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Modeling and Mitigating Errors in Belief
Propagation for Distributed Detection
Younes Abdi , Member, IEEE, and Tapani Ristaniemi , Senior Member, IEEE

Abstract— We study the behavior of the belief-propagation
(BP) algorithm affected by erroneous data exchange in a wireless
sensor network (WSN). The WSN conducts a distributed multi-
dimensional hypothesis test over binary random variables. The
joint statistical behavior of the sensor observations is modeled
by a Markov random field whose parameters are used to build
the BP messages exchanged between the sensing nodes. Through
linearization of the BP message-update rule, we analyze the
behavior of the resulting erroneous decision variables and derive
closed-form relationships that describe the impact of stochastic
errors on the performance of the BP algorithm. We then develop
a decentralized distributed optimization framework to enhance
the system performance by mitigating the impact of errors via
a distributed linear data-fusion scheme. Finally, we compare
the results of the proposed analysis with the existing works
and visualize, via computer simulations, the performance gain
obtained by the proposed optimization.

Index Terms— Distributed systems, cooperative communica-
tions, likelihood-ratio test, communication errors, computation
errors, blind signal processing, message-passing algorithms, lin-
ear data-fusion, factor graphs.

I. INTRODUCTION

DESIGN of statistical inference systems often involves
analysis and modeling of the collective behavior

of a group of random variables and their interactions.
Consequently, factor graphs, which are commonly used to
capture the interdependencies between correlated random vari-
ables, provide a powerful framework for developing effective
low-complexity inference algorithms in various fields such
as wireless communications, image processing, combinatorial
optimization, and machine learning, see e.g., [1]–[3]. Belief
propagation (BP) [4] is a well-known statistical inference algo-
rithm that works based on parallel message-passing between
the nodes in a factor graph. BP is sometimes referred to as
the sum-product algorithm.

When working with the BP algorithm, we should bear
in mind that digital computation and digital communication
are both error-prone processes in general. The messages
exchanged between the nodes in a wireless network can always
be adversely affected by errors caused by unreliable hardware
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components, quantization processes, approximate representa-
tions, wireless channel impairments, etc. Even though the
BP algorithm has been extensively studied in the litera-
ture, we have rather limited knowledge about how stochastic
errors in messages affect the beliefs obtained and how these
erroneous beliefs influence the result of statistical inference
schemes implemented by the BP algorithm. This territory is
difficult to explore mainly due to the nonlinearities in the BP
message-passing iteration.

In [5], we have developed a systematic framework for
analyzing the behavior of BP and optimizing its performance
in a distributed detection scenario. In particular, we have
shown that the decision variables built by the BP algorithm
are, approximately, linear combinations of the local likeli-
hoods in the network. Consequently, we have derived in [5]
closed-form relationships for the system performance metrics
and formulated a distributed optimization scheme to achieve
a near-optimal detection performance. Moreover, we have
discussed the relationship between the BP and the max-product
algorithms in [6] where we extend the proposed frame-
work in [5] to optimize the performance of the max-product
algorithm in a distributed detection scenario. In this paper,
we further extend that framework to gain insight into the
impact of computation and communication errors, in a BP
iteration, on the resulting decision variables and to effectively
mitigate that impact. Examples of BP being used in distributed
detection can be found in [7]–[10].

Accumulation of message errors and their adverse effect
on the performance of BP is analyzed in [11] where the
message errors are modeled as uncorrelated random variables
to find probabilistic guarantees on the magnitude of errors
affecting the beliefs. The work in [11] is inspired by observing
the behavior and stability of digital filters, in the presence
of quantization effects, which can be analyzed reliably by
assuming uncorrelated behavior in the corresponding random
errors [12]. Such a modeling approach is in line with the
von Neumann model of noisy circuits [13], which considers
transient faults in logic gates and wires as message and
node computation noise that is both spatially and temporally
independent [14].

The behavior of BP implemented on noisy hardware is
investigated in [15] where it is observed that under the
so-called contracting mapping condition [16], the distance
between successive messages in a noise-free BP decreases
by the number of iterations. Consequently, in the presence
of hardware (or computation) noise, the faulty messages that
violate this trend can be detected and discarded (censored)
from the BP iterations. Such an approach is termed censoring
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BP in [15] and is shown to perform well when the hardware
noise distribution has a large mass at zero and non-negligible
masses at some points sufficiently away from zero. As an
alternative approach, the so-called averaging BP (ABP) is
also proposed in [15]. In this method, as the name implies,
an average of the messages up to the last iteration is saved and
then used, instead of the actual messages, to build the beliefs.
This method is proposed and its convergence is established
for general zero-mean computation noise distributions. Again,
the von Neumann model is used in [15] to analyze the behavior
of message errors.

In this paper, we use the fact that the BP algorithm and the
linear data-fusion scheme are elegantly related to each other in
the context of distributed detection. Fortunately, there already
exists a rich collection of scientific works in the literature that
investigate low-complexity detector structures based on linear
fusion in various design scenarios [17]–[21]. In many of these
works, the data-exchange process within the sensor network is
assumed adversely affected by non-idealities in the underlying
communication links. Hence, dealing with erroneous data is
a familiar challenge faced when designing wireless sensor
networks (WSN). We use this knowledge to cope with the
impact of message errors on distributed detection systems
realized by BP.

It is a common practice to refer to the channels over
which the data exchange between the sensing nodes is con-
ducted as reporting channels to distinguish them from the
channels over which the target signal is detected, which
are referred to as listening channels. The importance of the
present work can be highlighted by noting that distributed
detection systems can be highly sensitive to the reporting
errors. This phenomenon is illustrated in [22, Sec. IV-C]
by a simple example that shows that the overall detection
performance cannot go beyond the limits dictated by the
reporting channel conditions irrespective of the signal-to-
noise-ratio (SNR) levels of the target signal experienced at
the listening channels. This effect is further studied and
quantified for several hard- and soft-decision fusion schemes
in [23]–[25] where it is shown that the reporting chan-
nel errors can have a significant impact on the detection
performance.

In the existing literature, the reporting channels have
been commonly considered nonideal to account for realistic
data-exchange processes between the network nodes [17],
[20], [21], [26]–[30]. A major application scenario for dis-
tributed detection systems is spectrum sensing in cognitive
radio networks (CRN) where communication between the
sensing nodes is typically conducted without having access to
dedicated spectrum bands. This means that the data exchange
between those nodes could face stringent constraints in terms
of transmit power and bandwidth. Consequently, many works
on distributed detection in CRNs focus on reporting links
with bandwidth or power constrains, see e.g., [27]. These
constraints are typically taken into account, in the system
modeling and optimization, by non-ideal reporting links that
introduce non-zero bit error probabilities (BEP) in digital [21]
and uncorrelated noise in analog reporting schemes [20]. Since
the link noise level and BEP are monotonically related to each
other [21, Eq. (12)], similar approaches can be used in both

analog and digital cases to mitigate the impact of reporting
errors, see [17], [21].

In this paper, we are focused on a BP-based decentralized
distributed detection scheme. We view message errors in the
BP iteration as reporting errors and approximate the messages
by a linear expression to study the impact of erroneous
data-exchange on the BP algorithm and to clarify how it
affects the performance of the resulting distributed detection.
We derive approximate expressions that measure the strength
of the cumulative errors that affect the BP-based decision
variables. These expressions are in the form of mean-squared
error (MSE) levels. We compare the MSE levels obtained
with the one in [11] to gain insight into the behavior of
BP and to see how computation and communication errors
propagate throughout the underlying factor graph. Our analysis
closely predicts the extent of the deviation of the erroneous
decision variables, obtained by an erroneous BP iteration, from
their actual values. This is a significant improvement over
Ihler’s bound in [11]. Moreover, based on the proposed linear
approximation, we show that ABP is effective in alleviating
message errors and falls short of mitigating the impact of
erroneous local likelihood ratios (LLRs) on the resulting
decision variables.

We also show, under practical assumptions, that the decision
variables built by an erroneous BP are disturbed by a sum
of independent error components whose collective impact can
be modeled, approximately, by Gaussian random variables.
Consequently, we establish the probability distribution of the
resulting erroneous decision variables, derive the performance
metrics of the BP-based distributed detection in closed form,
and propose a two-stage optimal linear fusion scheme to
cope with the impact of errors on the system performance.
We then develop a blind adaptation algorithm to realize the
proposed two-stage optimization when the statistics describing
the radio environment are not available a priori. The proposed
blind adaptation modifies the parameters of the BP and the
decision threshold at each node, in accordance with the error
statistics and channel conditions, to mitigate the impact of
errors and to enhance the detection performance. To summa-
rize, we extend the works in [5] and [6] by the following
contributions:

• We analyze the behavior of the BP algorithm in the
presence of message (and likelihood) errors and derive
its performance metrics in closed form in a distributed
detection subject to those errors.

• We build a distributed optimization framework for the
system that takes into account and effectively mitigates
the impact of erroneous data exchange in BP.

Moreover,

• We extend the work in [11] by proposing a tighter
error bound that more accurately describes the impact
of message errors on the decision variables built by the
BP algorithm.

• We extend the work in [15] by analyzing the behavior of
ABP. Our work sheds light on ABP’s effectiveness and
shortcomings.

Here is an overview of the paper organization: In Sec. II,
we briefly explain the use of linear fusion and BP in distributed
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detection and provide the related formulations. In Sec. III,
we discuss errors in BP and model their impact on the
decision variables obtained. In Sec. IV, we view BP as a
distributed linear fusion and formulate the proposed optimiza-
tion framework. In Sec. V, we conduct computer simulations
to verify our analysis and to illustrate how effectively the
proposed method mitigates the impact of errors in a WSN with
faulty devices. Finally, we provide our concluding remarks in
Sec. VI.

II. LINEAR FUSION AND BELIEF PROPAGATION

FOR DISTRIBUTED DETECTION

We consider N binary random variables, represented by
x = [x1, . . . , xN ]T , whose status are estimated based on N
observations denoted Y = [y1, . . . ,yN ] made by a network
of N sensing nodes. Each node, say node i, which intends
to estimate the status of xi, collects K observation samples,
denoted by yi = [yi(1), . . . , yi(K)]T , and exchanges infor-
mation with other nodes in the network to realize together
a multidimensional hypothesis test as x̂ = maxx p(x|Y ) =
maxx p(Y |x)p(x). This test can be conducted with low
implementation complexity in two alternative ways that are
explained in the following.

A. Linear Data-Fusion

Linear fusion has been extensively used in the context of
spectrum sensing where the aim is to detect the presence
or absence of a target signal by evaluating noisy observa-
tions made throughout a WSN. For brevity, we explain the
uni-variate case where we have a single binary variable x ∈
{0, 1}. The optimal approach to such a detection is known
to be the so-called likelihood-ratio test (LRT) [31], which is
conducted by evaluating the LLR, i.e., by x̂ = 1{λLRT − τ}
where

λLRT � ln
p(Y |x = 1)
p(Y |x = 0)

=
N�

i=1

γi (1)

where

γi � ln
p(yi|x = 1)
p(yi|x = 0)

= sT
i yi −

1
2
�si�2 (2)

where γi is referred to as the local LLR at node i. By
1{·} we represent the indicator function that returns one
if its argument is positive and returns zero otherwise. τ is
a detection threshold selected via a target false-alarm rate.
Eq. (2) indicates that, the LRT is a matched-filtering process,
which requires the target signal si to be known a priori at
the sensing nodes. Moreover, for Gaussian observations, γi

in (2) follows a Gaussian distribution. In practice, the local
sensing process is realized by energy detection, due to its ease
of implementation and because its structure does not require
the target signal to be known. Energy detection is realized by
γi � 1

K �yi�2 and the sensor outcomes are combined linearly
to build a global test statistic [17]–[21], i.e.,

λLF �
N�

i=1

wiγi = wT γ (3)

where w � [w1, . . . , wN ]T and γ � [γ1, . . . , γN ]T . Then,
λLF is compared against τ to conduct the hypothesis test,

i.e., x̂ = 1{λLF − τ}. w can be set to maximize the
detection probability. According to the central limit theorem
(CLT) [32], when the number of signal samples K is large
enough [17]–[21], the outcome of energy detection follows
a Gaussian distribution and we can model the test summary
λLF, given the status of x, as a Gaussian random variable. Con-
sequently, the detector performance can be optimized by the
well-known Neyman-Pearson approach [31]. This optimization
is formulated as

w∗ = arg min
w

Q−1(α)
�

wTΣ0w −wT δ�
wT Σ1w

(4)

where δ � μ1 − μ0 while μb � E[γ|x = b] and Σb �
cov(γ|x = b) and Q−1(·) denotes the inverse of the Q-
function. α denotes the target false-alarm probability at which
the detection probability is maximized. This non-convex prob-
lem is solved in [17], [19], [20]. From these works, we know
that the performance of linear fusion is close to the LRT
performance. Alternatively, we can maximize the so-called
deflection coefficient of the detector. This approach, which
has a low computational complexity and leads to a good
performance level, is realized by

w∗ = arg max
w

Δ2(w), s.t., �w� = 1 (5)

where

Δ2(w) � (E[λLF|x = 1]− E[λLF|x = 0])2

Var[λLF|x = 0]
=

�
wT δ

�2
wT Σ0w

(6)

Consequently, by using the Rayleigh-Ritz inequality [17],
w∗ is obtained in closed form as w∗ = Σ−1

0 δ/
��Σ−1

0 δ
��.

Extension of the linear detection structure in (3) to N variables
is discussed in [18] in the context of multiband spectrum
sensing.

B. Belief Propagation

We model the sensor network structure concerned by an
MRF defined on an undirected graph G = (V , E). In this
model, the set of vertices V corresponds to the set of network
nodes while each edge (i, j) ∈ E represents a possible
connection between nodes i and j. Each node, say node i,
is associated with a random variable xi and the edge (i, j)
models a possible correlation between xi and xj . This model
fits well into the commonly-used ad-hoc network configura-
tions in which major network functionalities are conducted
through pairwise i.e., one-hop, links between the nodes located
close to each other. This design method is based on the
common assumption that nodes located close enough to each
other for one-hop communication, experience some levels of
correlation between their sensor outcomes.

By using the MRF, we write p(x|Y ) as a product of
univariate and bivariate functions, i.e.,

p(x|Y ) ∝
�
n∈V

φn(xn)
�

(i,j)∈E
ψij(xi, xj) (7)

Note that ∝ in (7) refers to a normalization that ensures�
x p(x|Y ) = 1 and includes but is not limited to 1/p(Y ).

When including the bivariate terms in the product, each edge
in the factor graph is included in the product only once. This
is realized by doing the multiplication on i < j while i ∈ Nj .
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We use Nj to denote the set of neighbors of node j in the
graph, i.e., Nj � {k : (k, j) ∈ E}. By using (7), we formulate
the message received at node j from node k as

μ
(l)
k→j(xj) ∝

�
xk

φk(xk)ψkj(xk, xj)
�

n∈N j
k

μ
(l−1)
n→k (xk) (8)

where by N j
k � Nk\{j} we denote all nodes connected to

node k except for node j. We denote by b
(l)
j (xj) the belief,

about the status of xj , formed at node j, which is obtained via
multiplying the potential at node j by the messages received
from all its neighbors, i.e.,

b
(l)
j (xj) ∝ φj(xj)

�
k∈Nj

μ
(l)
k→j(xj) (9)

The beliefs are used as estimates of the desired marginal
distributions, i.e., b

(l)
j (xj) ≈ p(xj |Y ). By adopting the

commonly-used exponential model [4] to represent the a priori
probability measure defined on x, we have

p(x) ∝ exp

⎛
⎝�

n∈V
θnxn +

�
(i,j)∈E

Jijxixj

⎞
⎠ (10)

For notational convenience, we use bipolar binary variables,
i.e., xj ∈ {−1,+1} in our formulations of BP. For a given x,
we assume the local observations to be mutually independent.
Consequently, as explained in [5, Sec. I-B], we have

p(x|Y ) ∝
�
n∈V

p(yn|xn)eθnxn

�
(i,j)∈E

eJijxixj (11)

Hence, by using (11), the BP messages are built as

μ
(l)
k→j(xj) ∝

�
xk

p(yk|xk)eθkxkeJkjxkxj

�
n∈N j

k

μ
(l−1)
n→k (xk)

(12)

and the beliefs at iteration l are expressed as

b
(l)
j (xj) ∝ p(yj |xj)eθjxj

�
k∈Nj

μ
(l)
k→j(xj) (13)

In the log domain, (12) and (13) convert, respectively, as clar-
ified in Appendix A, to

m
(l)
k→j = S

⎛
⎝Jkj , γk +

�
n∈N j

k

m
(l−1)
n→k

⎞
⎠ (14)

λ
(l)
j = γj +

�
k∈Nj

m
(l)
k→j (15)

where

λ
(l)
j � ln

b
(l)
j (xj = +1)

b
(l)
j (xj = −1)

(16)

m
(l)
k→j � ln

μ
(l)
k→j(xj = +1)

μ
(l)
k→j(xj = −1)

(17)

denote, respectively, the estimated likelihood ratio at node j
and the message sent to node j from node k while S(a, b) �
ln 1+ea+b

ea+eb and γk � ln p(yk|xk=+1)
p(yk|xk=−1) = sT

k yk− 1
2�sk�2. In this

model, yk = 1
2 (xk + 1)sk + nk denotes the signal received

at node k. Hence, xk = −1 indicates that the target signal
sk is absent leaving the the spectrum free where node k
operates. If xk = +1, then the corresponding spectrum band

is occupied. Jkj ’s are calculated as in Eq. (16) in [5] by
processing a window of T sensing outcomes. Note that θk

in (14) is merged into γk without having any impact on the
rest of the analysis.

After l∗ iterations, λ(l∗)
j is compared, as a decision variable,

against a detection threshold τj at node j to decide the status
of xj , i.e., x̂j = 1{λ(l∗)

j − τj}. By a linear approximation
of (14), we have [5]

m
(l)
k→j ≈ cjk

⎛
⎝γk +

�
n∈N j

k

m
(l−1)
n→k

⎞
⎠ (18)

where cjk � (e2Jkj −1)

(1+eJkj )2
. This approximation is obtained by the

first-order Taylor series expansion, i.e., S(a, b) ≈ Sb(a, 0)b
where Sb(a, b) = ∂S(a, b)/∂b. By using (18) we see that
liml→∞ λ

(l)
j ≈ λj where

λj � γj +
�

k∈Nj

cjkγk +
�

k∈Nj

�
n∈N j

k

cjkcknγn

+
�

k∈Nj

�
n∈N j

k

�
m∈Nk

n

cjkckncnmγm + . . . (19)

Therefore, this approximation reveals that, given enough time,
all the local likelihood ratios observed in the network are
almost linearly combined at node j to calculate its decision
variable λj . We have shown in [5] that, the convergence
of this linear message-passing algorithm is guaranteed when
|cj,k| < 1

maxn |Nn|−1 , ∀(j, k) ∈ E . The linear combination

in (19) can be expressed as λj =
�N

i=1 ajiγi, which is
compactly stated in matrix form as

λ = Aγ (20)

where λ � [λ1, . . . , λN ]T and A � [a1, . . . ,aN ]T while
aj � [aj1, . . . , ajN ]T . Here we derive the relationship
between A and cjk’s in (19) as

A ≈ I +
∞�

n=1

Cn −D

 ∞�
n=1

Cn

�
(21)

where C � [cjk]N×N and D(X) denotes a diagonal matrix
whose main diagonal is equal to that of X . The proof is
provided in Appendix B.

It is now clear that to have convergence in the
message-passing iteration (18), the spectral radius of C has to
be less than one. This criterion may be used to impose bounds
on cjk’s to guarantee the convergence of the algorithm. Alter-
natively, the convergence can be guaranteed, without dealing
with the complexities of finding the spectral radius, by using
the contracting mapping condition as we have discussed in [5].
We use (21) in the following section to derive an estimation
of the error strength affecting the decision variables built by
an erroneous BP.

III. ERRORS IN BELIEF PROPAGATION

Eq. (14) shows that at each BP iteration each node creates
its messages in terms of its local LLR value as well as the
messages received from the neighboring nodes at the previous
iteration. In our system model, we assume that the local LLRs
and the BP messages are erroneous. As in [11] and [15],
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we use the von Neumann approach to modeling the joint
statistical behavior of errors.

A. Error Model and Analysis
Since the messages are multiplied together to build the

beliefs, we formulate them as multiplicative perturbations
affecting true (i.e., error-free) message values, i.e.,

μ̃
(l)
k→j(xj) = μ

(l)
k→j(xj)ε

(l)
k→j(xj) (22)

where μ̃(l)
k→j(xj) denotes the erroneous message sent to node

j from node k at iteration l while ε
(l)
k→j(xj) denotes the

corresponding error, which is considered in this paper as a
stochastic process.

Eq. (22) differs from the model used in [11] in the sense
that the error model in that work measures the difference
between the messages at iteration l with their counterparts
at the fixed point of the message-passing iteration. In other
words, the error model in [11] measures the deviation of the
messages at each iteration from their final value reached by
BP after convergence. The stochastic error we discuss here is
briefly studied in [11] under the notion of additional error.

By expressing the messages in the the log domain, we have

m̃
(l)
k→j � ln

μ̃
(l)
k→j(xj = +1)

μ̃
(l)
k→j(xj = −1)

= m
(l)
k→j + ν

(l)
k→j (23)

where

ν
(l)
k→j � ln

ε
(l)
k→j(xj = +1)

ε
(l)
k→j(xj = −1)

(24)

Based on the von Neumann model, we assume that if k �= n,
then E[ln ε(l)k→j(x) ln ε(l)n→j(x)] = 0 for all x. Consequently,
we have E[νk→jνn→j ] = 0. To measure the collective impact
of errors on the belief of node j, we use

E
(l)
j (xj) �

b̃
(l)
j (xj)

b
(∗)
j (xj)

(25)

where b̃(l)j (xj) denotes the belief at node j resulting from a

BP iteration with erroneous messages as in (22) while b(∗)j (xj)
denotes the belief of node j at a fixed point reached by an
error-free BP iteration. We use (∗) instead of (l) to indicate
the messages and beliefs at a fixed point of the error-free BP.

By assuming uncorrelated stochastic behavior for the mes-
sage errors, an upper bound on cumulative errors affecting the
beliefs can be obtained. Specifically, assuming Var

�
ν

(l)
k→j

�
≤

(lnu)2 for all k, j, l, an upper bound on the resulting cumu-
lative strength of errors at node j is derived in [11] as,

E

��
ln d
�
E

(l)
j

��2
�
≤
�

k∈Nj

�
σ

(l)
kj

�2

(26)

where σ(1)
kj = ln d(ψkj)2 and

�
σ

(l+1)
kj

�2

=


ln
d(ψkj)2ω

(l)
kj + 1

d(ψkj)2 + ω
(l)
kj

�2

+ (ln u)2 (27)

while �
lnω(l)

kj

�2

=
�

n∈N j
k

�
σ

(l)
nk

�2

(28)

where

d
�
E

(l)
j

�
� sup

a,b

����E
(l)
j (a)

E
(l)
j (b)

(29)

d(ψkj)2 � sup
a,b,c,d

ψkj(a, b)
ψkj(c, d)

(30)

We use the upper bound in (26) in the log domain based
on the fact that (see (16) and (25))

λ̃
(l)
j � ln

b̃
(l)
j (+1)

b̃
(l)
j (−1)

= λ
(∗)
j + ln

E
(l)
j (+1)

E
(l)
j (−1)

(31)

which leads to

E

����λ̃(l)
j − λ(∗)

j

���2� = E

����lnE(l)
j (+1)− lnE(l)

j (−1)
���2�

= E

��
ln d
�
E

(l)
j

��2
�
≤
�

k∈Nj

�
σ

(l)
kj

�2

(32)

Hence, in the detection structure discussed, (26) gives an upper
bound on the MSE level observed in the decision variable at
node j.

B. Linear Approximations

In our analysis, we distinguish between the message errors
and the errors in the computation of local LLRs to gain further
insight into the behavior of the BP algorithm. In particular,
we model the erroneous local LLRs as γ̃k � γk + �k and refer
to �k’s as likelihood errors (LE) while assuming that LEs are
uncorrelated as well, i.e., E[�k�n] = 0 for k �= n. We refer
to νk→j ’s as message errors (ME) and assume that LEs and
MEs are mutually independent. Moreover, we assume that all
MEs and LEs are independent of the messages and of the
local LLRs. Note that the bound in (32) does not take LEs
into account.

Taking both types of error into account, we express the
messages decision variables as

m̃
(l)
k→j = S

⎛
⎝Jkj , γ̃k +

�
n∈N j

k

m̃
(l−1)
n→k

⎞
⎠+ ν

(l)
k→j (33)

λ̃
(l)
j = γ̃j +

�
k∈Nj

m̃
(l)
k→j (34)

which shows that the errors pass through the same nonlinear
transformation (i.e., S) as the messages do. By using (33),
we can analyze the behavior of errors. The proposed linear
BP iteration in the presence of message errors is expressed
as

m̃
(l)
k→j ≈ cjk

⎛
⎝γ̃k +

�
n∈N j

k

m̃
(l−1)
n→k

⎞
⎠+ ν

(l)
k→j (35)

Consequently, similar to the way (19) is derived, the resulting
erroneous decision variable is formed as

λ̃
(l)
j ≈

�
γ̃j +

�
k∈Nj

cjk γ̃k +
�

k∈Nj

�
n∈N j

k

cjkcknγ̃n + . . .
�

+
�

k∈Nj

ν
(l)
k→j (36)
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which can be reorganized as

λ̃
(l)
j ≈ λj + ξ

(l)
j (37)

where

ξ
(l)
j �

N�
i=1

aji�i +
�

k∈Nj

ν
(l)
k→j (38)

Eq. (38) shows that the error affecting the decision variable
at node j has two distinct components. The first component
is built as a linear combination of LEs while the second one
is the sum of the MEs received at node j from its one-hop
neighbors. The first component is fixed whereas the second
one exhibits a new realization at every iteration.

According to (38), deviation from the error-free decision
variables, caused by errors in the BP iterations, can approxi-
mately be measured by

E

����λ̃(l)
j − λ(∗)

j

���2� ≈ E

����ξ(l)j

���2� = aT
j Σ�aj + tr

�
Σνj

�
(39)

where Σ� � cov(�) and Σνj
� cov

�
ν

(l)
j

�
while � �

[�1, . . . , �N ]T and ν
(l)
j denotes an |Mj |-by-1 vector that

contains ν(l)
k→j ’s for k ∈ Mj where Mj � Nj ∪ {j} while

ν
(l)
j→j � 0. Note that (36) includes more ME terms than

just
�

k∈Nj
ν

(l)
k→j . However, they can all be neglected since

|cjk| < 1 for all j, k.
Eq. (36) shows that when BP is used to realize a distributed

detection, the erroneous local likelihoods in the network are
combined linearly to build the decision variables. We can
evaluate the impact of the errors on the system performance
by analyzing the stochastic behavior of the erroneous decision
variables λ̃

(l)
j . Given x, the decision variable at node j

is obtained as a linear combination of independent random
variables. Consequently, its conditional pdf is derived as

fι̃j |x(z|b) ≈
N�

i=1

1
aji

fγ̃i|x

�
z

aji
|b
�
∗ �

k∈Nj

fνk→j
(z) (40)

where

fγ̃i|x(z|b) = fγi|x(z|b) ∗ f�i(z) (41)

while � and ∗ denote the convolution operator. Consequently,
we have

gj(τj , v) � Pr{λ̃j > τj |xj = v}
=

�
b∈{−1,1}N−1

px(j)|xj
(b|v)

� ∞

τj

fι̃j |x (z|Ej,v(b)) dz

(42)

where v ∈ {−1,+1}, x(j) �
[x1, x2, . . . , xj−1, xj+1, . . . , xN ]T and Ej,v(b) � {x(j) =
b, xj = v} while px(j)|xj

(b|v) � Pr{x(j) = b|xj = v}.
Solving gj(τj ,−1) = α gives a threshold value that fixes
the false-alarm rate at α. Similarly, gj(τj , 1) = β fixes the
detection rate at β. Recall that aji’s are found by using cjk’s,
see (21).

As a common practical case, when the local LLRs and
the errors follow Gaussian distributions [17]–[21] the decision
variable λ̃j follows a Gaussian distribution as well and it
is fully characterized by its first- and second-order statistics.

Specifically, we have� ∞

τj

fι̃j |x (z|Ej,v(b)) dz = Q

�
τj − μj,v(b)
σj,v(b)

�
(43)

where

μj,v(b) � E
�
λ̃j |Ej,v(b)

�
= E [γj |xj = v] +

�
i�=j

ajiE [γi|xi = bi] (44)

σ2
j,v(b) � Var

�
λ̃j |Ej,v(b)

�
= Var [γj|xj = v] +

�
i�=j

a2
jiVar [γi|xi =bi]+E

�|ξj |2�
(45)

In (44) we have assumed, without loss of generality, zero-mean
errors. Note that, without the proposed approximation these
performance measures are not available analytically due to
the nonlinearity of (14). In the rest of the paper, we assume
that the local likelihoods, LEs, and MEs are Gaussian
random variables. Eq. (40) shows that, according to the
CLT, even if the local LLRs and errors are not Gaussian
random variables, the stochastic behavior of the decision
variables can still be approximately described by Gaussian
distributions.

C. Impact of Averaging

In ABP, the message-passing iteration is the same as in BP.
However, instead of the actual message values, an average of
the messages are used to build the decision variables. To be
more specific, in the log domain and for l ≥ L+ 1, let

m̄
(l)
k→j � 1

L+ 1

l�
t=l−L

m̃
(t)
k→j (46)

The decision variable at node j is calculated by

λ̄
(l)
j � γj +

�
k∈Nj

m̄
(l)
k→j (47)

Similar to our discussion regarding (19), we can show that
when the message-passing iteration is error-free, λ̄(∗)

j �
liml→∞ λ̄

(l)
j = λj . Hence, we can see that the averaging

process does not alter the fixed points achieved by the
error-free linear BP. This observation is in line with the
convergence analysis provided in [15].

The impact of averaging on LEs and MEs can be clarified
by noting that

λ̄
(l)
j = λj + ξ̄

(l)
j (48)

where, assuming L to be large enough, we have

ξ̄
(l)
j =

N�
i=1

aji�i +
�

k∈Nj

ν̄
(l)
k→j ≈

N�
i=1

aji�i (49)

since ν̄(l)
k→j � 1

L+1

�l
t=l−L ν

(t)
k→j ≈ 0. We can state (49) in

the form of MSE as

E

����λ̄(l)
j − λ(∗)

j

���2� ≈ aT
j Σ�aj +

1
L+ 1

tr
�
Σνj

�
(50)

Assuming L to be large enough and MEs to have zero
mean, (49) shows that the resulting decision variable built by
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ABP in (47) is almost cleared of MEs. However, the averaging
process has almost no impact on LEs.

Note that in ABP the message-passing iteration is the same
as in BP and the averaging is only performed when computing
the decision variables. Moreover, in ABP, instead of storing
the messages in past iterations separately, we only need to
store the sum of the messages up to the current iteration. As a
consequence, the number of additional memory cells required
can be kept constant [15]. We will use ABP in Sec. IV-B to
build an offline learning-optimization structure for the linear
BP in the presence of errors.

IV. MITIGATING ERRORS BY LINEAR FUSION

In this section, we first propose a two-stage linear fusion
scheme to obtain a near-optimal detection performance by
suppressing the impact of the errors. Then, we realize the
proposed optimization in a blind decentralized setting where
the required statistics are not available a priori.

A. Linear Fusion

First, since |cjk| < 1, we further approximate the decision
variable λj in (19) as

λj ≈
�

k∈Mj

cjkγk (51)

Due to the symmetry of the data-fusion process in (19),
the approximation in (51) is an effective approach to building
a distributed computing framework for system performance
optimization. In this framework, each node interacts only with
its immediate neighbors. We have clarified this symmetry in [5,
Sec. III-B]. By taking into account the errors while analyzing
the linear BP, (19) and (36) lead to

λ̃j ≈
�

k∈Mj

cjk (γk + �k) +
�

k∈Nj

νk→j (52)

We see that the disturbance on the decision variable caused
by LEs is built, approximately, as a linear combination of �k’s
with cjk’s acting as weights in this combination. Therefore,
we use cjk’s as design parameters to mitigate the impact of
�k’s. Moreover, MEs are combined in (52) linearly and in this
combination, all weights are one. We propose to extend this
combination by using a modified version of (34) as

λ̂
(l)
j � γ̃j +

�
k∈Nj

wjkm̃
(l)
k→j (53)

This modification in the structure of the decision variable does
not affect the convergence of the proposed linear BP since it
does not alter the message-passing iteration. Now, based on
an approximation similar to the one in (52), we have

λ̂j ≈
�

k∈Mj

wjkcjk (γk + �k) +
�

k∈Nj

wjkνk→j (54)

Since λ̂j is a Gaussian random variable, we only need
its mean and variance to characterize its statistical behavior.
Specifically, for b ∈ {−1, 1}, we have

Pr{λ̂j > τj |xj = b} = Q


τj − E[λ̂j |xj = b]

Var[λ̂j |xj = b]

�
(55)

where

E[λ̂j |xj = b] ≈ vT
j μb (56)

Var[λ̂j |xj = b] ≈ vT
j

�
Σγj |b + Σ�j

�
vj + wT

j Σνj wj (57)

where vj � wj ◦cj in which ◦ denotes the Hadamard product
while Σγj |b = cov(γj |xj = b) and Σ�j

= cov(�j). Moreover,
wj , cj , γj , and �j are |Mj|-by-1 vectors containing wji’s,
cji’s, γi’s, and �i’s for i ∈ Mj , respectively. Eq. (55) gives the
system false-alarm probability for b = −1 and the detection
probability for b = 1. The false-alarm probability can be set
to P (j)

f = α by

τj = Q−1(α)Var[λ̂j |xj = −1] + E[λ̂j |xj = −1] (58)

and then by using (55) – (57), wj and cj can jointly be
optimized in a Neyman-Pearson setting.

To avoid the challenges of this optimization, we maximize
the deflection coefficient of the detector. We already know that
the resulting detector performs well when the decision vari-
ables follow Gaussian distributions. In this manner, we miti-
gate the joint impact of LEs and MEs with low computational
complexity.

The proposed optimization is conducted in two consecu-
tive stages based on the fact that we can decompose the
construction of λ̂j into two consecutive fusion processes.
That is, we first optimize cjk’s by considering the impact of
�k’s on γk’s. Then, we consider the resulting scaled LLRs,
i.e., cjkγk’s, as new statistics to be linearly combined, while
being weighted by wjk’s and distorted by νk→j ’s, to make the
decision variable at node j.

More specifically, first, we optimize cj in a hypothetical
linear detector with its decision variable defined as

λ̂�j � cT
j

�
γj + �j

�
(59)

The coefficients resulting from this optimization scale up the
more reliable local LLRs, with respect to the ones built under
low SNR regimes, to suppress the effect of LEs. We denote
the resulting fusion weights by c∗j . Then, we use c∗j within
the structure of the actual detector to optimize wj to mitigate
the impact of MEs. That is, we consider the following linear
detector at node j

λ̂��j � wT
j

�
χj + νj

�
(60)

where χj � c∗j ◦ (γj + �j) contains χjk’s for k ∈ Mj while
χjk = c∗jk(γk + �k). The vector νj contains νk→j ’s with
k ∈ Mj . In this structure, the elements of χjk’s are seen as
the actual local LLRs that are combined to build the decision
variable at node j while the combination takes into account
the joint degrading effect of MEs and LEs.

Based on the material provided in Sec. II-A, the first stage
of the proposed optimization is formally stated as

c∗j = argmaxcj Δ�
j(cj), s.t., �cj� = 1 (61)

where

Δ�
j(cj) =

�
cT

j δj

�2
cT

j

�
Σγj |−1 + Σ�j

�
cj

(62)

where δj � E[γj |xj = 1] − E[γj |xj = −1]. The resulting
c∗j is then used to realize the second stage of the proposed
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optimization by solving

w∗
j = argmaxwj Δ��

j (wj), s.t., �wj� = 1 (63)

where

Δ��
j (wj) =

�
wT

j δ̂j

�2

wT
j

�
Σχj |−1 + Σνj

�
wj

(64)

where δ̂j = c∗j ◦ δj and Σχj |−1 = cov(χj |xj = −1) =

c∗jc
∗T
j ◦

�
Σγj |−1 + Σ�j

�
. Having c∗j and w∗

j , the detection

threshold τj is derived as τj = Q−1(α)Var[λ��j |xj = −1] +
E[λ��j |xj = −1] to fix the system false-alarm rate at α.

The convergence condition |cj,k| < 1
maxn |Nn|−1 , ∀(j, k) ∈E can be realized by a simple normalization of c∗j,k’s since the

objective function in (61) does not change by normalizing its
argument.

Through the proposed two-stage optimization, we enhance
the detection performance at node j by suppressing the joint
impact of MEs and LEs with low computational complexity.
The statistics required in this optimization are collected from
the one-hop neighbors of node j. This makes the proposed
method a viable approach in ad-hoc network configurations
where major network functionalities are conducted through
one-hop links between the network nodes.

B. Offline Learning and Adaptation

To realize the proposed optimization, we need the mean
and covariance of the local erroneous LLRs. In a blind setting
where there is no prior information available regarding the
radio environment, we have to estimate those parameters based
on the detection outcomes. The main challenge here is that the
state of xj is required at node j while the only information
available in practice is the detection outcome x̂j . Hence,
node j has to estimate the conditional statistics required
in (61) and (63) based on x̂j . The problem with such an
adaptation mechanism is that it makes the detection outcome
x̂j depend on those estimates. This dependence creates an
inherent deteriorating loop by feeding the detection errors back
into the system structure through erroneous estimates of the
required statistics.

To overcome this challenge, we propose an extended version
of the blind learning-adaptation loop in [5] that accommodates
the proposed error-mitigating structure. The pseudo-code of
this adaptation is provided in Algorithm 1 where the task of
each node is specified in a distributed computing framework.
Algorithm 1 operates on a window of stored sensing outcomes
and involves a secondary BP that is run much less frequently
than the rate at which the distributed detection is performed.
The outcomes of this offline BP are used in the estimation of
the required unknown statistics. In this adaptation, the desired
optimizations are realized iteratively while each node interacts
only with its one-hop neighbors. Consequently, Algorithm 1
can be well incorporated in a decentralized network configu-
ration.

In the sequel, we propose a blind adaptation structure in
which we use κ to denote the iteration index. Note that we
use l as the iteration index in the main BP through which

Algorithm 1 Blind Adaptation of Fusion Weights in Erroneous
Linear Belief Propagation

Input: γ̃T , γ̄T ,τ (0), κmax, η
Output: Near-optimal cj and wj for j = 1, . . . , N

1. Let κ← 0 and initialize x̂(0) by comparing γ̃T against
τ (0);

2. while κ ≤ κmax

3. for node j ∈ {1, 2, . . . , N}
4. Calculate E[γ̄i|x̂(κ)

j ] and cov(γ̄i, γ̄k|x̂(κ)
j ) for all i, k ∈

Mj ;
5. Solve (61) to find c

(κ)
j and τ (κ)

j ;

6. Set c∗j by an η-test on c
(κ)
j ;

7. end
8. Use c∗j ’s and τ (κ)

j ’s to run linear ABP on γ̃T to find

x̂(κ+1);
9. κ← κ+ 1;
10. end
11. for node j ∈ {1, 2, . . . , N}
12. Use c∗j and x̂(κmax) to calculate δ̂j , Σχj |0 and Σνj

;
13. Solve (63) to find w∗

j ;
14. end
15. Output c∗j and w∗

j for j ∈ 1, 2, . . .N ;

the distributed detection is realized. The offline adaptation
updates the fusion weights in the proposed linear BP by
processing T stored samples of γ̃. This window of erroneous
local likelihoods is denoted by γ̃T and contains samples of
γ̃(t) for t = 1, 2, . . . , T . Recall that, γ̃ = γ + � where �
denotes the vector of LEs. The offline detection outcomes at
iteration κ are denoted by x̂(κ) � [x̂(κ)

1 , . . . , x̂
(κ)
N ] while the

resulting fusion weights and detection thresholds are denoted
c
(κ)
j and τ

(κ)
j respectively. x̂(κ) denotes a window of stored

sensing outcomes x̂(κ)(t) for t = 1, 2, . . . , T . For simplicity,
we do not show the time index when dealing with γ̃T , and
x̂(κ).

Due to errors caused by the wireless links between the
sensing nodes, node j does not have access to γ̃k(t), k ∈ Nj .
Specifically, what node j receives from node k is γ̃k(t)+νk→j

where νk→j denotes the corresponding link error. Without
loss of generality, we attribute MEs to wireless link errors.
To alleviate the link errors, before starting the adaptation
process node j receives L copies of γ̃k(t) from node k and
calculates an average to obtain γ̄k(t) � γ̃k(t) + ν̄k→j where
ν̄k→j denotes the average of L independent realizations of
νk→j . The desired statistics are then calculated by processing
γ̄k’s, which approximate γ̃k’s. We use γ̄T to contain the
samples of γ̄k(t) for t = 1, 2, . . . , T for k = 1, 2, . . . , N .

In a realistic detection scenario, the data exchanged between
the nodes in the proposed offline adaptation is impaired by
both types of errors. Since in the first linear fusion (61) we
take into account the impact of LEs only, we need to isolate
this optimization from the MEs. To this end, we estimate the
desired statistics by using linear ABP. As we saw in Sec. III-C,
MEs do not affect the ABP outcomes significantly. Therefore,
the resulting offline decision variables are almost cleared of
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MEs and closely realize (61). Note that, the offline linear ABP
processes γ̃T (not γ̄T ) since each node, say node j, builds
its own messages by using its own local likelihood γ̃j . The
outcomes of the linear ABP are then used in processing γ̄T

as indicated in line 4 of Algorithm 1.
As indicated in line 5, based on the outcomes of the

ABP, we suppress the impact of LEs by the first-stage linear
fusion. The resulting fusion coefficients enhance the quality
of the linear ABP, which, in turn, enhances the quality of
the fusion coefficients obtained in the following iteration.
By repeating this learning-optimization cycle, we suppress the
impact of LEs significantly while this cancellation process is
not disturbed by the MEs. See lines 2 – 10 in Algorithm 1.

In this section, we distinguish between the coefficients
obtained by Algorithm I and the ones obtained by linearizing
the BP algorithm as in (18). Specifically, we use cBP

j to collect
cBP
jk ’s for k ∈ Mj while cBP

jk � (e2Jkj − 1)/(1 + eJkj )2.
Line 6 indicates what we refer to as the η-test that ensures
the system performance level not to fall below that of the
legacy BP algorithm. The test is as follows: given a predefined
value η and for n = 1, 2, . . . , N , if cBP

j (n)/c(κ)
j (n) ≥ η then

c∗j (n)← cBP
j (n). Otherwise, c∗j (n)← c

(κ)
j (n). That is, we do

not use a coefficient obtained by the offline optimization if that
coefficient is not large enough with respect to its corresponding
coefficient in the main linearized BP. The reason is that, when
the primary-user signal received at node j is buried under
heavy noise, the local optimization at node j is not able to fully
capture the correlations between xj and its neighbors. Conse-
quently, the resulting cjk’s attain values too small to maintain
a good detection performance. In such cases, we replace
those coefficients with their counterparts in the linearized
BP. This technique prevents the resulting coefficients from
degrading the performance when the corresponding nodes
operate under an SNR regime that is not good enough for a
reliable estimation of the desired statistics. We use the legacy
BP coefficients for those nodes.

Having the high-quality fusion weights c∗j and more-reliable
detection outcomes x̂(κmax), we now realize the second stage
of the proposed optimization. To this end, node j finds
cov(χj |xj = −1) in (64) by calculating cov(γ̄j |x̂(κmax)

j = −1)
and then multiplying the result, element-wise, by c∗jc

∗T
j . Note

that cov(γ̄j |xj) ≈ Σγj |xj
+ Σ�j

where γ̄j denotes the jth
column in γ̄T . The elements of the diagonal matrix Σνj

are found at node j by noting that γ̄k(t) ≈ γ̃k(t), which
indicates that Var[νk→j ] ≈ Var[γ̃k(t) + νk→j ] − Var[γ̄k(t)].
Lines 11 – 14 in Algorithm 1 indicate the second stage of the
proposed optimization.

In case a certain performance level, such as a certain
false-alarm rate, is required to be guaranteed, we can use the
detector calibration technique in [5]. The thresholds obtained
by Algorithm I appear to be too sensitive to errors in the
estimated statistics. Therefore, we do not use Algorithm I for
threshold adaptation. Note that the implementation complexity
of the BP algorithm does not increase significantly by using
Algorithm I since the channel statistics change slowly com-
pared to the rate at which the spectrum sensing is conducted.
In other words, Algorithm I is executed far less frequently

Fig. 1. We have five secondary users cooperating via BP to sense the radio
spectrum allocated to a primary network with two transmitters. We use dashed
lines to depict the links between the cooperating nodes, through which the
BP messages are exchanged. Nodes 1 and 4 act as faulty nodes in the second
experiment.

than is the spectrum sensing. Note that the spectrum sensing
is performed at every time slot.

V. NUMERICAL RESULTS

Our simulation scenario in this section is an extension of the
one considered in [5]. We consider a spectrum sensing scenario
typically used in CRNs [33]. Specifically, we have five sensing
nodes, as secondary users, cooperating with each other via BP
to find spectral opportunities not in use by the primary users.
Fig. 1 depicts our network configuration where the range of
primary transmitter 1 covers nodes 1, 2, and 3 while the range
of primary transmitter 2 covers nodes 3, 4, and 5. We use
dashed lines to represent the links between the cooperating
nodes.

Each node generates its local sensing outcome by using
energy detection while processing 100 samples of the received
signals. Node 1 and node 5 receive the primary-user signal
with an SNR level of −5 dB, node 2 and node 4 experience an
SNR level of −8 dB in the received primary-user signal, and
node 3 receives signals from both of the primary transmitters
at −10 dB each. In our simulations, we randomly switch
the primary transmitters on and off. We realize these on-off
periods by generating correlated binary random variables.
Hence, the primary transmitters exhibit correlated random
behavior in our simulations. This is an extension to the primary
network behavior assumed in [7]. In that work, one of the
primary transmitters is on while the other one is off and they
do not change their status. As in [5] and [7], we assume that
the channel coefficients are fixed during a time slot.

We conduct two experiments in this section. In the first
experiment, whose results are depicted in Fig. 2, we evaluate
our analysis and compare its results to the one obtained by
Ihler et. al. in [11]. In particular, we compare the levels of
what we define as the decision SNR (DSNR), predicted by
our analysis, against the one predicted by the work in [11].
We define the DSNR level at node j as

ρ
(j)
D �

E
�|λj |2

�
E
�
|λ̃j − λj |2

� (65)

This parameter measures the ratio of the power of the decision
variable built by an error-free BP to the power of the error
affecting the same decision variable in an erroneous BP.

We realize the LEs and MEs as uncorrelated zero-mean
Gaussian random variables in our simulations. At each node,
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Fig. 2. Impact of errors on the decision variables built by the BP and ABP
algorithms.

we measure the strength of LEs and MEs with respect to the
node’s local likelihood. Specifically, we define the LE SNR
level at node j as

ρ
(j)
LE �

E
�|γj |2

�
E [|γ̃j − γj |2] (66)

while we define the ME SNR level at node j and for i ∈ Nj

as

ρ
(j,i)
ME �

E
�|γj |2

�
E [|m̃j→i −mj→i|2] (67)

Consequently, now we have a reference level at each node to
measure the power of LEs and MEs injected by that node into
the BP iteration.

To see the impact of different error types separately as well
as together, we run three BP algorithms in the first experiment.
The first one is affected only by LEs, the second one is affected
only by MEs and the third one is affected by both of the
error types concurrently. Moreover, we evaluate the behavior
of ABP in the presence of both error types. In each case,
the average of the DSNR level predicted by the proposed
analysis and the one observed in simulations are depicted
in Fig. 2. The average of the DSNR is calculated over all of
the sensing nodes in the network. The dashed curves in Fig. 2
represent the results of our analysis while the solid curves
show the average DSNR levels observed in simulations. In this
experiment, we consider ρ(j)

LE = ρ
(j,i)
ME = 10 dB for all i, j

and ζ = 1. In Fig. 2, for each data point, we have averaged
20,000 realizations of the decision variables. For the adaptation
process in Algorithm I, we have used 2,000 data samples. That
is, T = 2000 in this experiment.

In Fig. 2, we see a close match between the results predicted
by our analysis and the ones obtained via simulations. We also
see that our analysis provides a better estimate of the DSNR
levels than Ihler’s bound in [11]. Our analysis provides a better
estimation even when we only consider MEs.

Moreover, we see a gap in Fig. 2 between the DSNR levels
of the LE-only and ME-only cases. This gap indicates that the
impact of MEs is more deteriorating than the impact of LEs
when we have the same levels of ρLE and ρME. This appears
to be a reasonable observation in our network since the set
of error items injected to the BP iteration by each node, say

Fig. 3. Performance levels of BP, linear BP, and the proposed optimal linear
BP in the presence of errors.

node j, comprises of only one LE and |Nj |MEs and |Nj | ≥ 1.
This observation can be justified based on the linearity of the
proposed detection scheme. Specifically, the average number
of neighbors in our network is (4 × 2 + 4)/5 = 2.4 and
10 log10(2.4) ≈ 3.8 dB and we see almost 3.5 dB gap between
the two curves. Note that Ihler’s bound (26) cannot distinguish
between the LEs and MEs.

Fig. 2 confirms our observation in Sec. III-C, where we
showed that ABP is quite resilient to the impact of MEs.
We now see that, by increasing the number of iterations the
average DSNR level of ABP approaches that of a BP that
is affected by LEs only. Note that the ABP is affected by
both types of errors and even when the number of iterations
is rather low, the DSNR level of ABP is quite high compared
to that of a regular BP affected by both error types. This
observation justifies our choice of ABP for the offline learning
and optimization cycle in Algorithm 1.

In this experiment, for a given number of iterations Niterate,
we set L large enough, i.e., L ≥ Niterate, to use all the messages
generated by BP when realizing the averaging process in the
ABP decision variable (46). Hence, by increasing the number
of iterations, L is increased and this increase leads to a heavier
suppression of MEs. We can clearly see in Fig. 2 the increase
in the DSNR level of ABP caused by increasing Niterate.
Moreover, the DSNR level of the ABP approaches that of the
LE-only case, which, as we predicted in Sec. III-C, indicates
that the LEs are not affected by the averaging process in the
ABP.

In addition, our analysis, which is based on the von Neu-
mann model, predicts that the DSNR levels of an erroneous
BP algorithm do not change by the number of iterations
significantly. This is also confirmed by the simulation results
in Fig. 2.

In the second experiment, we study the impact of errors
on the detection performance of the sensor network depicted
in Fig. 1. We assume that nodes 1 and 4 are faulty and inject
errors into the BP algorithm. All other nodes operate in a reli-
able manner, meaning that the errors in their local likelihoods
and messages are negligible. The results are depicted in Fig. 3
where for each data point we have averaged 100,000 detection
results. For the adaptation of the linear BP, we have used a
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window of 2,500 detection outcomes. That is T = 2500 in
Algorithm I. We have set L = 10 in the offline ABP of
Algorithm 1. In the faulty nodes we have ρ(1)

LE = ρ
(4)
LE = 10 dB

while ρ(1)
ME = ρ

(4)
ME = 20 dB. The aim of this experiment is to

see whether the proposed method is able to alleviate the impact
of those faulty nodes on the overall detection performance.

As for performance metrics, we use the average of the
detection and false-alarm rates observed in all of the sensing
nodes. We consider both the BP and linear BP algorithms
with error-free and erroneous iterations. Consequently, we see
how each detection method is affected by errors. Moreover,
we consider the proposed linear BP optimized with and
without having the required statistics. Fig. 3 shows that, in the
presence of LEs and MEs, the detection performance of both
message-passing algorithms are significantly degraded. This
observation clarifies the need for a better BP algorithm, which
resists the impact of errors. In Fig. 3, we also see that the
proposed method significantly improves the detection rate of
the system in the presence of errors. Moreover, we can see
that the proposed blind adaptation scheme closely achieves
the optimal performance level when the required statistics are
not available a priori.

VI. CONCLUSION

We studied the impact of computation and communication
errors on the behavior of the BP algorithm. We showed that
when evaluating the impact of errors on a distributed detection
conducted by BP, the detection can effectively be modeled
as a distributed linear data-fusion scheme. Consequently,
we can analyze its statistical behavior in the presence of errors
and obtain closed-form relations for its performance metrics.
Moreover, by optimizing the resulting linear data-fusion we
can effectively suppress the impact of errors and obtain a better
detection performance.

APPENDIX A
NOTES ON EQ. (14)

By inserting (12) into (17) and then dividing both
the numerator and denominator in (17) by the factor
p(yk| − 1)e−θk−Jkj

 
n∈N j

k
μ

(l−1)
n→k (−1), we obtain m

(l)
k→j =

S
�
2Jkj , 2θk + γk +

�
n∈N j

k
m

(l−1)
n→k

�
. Now we see that,

in the proposed linearized BP, θk only imposes a shift on the
value of the decision variable λj . This shift has no impact
on the detection process since the detection threshold is a
degree of freedom, i.e., an optimization variable, in our design.
In other words, we merge 2θk into the detection threshold τj .
Moreover, since Jkj is also a degree of freedom, we can simply
use Jkj instead of 2Jkj . Recall that we jointly optimize Jkj ’s
and the detection thresholds.

APPENDIX B
PROOF OF EQ. (21)

We focus on non-diagonal elements of A here since it
is clear that the diagonal ones are all close to one. It is
straightforward to see that (21) holds for l = 1, 2, 3. That
is, we have λ(l) = A(l)γ where A(l) ≈ �l

n=1 Cn for
l ≤ 3. Based on this observation, we prove (21) by induction.

Specifically, we show that if A(k) ≈�k
n=1 Cn for k ≤ l then

A(l+1) ≈�l+1
n=1 Cn or, equivalently, A(l+1) ≈ A(l) + Cl+1.

From (15) and (18) and by setting cjk = 0 for k /∈ Nj , ∀j we
have�
A(l+1)

�
ji

=
�
A(l)
�

ji
+
�
k1 �=j

�
k2 �=j

. . .

�
kl−1 �=kl−3

�
kl �=kl−2

cjk1ck1k2 . . . ckl−1kl
ckli (68)

Note that
�
A(l)
�

ji
= ∂λj/∂γi. Hence, to prove (21) we need

to show that�
Cl+1

�
ji
≈
�
k1 �=j

�
k2 �=j

. . .
�

kl �=kl−2

cjk1ck1k2 . . . ckli (69)

According to (68), our induction hypothesis indicates for n ≤ l
that

[Cn]ji ≈
�
k1 �=j

�
k2 �=j

. . .
�

kn−1 �=kn−3

cjk1ck1k2 . . . ckn−1i (70)

To show that (69) is true, we rewrite its right-hand side (RHS)
as

RHS =
N�

kl=1

ckli

�
k1 �=j

�
k2 �=j

. . .
�

kl−1 �=kl−3

cjk1ck1k2 . . . ckl−1kl

−
�
k1 �=j

�
k2 �=j

. . .
�

kl−1 �=kl−3

cjk1ck1k2

. . . ckl−2kl−1ckl−1kl−2ckl−2i (71)

which, based on (70), means that

RHS ≈
N�

kl=1

ckli

�
Cl
�

jkl

−O(l+1)
j (72)

where O(l+1)
j denotes the right-most term in (71).

Now, we recognize the outcome of the first sum in (72)
as
�
Cl+1

�
ji

which is what we were looking for. Since the

induction hypothesis states that A(l) contains Cl−1 as one of
its summands, the offset term O

(l+1)
j can be neglected. The

reason is that�������
O

(l+1)
j�

Cl−1
�

ji

������� ≤
���|Nkl−1 | − 1

�
c̃2
�� (73)

where c̃ � 1
maxn |Nn|−1 < 1 and, therefore,

|c̃|2 � 1. The bound in (73) is derived by replacing the term
ckl−2kl−1ckl−1kl−2 within O(l+1)

j by c̃2. Recall that, to ensure
the system convergence we have |cj,k| < c̃, ∀(j, k) ∈ E .
Hence, the proof is complete.
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