate the practical application of
the two novel fading models proposed in the previous section.
We begin with the emerging area of wearable communica-
tions which have recently received significant attention due
to the wide range of promising application areas including
medical, sports, military and entertainment [32]–[35]. In this
study, we consider wearable off-body channels which are an
important part of personal area networks (PANs). In wearable
PAN applications, one or more wireless devices on the human
body typically communicate with transceivers or base stations
situated in the local surroundings.

The first set of wearable off-body channel measurements
were conducted in an indoor open office area environment
[red rectangle: 10.62 m × 12.23 m, Fig. 4(a)] situated on
the 1st floor of the Institute of Electronics, Communications
and Information Technology (ECIT) at Queen’s University
Belfast in the United Kingdom. The ECIT building consists
of metal studded dry wall with a metal tiled floor covered
with polypropylene fiber, rubber backed carpet tiles, and
metal ceiling with mineral fiber tiles and recessed louvered
luminaries suspended 2.70 m above floor level. As shown

Fig. 4. (a) Indoor open office (99.63 m2) and (b) outdoor car parking
environments used for the wearable off-body measurements. It should be noted
that the desk filled with red color in (a) denotes that one person was working
at his desk during the measurement in an open office area environment.

in Fig. 4(a), the open office area contained a number of
soft partitions, cabinets, PCs, chairs and desks. During the
channel measurements, one person was working at his desk.
To improve the generality of the field validations conducted
here, another set of measurements was performed in a more
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Fig. 5. Empirical PDFs (symbols) of the composite fading signal observed in the LOS and NLOS wearable off-body links for the (a) indoor open
office and (b) outdoor car parking environments compared to the theoretical probability for the κ-μ / inverse gamma (continuous lines) and η-μ / inverse
gamma (dotted lines) composite fading models.

sparse environment, namely an outdoor car parking area adja-
cent to the ECIT building, as shown in Fig. 4(b).

The transmitter (TX) used for the measurements consisted
of an ML5805 transceiver manufactured by RFMD, which
was configured to transmit a continuous wave signal with an
output power of +17.6 dBm at 5.8 GHz. During the wearable
off-body measurements, the TX antenna was positioned on
the front-central waist region of an adult male of height
1.83 m and mass 73 kg using a small strip of Velcro®.
For the receiver (RX), a single antenna was positioned on
a non-conductive polyvinyl chloride (PVC) pole at a height
of 1.10 m above the floor level so that it was vertically
polarized. It was then connected to port 1 of a Rohde &
Schwarz ZVB-8 Vector Network Analyzer (VNA) using a
low-loss coaxial cable. A pre-measurement calibration was
conducted to reduce the effects of known system based errors
using a Rohde & Schwarz ZV-Z51 calibration unit. This also
enabled the elimination of the effects of the power amplifier
and cable loss. The VNA was configured as a sampling RX,
recording the magnitude of the b1 wave quantity incident
on port 1 with a bandwidth of 10 kHz (centered at the
operation frequency of 5.8 GHz). The b1 measurements were
automatically collected and stored on a laptop through a
local area network (LAN) connection, providing an effective
channel sampling frequency of 425.6 Hz. Both the TX and RX
utilized identical omnidirectional sleeve dipole antennas with
+2.3 dBi gain (Mobile Mark model PSKN3-24/55S). Two
individual scenarios were considered for the LOS and NLOS
channel conditions where the test subject walked towards and
then away from the RX in a straight line (from the 9 m point
to 1 m point and vice versa). It is worth remarking that the
NLOS conditions corresponded to the condition where the
human body obscured the direct communication path between
the wearable node and the RX.

To abstract the composite fading signal for the wearable
off-body measurements, the estimated path loss was removed
from the raw measurement data using the log-distance path
loss given in [36, eq. (3.68)]. To this end, the elapsed time was
first converted into a distance based upon an estimate of the
test subject’s velocity. The corresponding parameter estimates

for the κ-μ / inverse gamma and η-μ / inverse gamma
(Format 1) composite fading models were obtained using a
non-linear least squares routine programmed in MATLAB to
fit (3) and (12) to the wearable off-body measurement data.
It should be noted that the minimum data set size used for
the parameter estimations was 2331 for the wearable off-body
channel measurements. The goodness-of-fit of these two mod-
els was evaluated using the RAD [37] which is a symmetric
version of the Kullback-Leibler divergence (KLD) [38]. Unlike
the KLD, the RAD satisfies the triangle inequality, which con-
stitutes it a true distance metric. The RAD can be defined as

RAD ( f1, f2) =
(

1

KLD ( f1, f2)
+ 1

KLD ( f2, f1)

)−1

(27)

where KLD ( f1, f2) = ∫ ∞
−∞ f1(x)log2 ( f1 (x)/ f2 (x)) dx ,

with f1 (x) and f2 (x) denoting the true PDF of the mea-
surement data and test PDF, i.e. the approximated PDF
of f1 (x), respectively. To assist with the interpretation of the
goodness-of-fit, the equivalent RAD was used to calculate the
standard deviation σR of a zero-mean, σ 2

R variance Gaussian
PDF that is used to approximate a zero-mean, unit variance
Gaussian PDF using the same approach used in [39].

As an example of the model fitting, Fig. 5 shows the
PDFs of the κ-μ / inverse gamma and η-μ / inverse gamma
composite fading models fitted to the measurement data for
the LOS and NLOS wearable off-body channels within the
two different environments. It is clear that both composite
fading models provided a good fit to the empirical data for
all of the considered cases. Referring to the RAD and σR

results presented in Table II, it has been shown that the κ-
μ / inverse gamma composite model outperformed the η-μ
/ inverse gamma composite model for all of the wearable
off-body measurements with the exception of the NLOS
measurements in the outdoor car park. Table II also provides
the parameter estimates for the κ-μ / inverse gamma and η-
μ / inverse gamma models for all of the wearable off-body
channels to allow the reader to reproduce their own simulated
data based on the empirical data reported here. Remarkably,
a resultant strong dominant signal component was found to
exist for the NLOS wearable off-body channel in the indoor
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TABLE II

PARAMETER ESTIMATES FOR THE κ -μ / INVERSE GAMMA AND η-μ / INVERSE GAMMA COMPOSITE FADING MODELS
FOR ALL OF THE WEARABLE OFF-BODY MEASUREMENT DATA ALONG WITH THE RAD

open office environment (κ > 1). However, there was no
strong dominant signal component for the NLOS wearable
off-body channel in the outdoor car parking environment.
One possible explanation for this is that the indoor office
environment contained a number of metal cabinets and was
surrounded by metal reinforced ceiling and floor structures
which can cause strong specular reflections, thereby creating
dominant signal paths.

As shown in Table II, for both the indoor and outdoor
environments, the ms parameters for the LOS links were
greater than those for the NLOS links. Notably, the ms

parameter estimate obtained for the indoor LOS link was much
lower than that for the outdoor LOS link. This suggests that
the indoor LOS radio link still experienced some shadowing
effects even if a direct signal path existed. This observation
was most likely caused by the fact that contributing signal
components other than those arriving via LOS propagation,
i.e. multipath components including both the dominant and
scattered signal contributions, were shadowed by the human
body and the surrounding obstacles in the indoor environment.
On the contrary, the outdoor LOS link suffered less from a
fluctuation of the mean signal power due to the relatively
anechoic conditions which offered less opportunity for the
generation of shadowed multipath components. For all of the
considered wearable off-body channels, the scattered wave
power of in-phase and quadrature components was found to
be identical (i.e. η = 1).

It is recalled that the κ-μ / gamma model has been utilized
to characterize the composite fading behavior observed in
wearable communications channels [20]. Motivated by this, for
the LOS wearable off-body links, a cross-comparison between
the κ-μ / inverse gamma and κ-μ / gamma models has been
performed in terms of the goodness-of-fit. The corresponding
parameter estimates4 for the κ-μ / gamma model are shown
in Table III along with the RAD and σR values. It is clear that
there is no substantial difference between κ , μ and ms for the
κ-μ / inverse gamma model and κ , μ and a for the κ-μ /
gamma model while there is a distinct difference between
� and b parameter. When comparing the RAD values between
the κ-μ / inverse gamma and the κ-μ / gamma models,
they were found to be almost the same, suggesting that the
κ-μ / gamma model provided a comparable fit to the κ-μ /

4All parameters for the κ-μ / gamma model (κ,μ, a, b) were estimated
using a non-linear least squares routine programmed in MATLAB where the
integral contained in the κ-μ / gamma model was computed using the trapz
function which is also available in MATLAB.

TABLE III

PARAMETER ESTIMATES FOR THE κ -μ / GAMMA MODEL FOR THE LOS
WEARABLE OFF-BODY MEASUREMENT DATA ALONG WITH THE RAD

inverse gamma model. Nevertheless, the analytical forms of
the fundamental statistics of the κ-μ / inverse gamma model
are much more favorable as they are available in closed-form
whereas those of the κ-μ / gamma model are not.

IV. APPLICATION II - CELLULAR

COMMUNICATIONS CHANNELS

The use of device-to-device (D2D) communications has
recently been proposed to supplement traditional cellular com-
munications by providing higher data rates and extending
the coverage of cellular networks [40]–[42]. In this context,
D2D communications will be achieved by using network users
themselves as ad hoc base stations to facilitate the routing of
data traffic and to relay broadcasts. For the D2D measurements
conducted in this study, the TX and RX antennas were
securely fixed to the inside of a compact acrylonitrile butadiene
styrene (ABS) enclosure (107 mm × 55 mm × 20 mm)
using a small strip of Velcro®. This configuration for the
hypothetical User Equipment (UE) mimicked the form of a
smart phone which allowed the user to emulate making a
voice call as they would normally. Similar to the wearable
off-body measurement set up, the wireless node used for the
TX consisted of an ML5805 transceiver and was configured
to transmit a continuous wave signal with an output power of
+17.6 dBm at 5.8 GHz. The wireless node used for the RX
also featured an ML5805 transceiver attached to a PIC32MX
which acted as a baseband controller, allowing the analog
received signal strength (RSS) output to be sampled with a
10-bit quantization depth at a rate of 10 kHz. The utilized TX
and RX antennas were the same as those used for the wearable
off-body channel measurements which were connected to the
wireless nodes using low-loss coaxial cables.

The D2D measurements were performed at 5.8 GHz in two
different environments, as shown in Fig. 6, namely (a) an
indoor open office area environment and (b) an outdoor
open space environment. The open office area is the same
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TABLE IV

PARAMETER ESTIMATES FOR THE κ -μ / INVERSE GAMMA AND η-μ / INVERSE GAMMA COMPOSITE FADING
MODELS FOR ALL OF THE D2D MEASUREMENT DATA ALONG WITH THE RAD

Fig. 6. D2D measurements in (a) an indoor open office environment
and (b) an outdoor open space environment showing different locations of
person B (UE2) for the LOS and NLOS cases.

environment where the wearable off-body measurements were
conducted. During the D2D measurements, the open office
area was unoccupied in order to facilitate pedestrian free D2D
channel measurements. The outdoor D2D measurements were
conducted in an open space close to the ECIT building. In this
study, the D2D link was formed between two persons, namely
person A, an adult male of height 1.83 m and weight 73 kg,
and person B, a female of height 1.65 m and weight 51 kg.
It should be noted that the UEs used by persons A and B
are denoted as UE1 and UE2, respectively. For all of the D2D
measurements, persons A and B held the respective UE at their
left ear to imitate making a voice call. Both test subjects were
initially stationary, after which they were instructed to walk
around randomly within a circle of radius of 0.5 m from their
starting points. It is worth highlighting that for the LOS D2D
measurements in both environments, while there may have
been a direct LOS between the two person’s bodies during the
trials, in actual fact, the link between the hypothetical UEs
would have been subject to quasi-LOS conditions due to
the random movements undertaken. For the NLOS case,
person B was always positioned around an adjacent corner to
ensure that the NLOS conditions (i.e. no direct path between
persons A and B) were maintained irrespective of the random
movements.

In the analysis of the D2D channels, the global mean
signal power was removed from the D2D measurement data
to abstract the composite fading signal for field measurement
data. Again, all parameter estimates for the κ-μ / inverse
gamma and η-μ / inverse gamma models were obtained using
a non-linear least squares routine programmed in MATLAB
to fit (3) and (12) to the D2D measurement data. It should be
noted that the minimum data set size used for the parameter
estimations was 138148 for the D2D measurements. The
corresponding RAD and σR were again utilized to evaluate
the goodness-of-fit of these two models with the D2D mea-
surement data.

As an example of the model fitting process,
Figs. 7(a) and (b) show the PDFs of the κ-μ / inverse
gamma and η-μ / inverse gamma composite fading models
fitted to the measurement data for both the LOS and NLOS
D2D channels in the indoor and outdoor environments,
respectively. It can be seen that both models provided an
adequate fit to the measurement data for both the LOS and
NLOS conditions. Table IV shows the parameter estimates for
the κ-μ / inverse gamma and η-μ / inverse gamma models for
all of the D2D channels along with their RADs and σR . For
both the indoor and outdoor environments, the ms parameters
for the LOS cases were observed to be quite low, indicating
that the LOS link was subject to considerable shadowing. This
is understandable due to the constantly changing orientation
and posture of both persons and it can also be observed in
the measured received signal power time series for the LOS
cases in both the indoor and outdoor environments presented
in Figs. 7(c) and (d). From these plots, it is clear that the
received signal experienced longer-term fading due to the
shadowing caused by both users, strongly advocating the use
of a composite fading model in these cases.

The κ parameter estimates indicate that there existed strong
dominant signal components for both the indoor and outdoor
LOS links (κ > 1), but not for the NLOS links. When
considering the η parameter, the scattered wave power of in-
phase and quadrature components was identical for both the
indoor and outdoor LOS links (η = 1), but not identical for
the indoor and outdoor NLOS links (η �= 1). Although both
composite fading models visually provided an adequate fit
to the measured data, interpreting the RAD and σR results
presented in Table IV, it can be seen that the κ-μ / inverse
gamma model provided a better fit to the LOS measurement
data, whereas the η-μ / inverse gamma model provided a better
fit to the NLOS measurement data.
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Fig. 7. Empirical (symbols) and theoretical PDFs for the κ-μ / inverse gamma (continuous lines) and η-μ / inverse gamma (dotted lines) models for the
LOS and NLOS D2D links in the (a) indoor open office and (b) outdoor open space environments alongside the received signal power for the LOS link in
the (c) indoor open office and (d) outdoor open space environments.

Fig. 8. Satellite view of the V2V measurement environment showing the position of the two vehicles and the two different scenarios (LOS and NLOS
channel conditions). It should be noted that the road is approximately 10 m in width.

V. APPLICATION III - VEHICULAR

COMMUNICATIONS CHANNELS

Vehicular communications have become increasingly pop-
ular due to their potential for improving traffic safety and
avoiding congestion [43], [44]. In this part of the study,
vehicle-to-vehicle (V2V) communications channels, which
are key components of vehicular networks, were considered.
V2V channels exist between wireless devices situated on one
vehicle and those situated on another vehicle. For the V2V
channel measurements, the utilized TX was the same as that
considered in Sections III and IV which was configured to
generate a continuous wave signal with an output power

of +17.6 dBm at 5.8 GHz. The RX was identical to the
wireless node used for the D2D measurements, but unlike
the D2D measurements, the channel sampling frequency was
1 kHz. The V2V measurements were conducted in a business
district environment within the Titanic Quarter of Belfast
in the United Kingdom as shown in Fig. 8. For the V2V
measurements, the TX was positioned on the center of the dash
board of vehicle A, namely a Vauxhall (Opel in continental
Europe) Zafira SRi using a small strip of Velcro® while the
RX was mounted on the dash board of vehicle B, namely
a Vauxhall Astra SRi. The measurement area consisted of
a straight road with a number of office buildings nearby.
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Fig. 9. Received signal power with a superimposed path loss fit for (a) the V2V LOS link and (b) the V2V NLOS link and empirical (circles) and theoretical
PDFs for the κ-μ / inverse gamma (continuous lines) and η-μ / inverse gamma (dotted lines) models for (c) the V2V LOS link and (d) the V2V NLOS link.

TABLE V

PARAMETER ESTIMATES FOR THE κ -μ / INVERSE GAMMA AND η-μ / INVERSE GAMMA COMPOSITE FADING

MODELS FOR ALL OF THE V2V MEASUREMENT DATA ALONG WITH THE RAD

To create the LOS and NLOS5 channel conditions, both
vehicles A and B initially moved towards each other with a
speed of 30 mph before passing and continuing their onward
journey as shown in Fig. 8. A distance of 50 m in either side of
the intersection point was considered for the LOS and NLOS
analysis performed in this study. Although the V2V channel
measurements were performed during off-peak traffic hours,
there still existed pedestrians and other vehicular traffic in the
vicinity of vehicles A and B.

Similar to the wearable off-body analysis, the estimated
path loss was removed from the V2V measurement data
using the log-distance path loss to abstract the composite
fading signal from the field measurement data. To this end,
the elapsed time was first converted into a distance based

5Although we categorize the link between the two vehicles as NLOS for the
case when vehicles A and B moved away from each other, we make the point
that the link between the two vehicles could have been subject to quasi-LOS
conditions due to the positioning of the TX and RX which were equipped
with omnidirectional sleeve dipole antennas.

upon the vehicle’s velocity. As before, the parameter estimates
for the requisite models were obtained using the procedure
outlined in Sections III and IV. It should be noted that the
minimum data set size used for the parameter estimations
was 13287 for the V2V measurements. As an example of the
model fitting process, Fig. 9 shows the PDFs of the κ-μ /
inverse gamma and η-μ / inverse gamma composite fading
models fitted to the LOS and NLOS V2V measurement data
in conjunction with their respective received signal power time
series.

Also shown is the estimated path loss which was calculated
using a reference distance of 5 m, which was the separation
distance between the TX on vehicle A and the RX on
vehicle B. It can be seen that both the κ-μ / inverse gamma
and η-μ inverse gamma composite fading models were in
good agreement with the LOS and NLOS measurement data.
Table V provides the associated parameter estimates for both
models over all of the V2V channels along with the computed
RAD and σR . For both the LOS and NLOS links, strong
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dominant signal components were found to exist (κ > 1)
and the scattered wave power of the in-phase and quadrature
components was observed to be identical (η = 1). Consulting
the RAD and σR results, it can be seen that the κ-μ / inverse
gamma model provided a better fit to both the LOS and NLOS
measurement data than the η-μ / inverse gamma model.

VI. CONCLUSION

Two composite fading models, namely κ-μ / inverse gamma
and η-μ / inverse gamma distributions, have been presented.
The κ-μ / inverse gamma model assumes that the mean
power of both the dominant and scattered signal components
is subject to shadowing which is weighted by an inverse
gamma RV. On the other hand, the η-μ / inverse gamma model
assumes that the mean power of the scattered component is
subject to shadowing which is also weighted by an inverse
gamma RV. Both composite fading models include well-known
distributions as special cases when they coincide with the κ-μ
and η-μ fading models, respectively. Most importantly though,
it has been shown that they are also able to approximate
other composite fading models commonly encountered in the
literature.

Novel analytic expressions have been derived for the asso-
ciated statistical measures of interest while the utility of the
proposed models has been validated using a diverse range
of field measurements for emerging wireless applications
such as wearable, cellular D2D and V2V communications.
In particular, we have considered the composite fading signal
observed in LOS and NLOS channels for these use cases.
By considering the composite fading signal, we were able to
take into account the simultaneous impact of multipath and
shadowing. Over all of the field measurements undertaken,
the PDFs of the κ-μ / inverse gamma and the η-μ / inverse
gamma models have been shown to provide an impressive fit to
the composite fading, thereby providing a physical validation
for these new models.

Using the RAD and σR , it has been shown that the κ-μ /
inverse gamma model provided a better fit compared to the
η-μ / inverse gamma model when strong dominant signal
components existed (κ < 1) and the scattered wave power
of the in-phase and quadrature components of each cluster
of multipath were identical (η = 1). In contrast, the η-μ /
inverse gamma model outperformed the κ-μ / inverse gamma
model when there were no resultant strong dominant signal
components and/or the scattered wave power of the in-phase
and quadrature components of each multipath cluster were
not identical (η �= 1). Nonetheless, there were a couple of
instances where the κ-μ / inverse gamma model provided a
marginally better fit than the η-μ / inverse gamma model for
the NLOS conditions (i.e. the indoor wearable and V2V NLOS
channels), however it is worth remarking that in these cases the
difference in the fit provided by the two models is virtually
indistinguishable. Overall, these results suggest that the key
factor in determining which model provides a better fit to
the measured data is the presence of strong dominant signal
components and/or the difference in the scattered wave power
of the in-phase and quadrature components of each multipath
cluster, rather than the presence of a direct signal path.

APPENDIX A
PROOFS OF FUNDAMENTAL STATISTICS OF THE

κ -μ / INVERSE GAMMA MODEL

A. Proof of Theorem 1

The PDF of the composite signal envelope in a κ-μ / inverse
gamma channel, R, can be determined by averaging the infinite
integral of the conditional probability density of the κ-μ fading
process with respect to the random variation of the mean signal
power, A, as follows

fR(r) =
∫ ∞

0
fR|A(r |α) fA(α) dα (28)

where, using the signal model given in (1), this insinuates that

fR|A(r |α) = 2μ(κ + 1)
μ+1

2 rμ

κ
μ−1

2 exp (μκ)(α�)
μ+1

2

exp

(
−μ(κ + 1)

r2

α�

)

×Iμ−1

(
2μ

√
κ (κ + 1)

r√
α�

)
(29)

where Iv (·) denotes the modified Bessel function of
the first kind and order v [45, eq. (9.6.20)]. Substitut-
ing (29) and (2) in (28), the PDF of the κ-μ / inverse gamma
model can be written as

fR(r) = 2μ(κ + 1)
μ+1

2 (ms − 1)ms rμ

κ
μ−1

2 exp (μκ) � (ms) �
μ+1

2

∫ ∞

0

(
1

α

) 2ms +μ+3
2

× exp

(
−μ(κ + 1)

r2

α�

)
exp

(
−ms − 1

α

)

× Iμ−1

(
2μ

√
κ (κ + 1)

r√
α�

)
dα. (30)

Performing a simple transformation of variables and applying
[46, eq. (2.15.5.4)] along with some algebraic manipulation,
(30) can be rewritten in closed-form as given in (3).

B. Proof of Theorem 2

By expanding the Kummer confluent hypergeometric
function in (4) in terms of the series representation
[31, eq. (07.20.02.0001.01)], the CDF of the instantaneous
SNR of the κ-μ / inverse gamma model can be expressed as

Fγ (γ ) =
∫ γ

0

exp (−μκ) μμ(κ + 1)μ(ms − 1)ms γ ms γ μ−1

B (ms , μ)
[
μ (κ + 1) γ + (ms − 1)γ

]ms+μ

×
∞∑

i=0

(ms + μ)i

i ! (μ)i

[
μ2κ (κ + 1) γ

μ (κ + 1) γ + (ms − 1)γ

]i

dγ.

(31)

With the aid of [26, eq. (3.194.5)], we can obtain the CDF
of the instantaneous SNR of the κ-μ / inverse gamma com-
posite fading model as given in (5). By expanding the Gauss
hypergeometric function in (5) in terms of an infinite series
representation [31, eq. (07.23.02.0001.01)], 2 F1 (a, b ; c; z) =∑∞

i=0
(a)i (b)i zi

(c)i i! for |z| < 1, and using the definition of the
K ampé de Fériet function [29], the CDF of the instantaneous
SNR of the κ-μ / inverse gamma model can be obtained in
closed-form as given in (6). On the contrary, for |z| ≥ 1,
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the Gauss hypergeometric function in (5) is expanded as
follows [31, eq. (07.23.02.0004.01)],

2 F1 (a, b; c; x) = �(b − a)�(c)

�(b)�(c − a)

∞∑
l=0

(a)l(a − c + 1)l x−l

l!(a − b + 1)l(−x)a

+ �(a − b)�(c)

�(a)�(c − b)

∞∑
l=0

(b)l(b − c + 1)l x−l

l!(b − a + 1)l(−x)b
.

(32)

Consequently, using (32) and the definition of the Humbert �1
function [30], the CDF of the instantaneous SNR of the κ-μ /
inverse gamma model can be obtained as given in (7).

C. Proof of Theorem 3
In a similar manner to Appendix VI-B, the higher order

moments of the instantaneous SNR of the κ-μ / inverse
gamma model can be expressed using an exact infinite series
expansion of the Kummer confluent hypergeometric function
[31, eq. (07.20.02.0001.01)] such that

E
[
γ n] =

∫ ∞

0

exp (−μκ) μμ(κ + 1)μ(ms − 1)ms γ ms γ μ+n−1

B (ms, μ)
[
μ (κ + 1) γ + (ms − 1)γ

]ms+μ

×
∞∑

i=0

(ms + μ)i

i ! (μ)i

[
μ2κ (κ + 1) γ

μ (κ + 1) γ + (ms − 1)γ

]i

dγ.

(33)

Using [26, eq. (3.251.11)] and the series representa-
tion of the Kummer confluent hypergeometric function
[31, eq. (07.20.02.0001.01)], we obtain the higher order
moments of the instantaneous SNR of the κ-μ / inverse gamma
model in closed-form expression as given in (8).

D. Proof of Corollary 1
The corresponding AF can be obtained using the definition

[1, eq. (1.27)], AF = E[γ 2]
E2[γ ] −1, where E[γ ] and E[γ 2] denote

the first and second moments, respectively. By substituting
n = 1 and n = 2 in (8) we obtain

E[γ ] =
(

(ms − 1)γ̄

μ (κ+1)

)
B (ms −1, μ+1)

exp (μκ) B (ms, μ)
1 F1 (μ + 1; μ; μκ)

(34)

and

E[γ 2] =
[
(ms −1)γ

μ(κ+1)

]2 B(ms −2, μ+2)

exp (μκ)B(ms, μ)
1 F1(μ+2;μ;μκ).

(35)

Using Kummer’s transformation [31, eq. (07.20.17.0013.01)],
(34) and (35) can be rewritten as

E[γ ]=
[
(ms −1)γ

μ (κ+1)

]
B (ms −1, μ+1)

B (ms, μ)
1 F1 (−1;μ;−μκ) (36)

and

E[γ 2] =
(
(ms − 1)γ̄

μ (κ+1)

)2 B (ms −2, μ+2)

B (ms, μ)
1 F1 (−2; μ; −μκ) .

(37)

Now, using the special representation of the Kummer
hypergeometric function, 1 F1 (−1; b; z) = 1 − z

b

[31, eq. (07.20.03.0018.01)] and 1 F1 (−2; b; z) =
1 − 2z

b + z2

b(1+b) [31, eq. (07.20.03.0017.01)], we obtain
the AF of the κ-μ / inverse gamma model in closed-form as
given in (9).

E. Proof of Theorem 4

An MGF-type function can be derived from (4) using an
infinite series expansion of the Kummer confluent hypergeo-
metric function [31, eq. (07.20.02.0001.01)] yielding

Mγ (−s) =
∫ ∞

0

∞∑
i=0

(ms + μ)i
[
μ2κ (κ + 1) γ

]i

i ! (μ)i
[
μ (κ + 1) γ + (ms −1)γ

]i

×exp (−μκ−sγ )μμ(κ+1)μ(ms −1)ms γ ms γ μ−1

B (ms, μ)
[
μ (κ+1) γ +(ms −1)γ

]ms+μ dγ.

(38)

With the aid of [26, eq. (3.383.5)] and making use of the
generalized Laguerre polynomial [31, eq. (07.03.02.0001.01)],
we can obtain the corresponding MGF-type function for the
κ-μ / inverse gamma composite fading model as follows

Mγ (−s) =
∞∑

i=0

(μκ)i

i ! exp (μκ)

[
1 F1

(
μ+i ; 1−ms; s(ms −1)γ

μ (κ+1)

)

+
(

s(ms − 1)γ

μ (κ + 1)

)ms � (−ms)

B (ms, μ + i)

× 1 F1

(
ms +μ+i ; 1+ms; s(ms −1)γ

μ (κ + 1)

)]
. (39)

By using the series form of the Kummer confluent hyper-
geometric function [31, eq. (07.20.02.0001.01)] in (39) and
the definition of the Humbert �2 function [30], an MGF-type
function for the κ-μ / inverse gamma model can be expressed
in closed-form as given in (10).

APPENDIX B
PROOFS OF FUNDAMENTAL STATISTICS OF THE

η-μ / INVERSE GAMMA MODEL

A. Proof of Theorem 5

Using the signal model given in (11), for the η-μ / inverse
gamma model, this insinuates that

fR|A(r |α) = 4
√

πμμ+ 1
2 hμr2μ

� (μ) H μ− 1
2 (α�)μ+ 1

2

× exp

(
−2μhr2

α�

)
Iμ− 1

2

(
2μHr2

α�

)
. (40)

By substituting (40) and (2) into (28), the PDF of the compos-
ite fading signal in an η-μ / inverse gamma composite fading
channel, R, can be expressed as follows

fR(r) = 4
√

πμμ+ 1
2 hμ(ms − 1)ms r2μ

� (μ)� (ms) H μ− 1
2 �μ+ 1

2

∫ ∞

0

(
1

α

)ms+μ+ 3
2

× exp

(
−2μhr2

α�
− ms −1

α

)
Iμ−1

2

(
2μHr2

α�

)
dα. (41)

Performing a simple transformation of variables and apply-
ing [46, eq. (2.15.3.2)] along with some algebraic manipula-
tion, (41) can be expressed in closed-form as given in (12).
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B. Proof of Theorem 6

By expanding the Gauss hypergeometric function in terms
of the series representation6 [31, eq. (07.23.02.0001.01)],
the CDF of the instantaneous SNR of the η-μ / inverse gamma
model can be expressed as

Fγ (γ ) =
∫ γ

0

22μμ2μ hμ(ms −1)ms γ ms γ 2μ−1

B (ms, 2μ)
[
2μhγ + (ms − 1)γ

]ms+2μ

×
∞∑

i=0

(
ms+2μ

2

)
i

(
ms+2μ+1

2

)
i

i !
(

2μ+1
2

)
i

[
2μHγ

2μhγ + (ms − 1)γ

]2i

dγ.

(42)

Using [26, eq. (3.194.1)] and [31, eq. (07.23.02.0001.01)],
we obtain the CDF of the instantaneous SNR of the η-μ /
inverse gamma model as given in (14).

C. Proof of Theorem 7

The higher order moments of the instantaneous SNR of the
proposed η-μ / inverse gamma composite fading model can
be expressed using an exact infinite series expansion of the
Gauss hypergeometric function [31, eq. (07.23.02.0001.01)]
as follows

E
[
γ n] =

∫ ∞

0

22μμ2μ hμ(ms −1)ms γ ms γ 2μ+n−1

B(ms, 2μ)
[
2μhγ + (ms −1)γ

]ms+2μ

×
∞∑

i=0

(
ms+2μ

2

)
i

(
ms+2μ+1

2

)
i

i !
(

2μ+1
2

)
i

[
2μHγ

2μhγ +(ms −1)γ

]2i

dγ.

(43)

With the aid of [26, eq. (3.194.3)] and the series
representation of the Gauss hypergeometric function
[31, eq. (07.23.02.0001.01)], the higher order moments of the
instantaneous SNR of the η-μ / inverse gamma model can be
obtained in closed-form as given in (19).

D. Proof of Corollary 2

Substituting n = 1 and n = 2 in (19), we obtain the first
and second order moments as follows

E
[
γ
] = B (ms − 1, 2μ + 1)

hμB (ms , 2μ)

[
(ms − 1)γ

2μh

]

× 2 F1

(
μ + 1

2
, μ + 1; μ + 1

2
; H 2

h2

)
(44)

and

E

[
γ 2

]
= B (ms − 2, 2μ + 2)

hμ B (ms , 2μ)

[
(ms − 1)γ

2μh

]2

× 2 F1

(
μ + 1, μ + 3

2
; μ + 1

2
; H 2

h2

)
. (45)

6For |z| < 1, the Gauss hypergeometric function, 2 F1 (·, · ; ·; z), is
defined as a convergent infinite sum. In this case, as shown in (13), z =[

2μHγ
2μhγ+(ms −1)γ

]2
. Since h = (2 + η−1 + η)/4, H = (η−1 − η)/4 and

μ,γ, γ > 0 and ms > 1, the denominator (2μhγ + (ms − 1)γ ) is always
greater than the numerator (2μHγ ) and thus z is always smaller than 1.

Using 2 F1 (c − a, c − b; c; z) = (1 − z)a+b−c
2 F1 (a, b; c; z)

[31, eq. (07.23.17.0054.01)], the Gauss hypergeometric func-
tions in (44) and (45) can be rewritten as

2 F1

(
μ + 1

2
, μ + 1 μ + 1

2
; H 2

h2

)

=
(

1 − H 2

h2

)−(μ+1)

2 F1

(
0,−1

2
; μ + 1

2
; H 2

h2

)
(46)

and

2 F1

(
μ + 1, μ + 3

2
; μ + 1

2
; H 2

h2

)

=
(

1 − H 2

h2

)−(μ+2)

2 F1

(
−1

2
,−1; μ + 1

2
; H 2

h2

)
. (47)

By substituting the series expansion of the Gauss
hypergeometric function [31, eq. (07.23.02.0001.01)]
and then simplifying the Pochhammer terms, we can obtain

2 F1

(
0,− 1

2 ; μ + 1
2 ; H2

h2

)
= 1 and 2 F1

(
− 1

2 ,−1; μ + 1
2 ; H2

h2

)
=(

h2 + H 2 + 2μh2
)
/
(
h2 (1 + 2μ)

)
. Now substituting (46)

and (47) into (44) and (45) respectively and carrying out
some algebraic manipulation, we obtain the AF of the η-μ /
inverse gamma model in closed-form as given in (20).

E. Proof of Theorem 8

An MGF-type function can be derived from (13) using an
infinite series expansion of the Gauss hypergeometric function
[31, eq. (07.23.02.0001.01)]

Mγ (−s) =
∫ ∞

0

(2μ)2μ hμ(ms −1)ms γ msγ 2μ−1exp (−sγ )

B (ms, 2μ)
[
2μhγ +(ms −1)γ

]ms+2μ

×
∞∑

i=0

(
ms+2μ

2

)
i

(
ms+2μ+1

2

)
i

i !
(

2μ+1
2

)
i

[
2μHγ

2μhγ +(ms −1)γ

]2i

dγ.

(48)

Using [26, eq. (3.383.5)] and [31, eqs. (07.03.02.0001.01) and
(07.20.16.0006.01)], we obtain an MGF-type function for the
η-μ / inverse gamma model as given in (21), which completes
the proof.
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